Ex 5.7 class 12 maths ncert solutions | class 12 maths exercise 5.7 | class 12 maths ncert solutions chapter 5 exercise 5.7 | exercise 5.7 class 12 maths ncert solutions | continuity and differentiability class 12 ncert solutions
Looking for Ex 5.7 Class 12 Maths NCERT Solutions? You’re in the right place! This section offers comprehensive, step‑by‑step answers for all problems in Exercise 5.7 Class 12 Maths, a part of Chapter 5 – Continuity and Differentiability. These solutions cover advanced topics like Rolle’s Theorem and the Mean Value Theorem, ensuring you understand both the statements and applications of these fundamental theorems. Aligned with the latest CBSE and NCERT standards, the Class 12 Maths NCERT Solutions Chapter 5 Exercise 5.7 are ideal for effective revision and exam readiness. Explore these expertly crafted exercise 5.7 class 12 maths NCERT solutions to deepen your grasp of calculus and perform confidently in your board exams!

ex 5.7 class 12 maths ncert solutions || exercise 5.7 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.7 || class 12 maths exercise 5.7
Exercise 5.7
Now,
dydx=d(x2)dx+d(3x)dx+d(2)dx
=2x+3
Therefore,
d2ydx2=d(2x+3)dx=d(2x)dx+d(3)dx
=2+0
=2
Now,
dydx=d(x20)dx
=20x19
Therefore,
d2ydx2=d(20x19)dx=20d(x19)dx
=20×19×x18
=380x18
Now,
dydx=d(xcosx)dx
=cosxd(x)dx+xd(cosx)dx
=cosx.1+x(−sinx)
=cosx−xsinx
Therefore,
d2ydx2=d(cosx−xsinx)dx
=d(cosx)dx−d(xsinx)dx
=−sinx−[sinx⋅d(x)dx+x⋅d(sinx)dx]
=−sinx−(sinx+xcosx)
=−(xcosx+2sinx)
ex 5.7 class 12 maths ncert solutions || exercise 5.7 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.7 || class 12 maths exercise 5.7
Now,
dydx=d(logx)dx=1x
Therefore,
d2ydx2=d(1x)dx=(−1x2)
Now,
dydx=d(x3logx)dx
=logx⋅d(x3)dx+x3⋅d(logx)dx
=logx⋅3x2+x3⋅1x
=logx⋅3x2+x2
=x2(1+3logx)
Therefore,
d2ydx2=d[x2(1+3logx)]dx
=(1+3logx)⋅d(x2)dx+x2d(1+3logx)dx
=(1+3logx)⋅2x+x2⋅3x
=2x+6xlogx+3x
=5x+6xlogx
=x(5+6logx)
Now,
dydx=d(exsin5x)dx
=sin5x⋅d(ex)dx+ex⋅d(sin5x)dx
=sin5x⋅ex+ex⋅cos5x⋅d(5x)dx
=exsin5x+excos5x⋅5
=ex(sin5x+5cos5x)
d2ydx2=d[ex(sin5x+5cos5x)]dx
=(sin5x+5cos5x)⋅d(ex)dx+ex⋅d(sin5x+5cos5x)dx
=(sin5x+5cos5x)ex+ex[cos5x⋅d(5x)dx+5(−sin5x)⋅d(5x)dx]
=ex(sin5x+5cos5x)+ex(5cos5x−25sin5x)
=ex(10cos5x−24sin5x)
=2ex(5cos5x−12sin5x)
Now,
dydx=d(e6xcos3x)dx
=cos3x⋅d(e6x)dx+e6xd(cos3x)dx
=cos3x⋅e6x⋅d(6x)dx+e6x⋅(−sin3x)⋅d(3x)dx
=6e6xcos3x−3e6xsin3x
d2ydx2=d[6e6xcos3x−3e6xsin3x]dx
=6⋅d(e6xcos3x)dx−3⋅d(e6xsin3x)dx
=6⋅[6e6xcos3x−3e6xsin3x]−3[sin3x⋅d(e6x)dx+e6xd(sin3x)dx]
=36e6xcos3x−18e6xsin3x−3[sin3x⋅e6x⋅6+e6x⋅cos3x⋅3]
=36e6xcos3x−18e6xsin3x−18e6xsin3x−9e6xcos3x
=27e6xcos3x−36e6xsin3x
=9e6x(3cos3x−4sin3x)
dydx=d(tan−1)dx=11+x2
d2ydx2=d[11+x2]dx
=d(1+x2)−1dx=(−1)⋅(1+x2)⋅d(1+x2)dx
=1(1+x2)2×2x=−2x(1+x2)2
Now,
dydx=d[log(logx)]dx
=1logx⋅d(logx)dx=1xlogx
=(xlogx)−1
d2ydx2=d(xlogx)−1dx
=(−1)⋅(xlogx)−2⋅d(xlogx)dx
=−1(xlogx)2⋅[logx⋅d(x)dx+x⋅d(logx)dx]
=−1(xlogx)2⋅[logx⋅1+x⋅1x]
=−(1+logx)(xlogx)2
Now,
dydx=d[sin(logx)]dx
=cos(logx)⋅d(logx)dx
=cos(logx)x
Then
d2ydx2=d(cos(logx)x)dx
=x⋅d[cos(logx)]dx−cos(logx)⋅d(x)dxx2
=x⋅[−sin(logx)⋅d(logx)dx]−cos(logx)⋅1x2
=−xsin(logx)⋅1x⋅cos(logx)x2
=−sin(logx)+cos(logx)x2
ex 5.7 class 12 maths ncert solutions || exercise 5.7 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.7 || class 12 maths exercise 5.7
Now, on differentiating we get,
dydx=d[5cosx−3sinx]dx
=d(5cosx)dx−d(3sinx)dx
=5d(cos5x)dx−3d(sinx)dx
=5(−sinx)−3(cosx)
=−(5sinx+cosx)
Then,
d2ydx2=d(−(5sinx+cosx))dx
=−[5⋅d(sinx)dx+3⋅d(cosx)dx]
=−[5cosx+3(−sinx)]
=−[5cosx−3sinx]
=−y
Therefore,
d2ydx2+y=0
Hence Proved.
