Ex 9.1 Class 11 Maths Ncert Solutions

Ex 9.1 class 11 maths ncert solutions | Class 11 rd sharma exercise 9.1 solutions | class 11 maths exercise 9.1 solutions | exercise 9.1 class 11 maths solutions | class 11 ch 9 exercise 9.1 solutions | class 11 chapter 9 exercise 9.1 solution | class 11 maths ncert solutions chapter 9 | ncert solutions for class 11 maths chapter 9 | ncert exemplar class 11 maths | sequences and series class 11 ncert solutions

Looking for Ex 9.1 Class 11 Maths NCERT Solutions? You’ve come to the right place! This section provides detailed, step-by-step solutions for all questions from Exercise 9.1 of Chapter 9 – Sequences and Series. Aligned with the latest NCERT syllabus, these solutions help you understand the basics of sequences, general terms, and patterns that form the foundation of arithmetic and geometric progressions. Whether you’re solving problems from the Class 11 Ch 9 Exercise 9.1, using the NCERT Exemplar Class 11 Maths, or cross-checking your answers with RD Sharma Exercise 9.1 Solutions, this resource is perfect for concept clarity and exam preparation. Download or view the complete NCERT Solutions for Class 11 Maths Chapter 9 and strengthen your grasp on Sequences and Series Class 11 today!

ex 9.1 class 11 maths ncert solutions
ncert exemplar class 11 maths || class 11 chapter 9 exercise 9.1 solution || ex 9.1 class 11 maths ncert solutions || exercise 9.1 class 11 maths solutions || ncert solutions for class 11 maths chapter 9 || Class 11 rd sharma exercise 9.1 solutions || class 11 maths exercise 9.1 solutions || class 11 maths ncert solutions chapter 9 || class 11 ch 9 exercise 9.1 solutions || sequences and series class 11 ncert solutions
Download the Math Ninja App Now

