Processing math: 100%

Ex 5.7 Class 12 Maths Ncert Solutions

Ex 5.7 class 12 maths ncert solutions | class 12 maths exercise 5.7 | class 12 maths ncert solutions chapter 5 exercise 5.7 | exercise 5.7 class 12 maths ncert solutions | continuity and differentiability class 12 ncert solutions

Looking for Ex 5.7 Class 12 Maths NCERT Solutions? You’re in the right place! This section offers comprehensive, step‑by‑step answers for all problems in Exercise 5.7 Class 12 Maths, a part of Chapter 5 – Continuity and Differentiability. These solutions cover advanced topics like Rolle’s Theorem and the Mean Value Theorem, ensuring you understand both the statements and applications of these fundamental theorems. Aligned with the latest CBSE and NCERT standards, the Class 12 Maths NCERT Solutions Chapter 5 Exercise 5.7 are ideal for effective revision and exam readiness. Explore these expertly crafted exercise 5.7 class 12 maths NCERT solutions to deepen your grasp of calculus and perform confidently in your board exams!

ex 5.7 class 12 maths ncert solutions
ex 5.7 class 12 maths ncert solutions || exercise 5.7 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.7 || class 12 maths exercise 5.7
Download the Math Ninja App Now

Exercise 5.7

1 . Find the second order derivatives of the function x2+3x+2
Answer
Let us take y=x2+3x+2
Now,
dydx=d(x2)dx+d(3x)dx+d(2)dx
=2x+3
Therefore,
d2ydx2=d(2x+3)dx=d(2x)dx+d(3)dx
=2+0
=2
2 . Find the second order derivatives of the function x20
Answer
Let us take y=x20
Now,
dydx=d(x20)dx
=20x19
Therefore,
d2ydx2=d(20x19)dx=20d(x19)dx
=20×19×x18
=380x18
3 . Find the second order derivatives of the function xcosx
Answer
Let us take y=xcosx
Now,
dydx=d(xcosx)dx
=cosxd(x)dx+xd(cosx)dx
=cosx.1+x(sinx)
=cosxxsinx
Therefore,
d2ydx2=d(cosxxsinx)dx
=d(cosx)dxd(xsinx)dx
=sinx[sinxd(x)dx+xd(sinx)dx]
=sinx(sinx+xcosx)
=(xcosx+2sinx)
ex 5.7 class 12 maths ncert solutions || exercise 5.7 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.7 || class 12 maths exercise 5.7
Download the Math Ninja App Now
4 . Find the second order derivatives of the function logx
Answer
Let us take y=logx
Now,
dydx=d(logx)dx=1x
Therefore,
d2ydx2=d(1x)dx=(1x2)
5 . Find the second order derivatives of the function x3logx
Answer
Let us take y=x3logx
Now,
dydx=d(x3logx)dx
=logxd(x3)dx+x3d(logx)dx
=logx3x2+x31x
=logx3x2+x2
=x2(1+3logx)
Therefore,
d2ydx2=d[x2(1+3logx)]dx
=(1+3logx)d(x2)dx+x2d(1+3logx)dx
=(1+3logx)2x+x23x
=2x+6xlogx+3x
=5x+6xlogx
=x(5+6logx)