Now,
dydx=d(cos−1)dx=−1√1−x2=−(1−x2)−12
Therefore,
d2ydx2=d(−(1−x2)−12)dx
=−(−12)⋅(1−x2)−32⋅d(1−x2)dx
=12√1−x23×(−2x)
d2ydx2=−x√(1−x2)3…(1)
Now it is given that y=cos−1x
⇒x=cosy
Now putting the value of x in equation (1), we get
d2ydx2=−cosy√1−cos2y3
=−cosy√sin2y3
=−cosy(siny)3=−cosysiny⋅1sin2y
=d2ydx2=−coty⋅cosec2y
Now, on differentiating we get,
dydx=d(3cos(logx))+4sin(logx))dx
=3⋅d(cos(logx))dx+4⋅d(sin(logx))dx
=3⋅[−sin(logx)⋅d(logx)dx]+4⋅[cos(logx)⋅d(logx)dx]
=dydx=−3sin(logx)x+4cos(logx)x=4cos(logx)−3sin(logx)x
Again differentiating we get,
d2ydx2=d(4cos(logx)−3sin(logx)x)dx
=x{4cos(logx)−3sin(logx)}′−{4cos(logx)−3sin(logx)}(x)′x2
=x[−4sin(logx)⋅(logx)′−3cos(logx)⋅(logx)′]−4cos(logx)+3sin(logx)x2
=−4sin(logx)−3cos(logx)−4cos(logx)+3sin(logx)x2
=−sin(logx)−7cos(logx)x2
Therefore,
x2y2+xy1+y
=x2(−sin(logx)−7cos(logx)x2)+x(4cos(logx)−3sin(logx)x)+3cos(logx)+4sin(logx)
=−sin(logx)−7cos(logx)+4cos(logx)−3sin(logx)+3cos(logx)+4sin(logx)
=0
So, x2y2+xy1+y=0
Hence Proved
y=Aemx+Benx
Then, dydx=d(Aemx+Benx)dx
= A. d(emx)dx+B⋅d(enx)dx
=A⋅emxd(mx)dx+B⋅enxd(nx)dx
=Amemx+Bnenx
Now, on again differentiating we get,
d2ydx2=d(Amemx+Bnenx)dx
=Am⋅d(emx)dx+Bn⋅d(enx)dx
=Am⋅emxd(mx)dx+Bn⋅enxd(nx)dx
=Am2emx+Bn2enx
∴d2ydx2−(m+n)dydx+mny
=Am2emx+Bn2enx−(m+n)(Amemx+Bnenx)+mn(Aemx+Benx)
=Am2emx+Bn2enx−Am2emx−Bmnenx−Amnemx−Bn2eex+Amnemx+Bmnenx
=0
=d2ydx2−(m+n)dydx+mny=0
Hence Proved
y=500e7x+600e−7x
dydx=d(500e7x+600e−7x)dx
=500⋅d(e7x)dx+600⋅d(−7x)dx
=500⋅e7xd(7x)dx+600⋅e−7xd(−7x)dx
=3500e7x−4200e−7x
Now, on again differentiating we get,
d2ydx2=d(3500e7x−4200e−7x)dx
=3500⋅d(e7x)dx−4200d(e−7x)dx
=3500e7xd(7x)dx−42500e−7xddx(−7x)
=7×3500⋅e7x+7×4200⋅e−7x
=49×500e7x+49×600e−7x
=49(500e7x+600e−7x)
=49y
∴d2ydx2=49y
Hence Proved
ey(x+1)=1
=ey=1x+1
Now, taking logarithm on both the sides we get,
y=log1x+1
On differentiating both sides, we get,
dydx=(x+1)d(1x+1)dx
=(x+1)⋅−1(x+1)2=−1x+1
Again, on differentiating we get,
∴d2ydx2=−d(1x+1)dx
=−(d2ydx2)=1(x+1)2
=d2ydx2=1(x+1)2
=d2ydx2=(dydx)2
Hence Proved
y=(tan−1x)2
On differentiating we get,
dydx=d[(tan−1x)2]dx
=2tan−1xd[tan−1x]dx
=2tan−1x11+x2
=(1+x2)dydx=2tan−1x
Again differentiating, we get,
(1+x2)d2ydx2+2xdydx=2(11+x2)
=(1+x2)2d2ydx2+2x(1+x2)dydx=2
So, (1+x2)2y2+2x(1+x2)y1=2
where, y1=dydx and y2=d2ydx2
Hence Proved