Exercise 9.1

1. Write the first five terms of the sequences whose \( {n}^{\text {th}} \) term is \( {a}_{{n}}={n}({n}+2) \).
Answer
\(a_{n}=n(n+2)\)
substituting \( {n}=1,2,3,4 \), and \(5 ,\) we obtain
\(a_{1}=1(1+2)=3\)
\(a_{2}=2(2+2)=8\)
\(a_{3}=3(3+2)=15\)
\(a_{4}=4(4+2)=24\)
\(a_{5}=5(5+2)=35\)
Therefore, the required terms are \( 3,8,15,24,35 \).
2. Write the first five terms of the sequences whose \( {n}^{\text {th}} \) term is \( {a}_{{n}}=\frac{n}{n+1} \)
Answer
\({a}_{{n}}=\frac{n}{n+1}\)
Substituting \( {n}=1,2,3,4,5 \), we obtain
\({a}_{1}=\frac{1}{1+1}=\frac{1}{2}, {a}_{2}=\frac{2}{2+1}=\frac{2}{3}, {a}_{3}=\frac{3}{3+1}=\frac{3}{4}, \) \({a}_{4}=\frac{4}{4+1}=\frac{4}{5}, {a}_{5}=\frac{5}{5+1}=\frac{5}{6}\)
Therefore, the required terms are \( \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5} \), and \( \frac{5}{6} \)
ncert exemplar class 11 maths || class 11 chapter 9 exercise 9.1 solution || ex 9.1 class 11 maths ncert solutions || exercise 9.1 class 11 maths solutions || ncert solutions for class 11 maths chapter 9 || Class 11 rd sharma exercise 9.1 solutions || class 11 maths exercise 9.1 solutions || class 11 maths ncert solutions chapter 9 || class 11 ch 9 exercise 9.1 solutions || sequences and series class 11 ncert solutions
Download the Math Ninja App Now
3. Write the first five terms of the sequences whose \( {n}^{\text {th}} \) term is \( {a}_{{n}}=2^{{n}} \)
Answer
\(a_{n}=2^{n}\)
substituting \( {n}=1,2,3,4,5 \), we obtain
\(\begin{array}{l}
a_{1}=2^{1}=2 \\
a_{2}=2^{2}=4 \\
a_{3}=2^{3}=8 \\
a_{4}=2^{4}=16 \\
a_{5}=2^{5}=25
\end{array}\)
therefore, the required terms are \( 2,4,8,16 \), and \(32 \).
4. Write the first five terms of the sequences whose \( {n}^{\text {th}} \) term is \( \frac{2 n-3}{6} \)
Answer
Substituting \( {n}=1,2,3,4,5 \), we obtain
\( {a}_{1}=\frac{2 \times 1-3}{6}=\frac{-1}{6} \)
\( {a}_{2}=\frac{2 \times 2-3}{6}=\frac{1}{6} \)
\( {a}_{3}=\frac{2 \times 3-3}{6}=\frac{1}{2} \)
\( {a}_{4}=\frac{2 \times 4-3}{6}=\frac{5}{6} \)
\( {a}_{5}=\frac{2 \times 5-3}{6}=\frac{7}{6} \)
Therefore, the required terms are \( , \frac{-1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{5}{6} \) and \( \frac{7}{6} \)
5. Write the first five terms of the sequences whose \( {n}^{\text {th}} \) term is \(a_{n}=(-1)^{n-1} 5^{n+1}\)
Answer
Substituting \( {n}=1,2,3,4,5 \), we obtain
\(a_{1}=(-1)^{1-1} 5^{1+1}=5^{2}=25\)
\(a_{2}=(-1)^{2-1} 5^{2+1}=-5^{3}=-125\)
\(a_{3}=(-1)^{3-1} 5^{3+1}=5^{4}=625\)
\(a_{4}=(-1)^{4-1} 5^{4+1}=-5^{5}=-3125\)
\(a_{5}=(-1)^{5-1} 5^{5+1}=5^{6}=15625\)
therefore, the required terms are \( 25,-125,625,-3125 \), and \(15625 \).
6. Write the first five terms of the sequences whose \( {n}^{\text {th}} \) term is \({a}_{{n}}={n} \frac{n^{2}+5}{4}\)
Answer
Substituting \( {n}=1,2,3,4,5 \), we obtain
\(a_{1}=1 \cdot \frac{1^{2}+5}{4}=\frac{6}{4}=\frac{3}{2}\)
\(a_{2}=2 \cdot \frac{2^{4}+5}{4}=2 \cdot \frac{9}{4}=\frac{9}{2}\)
\(a_{3}=3 \cdot \frac{3^{2}+5}{4}=2 \cdot \frac{14}{4}=\frac{21}{2}\)
\(a_{4}=4 \cdot \frac{4^{2}+5}{4}=21\)
\(a_{5}=5 \cdot \frac{5^{2}+5}{4}=5 \cdot \frac{30}{4}=\frac{75}{2}\)
therefore, the required terms are \( \frac{3}{2}, \frac{9}{2}, \frac{21}{2}, 21 \), and \( \frac{75}{2} \).
7. Find the \( 17^{\text {th}} \) term in the following sequence whose \( {n}^{\text {th}} \) term is \( a_{n}=4 n-3 ; a_{17}, a_{24} \)
Answer
Substituting \( {n}=17 \), we obtain
\( a_{17}=4(17)-3=68-3=65 \)
Substituting \( {n}=24 \), we obtain \( {a}_{24}=4(24)-3=96-3=93 \)