6 . Find the second order derivatives of the function exsin5x
Answer
Let us take y=exsin5x
Now,
dydx=d(exsin5x)dx
=sin5xd(ex)dx+exd(sin5x)dx
=sin5xex+excos5xd(5x)dx
=exsin5x+excos5x5
=ex(sin5x+5cos5x)
d2ydx2=d[ex(sin5x+5cos5x)]dx
=(sin5x+5cos5x)d(ex)dx+exd(sin5x+5cos5x)dx
=(sin5x+5cos5x)ex+ex[cos5xd(5x)dx+5(sin5x)d(5x)dx]
=ex(sin5x+5cos5x)+ex(5cos5x25sin5x)
=ex(10cos5x24sin5x)
=2ex(5cos5x12sin5x)
7 . Find the second order derivatives of the function e6xcos3x
Answer
Let us take y=e6xcos3x
Now,
dydx=d(e6xcos3x)dx
=cos3xd(e6x)dx+e6xd(cos3x)dx
=cos3xe6xd(6x)dx+e6x(sin3x)d(3x)dx
=6e6xcos3x3e6xsin3x
d2ydx2=d[6e6xcos3x3e6xsin3x]dx
=6d(e6xcos3x)dx3d(e6xsin3x)dx
=6[6e6xcos3x3e6xsin3x]3[sin3xd(e6x)dx+e6xd(sin3x)dx]
=36e6xcos3x18e6xsin3x3[sin3xe6x6+e6xcos3x3]
=36e6xcos3x18e6xsin3x18e6xsin3x9e6xcos3x
=27e6xcos3x36e6xsin3x
=9e6x(3cos3x4sin3x)
8 . Find the second order derivatives of the function tan1x
Answer
Let us take y=tan1x Now,
dydx=d(tan1)dx=11+x2
d2ydx2=d[11+x2]dx
=d(1+x2)1dx=(1)(1+x2)d(1+x2)dx
=1(1+x2)2×2x=2x(1+x2)2
9 . Find the second order derivatives of the function log(logx)
Answer
Let us take y=log(logx)
Now,
dydx=d[log(logx)]dx
=1logxd(logx)dx=1xlogx
=(xlogx)1
d2ydx2=d(xlogx)1dx
=(1)(xlogx)2d(xlogx)dx
=1(xlogx)2[logxd(x)dx+xd(logx)dx]
=1(xlogx)2[logx1+x1x]
=(1+logx)(xlogx)2
10. Find the second order derivatives of the function sin(logx)
Answer
Let us take y=sin(logx)
Now,
dydx=d[sin(logx)]dx
=cos(logx)d(logx)dx
=cos(logx)x
Then
d2ydx2=d(cos(logx)x)dx
=xd[cos(logx)]dxcos(logx)d(x)dxx2
=x[sin(logx)d(logx)dx]cos(logx)1x2
=xsin(logx)1xcos(logx)x2
=sin(logx)+cos(logx)x2
ex 5.7 class 12 maths ncert solutions || exercise 5.7 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.7 || class 12 maths exercise 5.7
Download the Math Ninja App Now
11. If y=5cosx3sinx, prove that d2ydx2+y=0
Answer
It is given that y=5cosx3sinx
Now, on differentiating we get,
dydx=d[5cosx3sinx]dx
=d(5cosx)dxd(3sinx)dx
=5d(cos5x)dx3d(sinx)dx
=5(sinx)3(cosx)
=(5sinx+cosx)
Then,
d2ydx2=d((5sinx+cosx))dx
=[5d(sinx)dx+3d(cosx)dx]
=[5cosx+3(sinx)]
=[5cosx3sinx]
=y
Therefore,
d2ydx2+y=0
Hence Proved.
12. If y=cos1x, Find d2ydx2 in terms of y alone.
Answer
It is given that y=cos1x
Now,
dydx=d(cos1)dx=11x2=(1x2)12
Therefore,
d2ydx2=d((1x2)12)dx
=(12)(1x2)32d(1x2)dx
=121x23×(2x)
d2ydx2=x(1x2)3(1)
Now it is given that y=cos1x
x=cosy
Now putting the value of x in equation (1), we get
d2ydx2=cosy1cos2y3
=cosysin2y3
=cosy(siny)3=cosysiny1sin2y
=d2ydx2=cotycosec2y