ncert exemplar class 11 maths || class 11 chapter 9 exercise 9.1 solution || ex 9.1 class 11 maths ncert solutions || exercise 9.1 class 11 maths solutions || ncert solutions for class 11 maths chapter 9 || Class 11 rd sharma exercise 9.1 solutions || class 11 maths exercise 9.1 solutions || class 11 maths ncert solutions chapter 9 || class 11 ch 9 exercise 9.1 solutions || sequences and series class 11 ncert solutions
Download the Math Ninja App Now
8. Find the \( 7^{\text {th}} \) term in the following sequence whose \( {n}^{\text {th}} \) term is \( {a}_{{n}}=\frac{n^{2}}{2 n} \); \( {a}_{7} \)
Answer
Substituting \( {n}=7 \), we obtain
\(a_{7}=\frac{7^{2}}{2^{7}}=\frac{49}{128}\)
9. Find the \( 9^{\text {th}} \) term in the following sequence whose \( {n}^{\text {th}} \) term is \( a_{n}=(-1)^{n-1} n^{3} ; a_{9} \)
Answer
Substituting \( {n}=9 \), we obtain
\(a_{9}=(-1)^{9-1}(9)^{3}=(9)^{3}=729\)
10. Find the \( 20^{\text {th}} \) term in the following sequence whose \( {n}^{\text {th}} \) term is \({a}_{{n}}=\frac{n(n-2)}{n+3} ; {a}_{20}\)
Answer
Substituting \( {n}=20 \), we obtain
\({a}_{20}=\frac{20(20-2)}{20+3}=\frac{20(18)}{23}=\frac{360}{23}\)
11. Write the first five terms of the following sequence and obtain the corresponding series:
\(a_{n}=3 a_{n-1}+2 \text { for all } n > 1\)
Answer
\(a_{1}=3, a_{n}=3 a_{n-1}+2 \text { for all } n > 1\)
\(=a_{2}=3 a_{1}+2=3(3)+2=11\)
\(=a_{3}=3 a_{2}+2=3(11)+2=35\)
\(=a_{4}=3 a_{3}+2=3(35)+2=107\)
\(=a_{5}=3 a_{4}+2=3(107)+2=323\)
Hence, the first five terms of the sequence are \( 3,11,35,107,323 \).
The corresponding series is \( 3+11+35+107+323+\ldots \)
12. Write the first five terms of the following sequence and obtain the corresponding series:
\({a}_{1}=-1, {a}_{{n}}=\frac{a_{n-1}}{n}, {n} \geq 2\)
Answer
\({a}_{1}=-1, {a}_{{n}}=\frac{a_{n-1}}{n}, {n} \geq 2\)
\(={a}_{2}=\frac{a_{1}}{2}=\frac{-1}{2}\)
\(={a}_{3}=\frac{a_{2}}{3}=\frac{-1}{6}\)
\(={a}_{4}=\frac{a_{3}}{4}=\frac{-1}{24}\)
\(={a}_{5}=\frac{a_{4}}{4}=\frac{-1}{120}\)
Hence, the first terms of the sequence are \( -1, \frac{-1}{2}, \frac{-1}{6}, \frac{-1}{24} \) and \( \frac{-1}{120} \)
The corresponding series is \( (1)+\left(\frac{-1}{2}\right)+\left(\frac{-1}{6}\right)\) \(+\left(\frac{-1}{24}\right)+\left(\frac{-1}{120}\right) \)
13. Write the first five terms of the following sequence and obtain the corresponding series:
\( a_{1}=a_{2}=2 \), an \( =a_{n-1}-1, n > 2 \)
Answer
\(a_{1}=a_{2}=2, a_{n}=a_{n-1}-1, n > 2\)
\(=a_{3}=a_{2}-1=2-1=1\)
\(=a_{4}=a_{3}-1=1-1=0\)
\(=a_{5}=a_{4}-1=0-1=-1\)
Hence, the first five terms of the sequence are \( 2,2,1,0 \), and \(-1 \).
The corresponding series is \( 2+2+1+0+(-1)+\ldots \)
14. The Fibonacci sequence is defined by \(1 =a_{1}=a_{2} \) and \( a_{n}= {a}_{{n}-1}+{a}_{{n}-2}, {n} > 2 \) find \( \frac{a_{n+1}}{a_{n}} \), for \( {n}=1,2,3,4,5 \)
Answer
\(1=a_{1}=a_{2}\)
\(a_{n}=a_{n-1}+a_{n-2}, n > 2\)
\(=a_{3}=a_{2}+a_{1}=1+1=2\)
\(a_{4}=a_{3}+a_{2}=2+1=3\)
\(a_{5}=a_{4}+a_{3}=3+2=5\)
\(a_{6}=a_{5}+a_{4}=5+3=8\)
For \( {n}=1,=\frac{a_{n+1}}{a_{n}}=\frac{a_{2}}{a_{1}}=\frac{1}{1}=1 \)
For \( {n}=2, \frac{a_{n+1}}{a_{n}}=\frac{a_{3}}{a_{2}}=\frac{2}{1}=2 \)
For \( {n}=3, \frac{a_{n+1}}{a_{n}}=\frac{a_{4}}{a_{3}}=\frac{3}{2} \)
For \( {n}=4, \frac{a_{n+1}}{a_{n}}=\frac{a_{5}}{a_{4}}=\frac{5}{3} \)
For \( {n}=5, \frac{a_{n+1}}{a_{n}}=\frac{a_{6}}{a_{5}}=\frac{8}{5} \)
ncert exemplar class 11 maths || class 11 chapter 9 exercise 9.1 solution || ex 9.1 class 11 maths ncert solutions || exercise 9.1 class 11 maths solutions || ncert solutions for class 11 maths chapter 9 || Class 11 rd sharma exercise 9.1 solutions || class 11 maths exercise 9.1 solutions || class 11 maths ncert solutions chapter 9 || class 11 ch 9 exercise 9.1 solutions || sequences and series class 11 ncert solutions
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top