13. If y=3cos(logx)+4sin(logx), show that x2y2+xy1+y=0
Answer
It is given that y=3cos(logx)+4sin(logx)
Now, on differentiating we get,
dydx=d(3cos(logx))+4sin(logx))dx
=3d(cos(logx))dx+4d(sin(logx))dx
=3[sin(logx)d(logx)dx]+4[cos(logx)d(logx)dx]
=dydx=3sin(logx)x+4cos(logx)x=4cos(logx)3sin(logx)x
Again differentiating we get,
d2ydx2=d(4cos(logx)3sin(logx)x)dx
=x{4cos(logx)3sin(logx)}{4cos(logx)3sin(logx)}(x)x2
=x[4sin(logx)(logx)3cos(logx)(logx)]4cos(logx)+3sin(logx)x2
=4sin(logx)3cos(logx)4cos(logx)+3sin(logx)x2
=sin(logx)7cos(logx)x2
Therefore,
x2y2+xy1+y
=x2(sin(logx)7cos(logx)x2)+x(4cos(logx)3sin(logx)x)+3cos(logx)+4sin(logx)
=sin(logx)7cos(logx)+4cos(logx)3sin(logx)+3cos(logx)+4sin(logx)
=0
So, x2y2+xy1+y=0
Hence Proved
14. If y=Aemx+Benx, show that d2ydx2(m+n)dydx+mny=0
Answer
According to given equation, we have,
y=Aemx+Benx
 Then, dydx=d(Aemx+Benx)dx
= A. d(emx)dx+Bd(enx)dx
=Aemxd(mx)dx+Benxd(nx)dx
=Amemx+Bnenx
Now, on again differentiating we get,
d2ydx2=d(Amemx+Bnenx)dx
=Amd(emx)dx+Bnd(enx)dx
=Amemxd(mx)dx+Bnenxd(nx)dx
=Am2emx+Bn2enx
d2ydx2(m+n)dydx+mny
=Am2emx+Bn2enx(m+n)(Amemx+Bnenx)+mn(Aemx+Benx)
=Am2emx+Bn2enxAm2emxBmnenxAmnemxBn2eex+Amnemx+Bmnenx
=0
=d2ydx2(m+n)dydx+mny=0
Hence Proved
15. If y=500e7x+600e7x, show that d2ydx2=49y.
Answer
According to given equation, we have,
y=500e7x+600e7x
dydx=d(500e7x+600e7x)dx
=500d(e7x)dx+600d(7x)dx
=500e7xd(7x)dx+600e7xd(7x)dx
=3500e7x4200e7x
Now, on again differentiating we get,
d2ydx2=d(3500e7x4200e7x)dx
=3500d(e7x)dx4200d(e7x)dx
=3500e7xd(7x)dx42500e7xddx(7x)
=7×3500e7x+7×4200e7x
=49×500e7x+49×600e7x
=49(500e7x+600e7x)
=49y
d2ydx2=49y
Hence Proved
16. If ey(x+1)=1, show that d2ydx2=(dydx)2
Answer
It is given that
ey(x+1)=1
=ey=1x+1
Now, taking logarithm on both the sides we get,
y=log1x+1
On differentiating both sides, we get,
dydx=(x+1)d(1x+1)dx
=(x+1)1(x+1)2=1x+1
Again, on differentiating we get,
d2ydx2=d(1x+1)dx
=(d2ydx2)=1(x+1)2
=d2ydx2=1(x+1)2
=d2ydx2=(dydx)2
Hence Proved
17. If y=(tan1x)2, show that (x2+1)2y2+2x(x2+1)y1=2
Answer
It is given that
y=(tan1x)2
On differentiating we get,
dydx=d[(tan1x)2]dx
=2tan1xd[tan1x]dx
=2tan1x11+x2
=(1+x2)dydx=2tan1x
Again differentiating, we get,
(1+x2)d2ydx2+2xdydx=2(11+x2)
=(1+x2)2d2ydx2+2x(1+x2)dydx=2
So, (1+x2)2y2+2x(1+x2)y1=2
where, y1=dydx and y2=d2ydx2
Hence Proved
ex 5.7 class 12 maths ncert solutions || exercise 5.7 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.7 || class 12 maths exercise 5.7
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *