Miscellaneous exercise class 12 chapter 5 | miscellaneous exercise chapter 5 class 12 | miscellaneous exercise on chapter 5 class 12 | class 12 maths chapter 5 miscellaneous exercise solutions | continuity and differentiability class 12 ncert solutions
If you’re preparing for your Class 12 board exams or aiming for competitive exams like JEE, it’s essential to practice the miscellaneous exercise class 12 chapter 5 thoroughly. This part of the syllabus tests your understanding of all concepts covered in the chapter. The miscellaneous exercise chapter 5 class 12 is especially helpful because it includes a mixed bag of questions that require deeper analytical thinking and application of formulas. Solving the miscellaneous exercise on chapter 5 class 12 will help you build a solid foundation in the topic of continuity and differentiability. To make your preparation easier, we provide detailed class 12 maths chapter 5 miscellaneous exercise solutions that explain each step in a simple and clear manner. These solutions align with the continuity and differentiability class 12 NCERT solutions, ensuring you are well-prepared for exams and conceptually sound.

miscellaneous exercise on chapter 5 class 12 || continuity and differentiability class 12 ncert solutions || class 12 maths chapter 5 miscellaneous exercise solutions || miscellaneous exercise chapter 5 class 12 || miscellaneous exercise class 12 chapter 5
Miscellaneous Exercise
If \( \mathrm{u}=\mathrm{v}(\mathrm{w}(x)) \)
Then using chain rule \( \frac{d u}{d x}=\frac{d v}{d w} \times \frac{d w}{d x} \)
\( \therefore \) Differentiating y w.r.t. \(x\) using chain rule
\(\frac{d y}{d x}=\frac{d}{d x}\left(3 x^{2}-9 x+5\right)^{9}\)
\(=9\left(3 x^{2}-9 x+5\right)^{8} \times \frac{d}{d x}(3 x^2-9 x+5)\)
\(=9\left(3 x^{2}-9 x+5\right)^{8} \times(6 x-9)\)
\(=9\left(3 x^{2}-9 x+5\right)^{8} \times 3(2 x-3)\)
\(=27\left(3 x^{2}-9 x+5\right)^{8}(2 x-3)\)
\(\therefore \frac{d y}{d x}=27\left(3 x^{2}-9 x+5\right)^{8}(2 x-3)\)
Differentiating both sides with respect to \(x\)
\(\therefore \frac{d y}{d x}=\frac{d}{d x}\left(\sin ^{3} x\right)+\frac{d}{d x}\left(\cos ^{6} x\right) \because \frac{d}{d x}(\sin x)=\cos x \& \frac{d}{d x}(\cos x)=-\sin x\)
\(=3 \sin^2 x \times \frac{d}{d x}(\sin x)+6 \cos^5 x \times \frac{d}{d x}(\cos x)\)
\(=3 \sin ^{2} x \times \cos x+6 \cos ^{5} x \times(-\sin x)\)
\(=3 \sin x \cos x\left(\sin x-2 \cos ^{4} x\right)\)
\(\therefore \frac{d y}{d x}=3 \sin x \cos x\left(\sin x-2 \cos ^{4} x\right)\)
Then \( \log y=\log (5 x)^{3 \cos 2 x} \)
\(\Rightarrow \log y=3 \cos^{2 x} \times \log 5 x\)
Differentiating both sides with respect to \( x \), we get
\(\frac{1}{y} \frac{d y}{d x}=3\left[\log 5 x \times \frac{d}{d x}(\cos 2 x)+\cos 2 x \times \frac{d}{d x}(\log 5 x)\right]\)
\({\left[\therefore \frac{d}{d x}(u v)=u \times \frac{d v}{d x}+v \times \frac{d u}{d x}\right]}\)
\(=\frac{d y}{d x}=3 y\left[\log 5 x(-2 \sin 2 x) \times \frac{d}{d x}(2 x)+\cos 2 x \times \frac{1}{5 x} \times \frac{d}{d x}(5 x)\right]\)
\(=\frac{d y}{d x}=3 y[-2 \sin 2 x \log 5 x+] \frac{\cos 2 x}{x}\)
\(=\frac{d y}{d x}=y\left[\frac{3 \cos 2 x}{x}-6 \sin 2 x \log 5 x\right]\)
\(=\frac{d y}{d x}=(5 x)^{3 \cos 2 x}\left[\frac{3 \cos 2 x}{x}-6 \sin 2 x \log 5 x\right]\)
\(\because \frac{d y}{d x}=(5 x)^{3 \cos 2 x}\left[\frac{3 \cos 2 x}{x}-6 \sin 2 x \log 5 x\right]\)
miscellaneous exercise on chapter 5 class 12 || continuity and differentiability class 12 ncert solutions || class 12 maths chapter 5 miscellaneous exercise solutions || miscellaneous exercise chapter 5 class 12 || miscellaneous exercise class 12 chapter 5
Differentiating both sides with respect to \(x\), we get
Using chain rule we get
\(\frac{d y}{d x}=\frac{d}{d x} \sin ^{-1}(x \sqrt{x})\)
\(=\frac{d y}{d x}=\frac{1}{\sqrt{1-(x \sqrt{x})^{2}}} \times \frac{d}{d x}(x \sqrt{x})\)
\(=\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{3}}} \times \frac{d}{d x}\left(x^{\frac{3}{2}}\right)=\frac{1}{\sqrt{1-x^{3}}} \times \frac{3}{2} x^{\frac{1}{2}}\)
\(=\frac{d y}{d x}=\frac{3 \sqrt{x}}{2 \sqrt{1-x^{3}}}\)
\(=\frac{d y}{d x}=\frac{3}{2} \sqrt{\frac{x}{\sqrt{1-x^{3}}}}\)
\(\therefore \frac{d y}{d x}=\frac{3}{2} \sqrt{\frac{x}{1-x^{3}}}\)
Differentiating both sides with respect to \( x \), we get
Using Quotient rule
\(\frac{d y}{d x}=\frac{\sqrt{2 x+7} \frac{d}{d x}\left(\cos ^{-1} \frac{x}{2}\right)-\left(\cos ^{-1} \frac{x}{2}\right) \frac{d}{d x}(\sqrt{2 x+7})}{(\sqrt{2 x+7})^{2}}\)
\(\frac{d y}{d x}=\frac{\sqrt{2 x+7}\left[\frac{-1}{\sqrt{1-\left(\frac{x}{2}\right)^{2}}} \times \frac{d}{d x}\left(\frac{x}{2}\right)\right]-\left(\cos ^{-1} \frac{x}{2}\right) \frac{d}{d x}(\sqrt{2 x+7})}{2 x+7}\)
\(\frac{d y}{d x}=\frac{\sqrt{2 x+7} \times-\frac{1}{\sqrt{4-x^{2}}}-\left(\cos ^{-1} \frac{x}{2}\right) \times \frac{2}{2 \sqrt{2 x+7}}}{2 x+7}\)
\(\frac{d y}{d x}=-\frac{\sqrt{2 x+7}}{\sqrt{4-x^{2} \times(2 x+7)}}-\frac{\cos ^{-1} \frac{x}{2}}{(\sqrt{2 x+7})(2 x+7)}\)
\(\therefore \frac{d y}{d x}=-\left[\frac{1}{\sqrt{4-x^{2}} \times \sqrt{2 x+7}}+\frac{\cos ^{-1} \frac{x}{2}}{(2 x+7)^{\frac{3}{2}}}\right]\)
\(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\)
\(=\frac{(\sqrt{1+\sin x}+\sqrt{1-\sin x})^{2}}{(\sqrt{1+\sin x}-\sqrt{1-\sin x})(\sqrt{1+\sin x}-\sqrt{1-\sin x})}\)
\(=\frac{(1+\sin x)+(1-\sin x)+2 \sqrt{(1-\sin x)(1+\sin x)}}{(1+\sin x)(1-\sin x)}\)
\(=\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}=\frac{2+2 \sqrt{1-\sin^2 x}}{2 \sin x}\)
\(=\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}=\frac{1+\cos x}{\sin x}=\frac{2 \cos ^{2} \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}}=\cot \frac{x}{2}\)
Substituting the value of \( \frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}=\cot \frac{x}{2} \) in \( y \).
\(\therefore y=\cot ^{-1}\left(\cot \frac{x}{2}\right)\)
\(\Rightarrow y=\frac{ x }{ 2 }\)
Differentiating both sides with respect to \(x \), we get
\(\frac{d y}{d x}=\frac{1}{2} \frac{d}{d x}(x)\)
\(\therefore \frac{d y}{d x}=\frac{1}{2}\)
Taking logarithm on both sides
\(\Rightarrow \log y=\log (\log x) \log x=\log x \times \log (\log x)\)
Differentiating both sides with respect to \( x \), we get
\(\frac{1}{y} \frac{d y}{d x}=\frac{d}{d x}[\log x \times \log (\log x)]\)
\(\Rightarrow \frac{1}{y} \frac{d y}{d x}=\log (\log x) \times \frac{d}{d x}(\log x)+\log x \times \frac{d}{d x}[\log (\log x)]\)
\(\Rightarrow \frac{d y}{d x}=y\left[\log (\log x) \times \frac{1}{x}+\log x \times \frac{1}{\log x} \times \frac{d}{d x}(\log x)\right]\)
\(\Rightarrow \frac{d y}{d x}=y\left[\frac{1}{x} \log (\log x)+\frac{1}{x}\right]\)
\(\therefore \frac{d y}{d x}=(\log x)^{\log x}\left[\frac{1}{x}+\frac{\log (\log x)}{x}\right]\)
\(a\) and \(b\) are some constants
\( y=\cos (a \cos x+b \sin x) \)
Differentiating both sides with respect to \(x \), we get
Using chain rule
\(\Rightarrow \frac{d y}{d x}=\frac{d}{d x} \cos (a \cos x+b \sin x)\)
\(\Rightarrow \frac{d y}{d x}=-\sin (a \cos +b \sin x) \times \frac{d}{d x}(a \cos x+b \sin x)\)
\(\Rightarrow \frac{d y}{d x}=-\sin (a \cos x+b \sin x) \times[a(-\sin x)+b \cos x]\)
\(\therefore \frac{d y}{d x}=(a \sin x-b \cos x) \times \sin (a \cos x+b \sin x)\)
Taking logarithm both sides, we get
\(\log y=\log [(\sin x-\cos x)(\sin x-\cos x)]\)
\(\Rightarrow \log y=(\sin x-\cos x) \times \log (\sin x-\cos x)\)
Differentiating both sides with respect to \( x \), we get
\(\frac{1}{y} \frac{d y}{d x}=\frac{d}{d x}[(\sin x-\cos x) \times \log (\sin x-\cos x)]\)
\(\Rightarrow \frac{1}{y} \frac{d y}{d x}=\log (\sin x-\cos x) \times \frac{d}{d x}(\sin x-\cos )+(\sin x-\cos x) \times\)
\(\frac{d}{d x}(\sin x-\cos x)\)
\(\Rightarrow \frac{d y}{d x}=y[\log (\sin x-\cos x) \times(\cos x+\sin x)+(\sin x-\)
\(\left.\cos x) \times \frac{1}{(\sin x-\cos x)} \times \frac{d}{d x}(\sin x-\cos x)\right]\)
\(\Rightarrow \frac{d y}{d x}=y[\log (\sin x-\cos x) \times(\cos x+\sin x)+(\sin x-\cos x) \times\)
\(\left.\frac{1}{(\sin x-\cos x)} \times \frac{d}{d x}(\sin x-\cos x)\right]\)
\(\Rightarrow \frac{d y}{d x}=y[(\cos x+\sin x) \log (\sin x-\cos x)+(\cos x+\sin x)]\)
\(\therefore \frac{d y}{d x}=(\sin x-\cos x)(\sin x-\cos x)(\cos x+\sin x)[1+\log (\sin x-\cos x)]\)
miscellaneous exercise on chapter 5 class 12 || continuity and differentiability class 12 ncert solutions || class 12 maths chapter 5 miscellaneous exercise solutions || miscellaneous exercise chapter 5 class 12 || miscellaneous exercise class 12 chapter 5
And let \( x^{x}=u, x^{a}=v, a^{x}=w \) and \( a^{a}=s \)
Then \( y=\mathrm{u}+\mathrm{v}+\mathrm{w}+\mathrm{s} \)
\(\therefore \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}+\frac{d w}{d x}+\frac{d s}{d x} \ldots(i)\)
Now,
\(\mathrm{u}=x^{x}\)
Taking logarithm both sides, we get
\(\log \mathrm{u}=\log x^{x}\)
\(\Rightarrow \log u=x \log x\)
Differentiating both sides w.r.t. \(x\)
\(\Rightarrow \frac{1}{u} \frac{d y}{d x}=\log x \times \frac{d}{x}(x)+x \times \frac{d}{d x}(\log x)\)
\(\Rightarrow \frac{d y}{d x}=u\left[\log x+x \times \frac{1}{x}\right]\)
\(\Rightarrow \frac{d u}{d x}=x^{x}[\log x+1]=x^{x}(1+\log x) \ldots(ii)\)
\(\mathrm{v}=x^{\mathrm{a}}\)
Differentiating both sides with respect to \(x\)
\(\frac{d y}{d x}=\frac{d}{d x}\left(x^{a}\right)\)
\(\Rightarrow \frac{d v}{d x}=a x^{a-1}\ldots(iii)\)
\(\mathrm{w}=\mathrm{a}^{x}\)
Taking logarithm both sides
\(\log \mathrm{w}=\log \mathrm{a}x\)
\(\log \mathrm{w}=x \log \mathrm{a}\)
Differentiating both sides with respect to \(x\)
\(\frac{1}{w} \frac{d y}{d x}=\log a \times \frac{d}{d x}(x)\)
\(\Rightarrow \frac{d w}{d x}=w \log a\)
\(\Rightarrow \frac{d y}{d x}=a^{x} \log a \ldots(iv)\)
\(\mathrm{s}=\mathrm{a}^{\mathrm{a}}\)
Differentiating both sides with respect to \(x\)
\(\frac{d s}{d x}=0\ldots(v)\)
Putting (II), (III), (IV) and (V) in (I)
\(\frac{d y}{d x}=x^{x}(1+\log x)+a x^{a-1}+a^{x} \log a+0\)
\(\therefore \frac{d y}{d x}=x^{x}(1+\log x)+a x^{a-1}+a^{x} \log a\)
And let \( x^{x^{2}-3}=\mathrm{u} \&(x-3)^{x^{2}}=\mathrm{v} \)
\(\therefore y=\mathrm{u}+\mathrm{v}\)
Differentiating both sides w.r.t. \(x\) we get
\(\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x} \ldots(i)\)
Now,
\(\mathrm{u}=x^{x^{2}-3}\)
Taking logarithm both sides
\(\log u=\log x^{x^{2} 3}\)
\(\Rightarrow \log u=(x 2-3) \log x\)
Differentiating w.r.t. \(x \), we get
\(\frac{1}{u} \frac{d y}{d x}=\log x \times \frac{d}{d x}\left(x^{2}-3\right)+\left(x^{2}-3\right) \times \frac{d}{d x}(\log x)\)
\(\Rightarrow \frac{d y}{d x}=u\left[\log x \times 2 x+\left(x^{2}-3\right) \times \frac{1}{x}\right]\)
\(\Rightarrow \frac{d u}{d x}=x^{x^{2}-3}\left[\frac{x^{2}-3}{x}+2 x \log x\right] \ldots (ii)\)
Also,
\(\mathrm{v}=(x-3)^{x^{2}}\)
Taking logarithm both sides
\(\log \mathrm{v}=\log (x-3)^{x^{2}}\)
\(\Rightarrow \log \mathrm{v}=x^{2} \log (x-3)\)
Differentiating both sides w.r.t. \(x\)
\(\frac{1}{v} \frac{d v}{d x}=\operatorname{loh}(x-3) \times \frac{d}{d x}\left(x^{2}\right) \times \frac{d}{d x}[\log (x-3)]\)
\(\Rightarrow \frac{d v}{d x}=v\left[\log (x-3) \times 2 x+x^{2} \times \frac{1}{(x-3)} \times \frac{d}{d x}(x-3)\right]\)
\(\Rightarrow \frac{d v}{d x}=(x-3)^{x^{2}}\left[2 x \log (x-3)+\frac{x^{2}}{(x-3)} \times 1\right]\)
\(\Rightarrow \frac{d v}{d x}=(x-3)^{x^{2}}\left[\frac{x^{2}}{(x-3)}+2 x \log (x-3)\right] \ldots \ldots(iii)\)
Substituting (II) and (III) in (I)
\(\therefore \frac{d y}{d x}=x^{x^{2}-3}\left[\frac{x^{2}-3}{x}+2 x \log x\right]+(x-3)^{x^{2}}\left[\frac{x^{2}}{(x-3)}+2 x \log (x-3)\right]\)
So, \( \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \)
Given, \( y=12(1-\cos \mathrm{t}) \) and \( x=10(\mathrm{t}-\sin \mathrm{t}) \)
\(x=10(t-\sin t)\)
Differentiating with respect to \( t \).
\(\frac{d x}{d t}=\frac{d}{d t}[10(t-\sin t)]\)
\(\Rightarrow \frac{d x}{d t}=10 \times \frac{d y}{d x}(t-\sin t)=10(1-\cos t)\)
\(y=12(1-\cos \mathrm{t})\)
Differentiating with respect to \( t \).
\(\frac{d y}{d t}=\frac{d}{d x}[12(1-\cos t)]\)
\(\Rightarrow \frac{d y}{d x}=12 \times \frac{d y}{d x}(1-\cos t)=12 \times[0-(-\sin t)]=12 \sin t\)
\(\therefore \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{12 \sin t}{10(1-\cos t)}=\frac{12 \times 2 \sin \frac{t}{2} \cos \frac{t}{2}}{10 \times 2 \sin ^{2} \frac{t}{2}}=\frac{6}{5} \cot \frac{t}{2}\)
\(\therefore \frac{d y}{d x}=\frac{6}{5} \cot \frac{t}{2}\)
\(y=\sin ^{-1} x+\sin ^{-1} \sqrt{1-x^{2}}\)
Differentiating with respect to \(x\)
\(\frac{d y}{d x}=\frac{d}{d x}\left[\sin^{-1} x+\sin^{-1} \sqrt{1-x^{2}}\right]\)
\(\Rightarrow \frac{d y}{d x}=\frac{d}{d x}\left(\sin^{-1} x\right)+\frac{d}{d x}\left(\sin^{-1} \sqrt{1-x^{2}}\right)\)
\(\Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}+\frac{1}{\sqrt{1-\left(\sqrt{1-x^{2}}\right)^{2}}} \times \frac{d}{d x}\left(\sqrt{1-x^{2}}\right)\)
\(\Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}+\frac{1}{\sqrt{1-\left(1-x^{2}\right)}} \times \frac{d}{x}\left(\sqrt{1-x^{2}}\right)\)
\(\Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}+\frac{1}{x} \times \frac{1}{2 \sqrt{1-x^{2}}} \times \frac{d}{d x}\left(1-x^{2}\right)\)
\(\Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}+\frac{1}{2 x \sqrt{1-x^{2}}} \times(-2 x)\)
\(\Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-x^{2}}}\)
\(\therefore \frac{d y}{d x}=0\)
\(x \sqrt{1+y}=-y \sqrt{1+x}=0\)
Now, squaring both sides, we get
\(\Rightarrow(x \sqrt{1+y})^{2}=(-y \sqrt{1+x})^{2}\)
\(\Rightarrow x^{2}(1+y)=y^{2}(1+x)\)
\(\Rightarrow x^{2}+x^{2} y=y^{2}+y^{2} x\)
\(\Rightarrow x^{2}-y^{2}=x^{2}-x^{2} y\)
\(\Rightarrow(x+y)(x-y)=x y(y-x)\)
\(\Rightarrow x+y=-\mathrm{xy}\)
\(\Rightarrow y+\mathrm{xy}=-x\)
\(\Rightarrow y(1+x)=-x\)
\(\Rightarrow y=-\frac{x}{(1+x)}\)
Differentiating both sides with respect to \( x \), we get
\(y=-\frac{x}{(1+x)}\)
Using Quotient Rule
\(y=-\frac{(1+x) \frac{d}{d x}(x)-x \frac{d}{d x}(1+x)}{\left(1+x^{2}\right)^{2}}=-\frac{(1+x)-x}{(1+x)^{2}}=-\frac{(1+x)-x}{(1+x)^{2}}=-\frac{1}{(1+x)^{2}}\)
\(\therefore \frac{d y}{d x}=-\frac{1}{(1+x)^{2}}\)
Hence, Proved
Differentiating with respect to \( x \), we get
\(\frac{d}{d x}\left[(x-a)^{2}\right]+\frac{d}{d x}\left[(y-b)^{2}\right]=\frac{d}{d x}\left(c^{2}\right)\)
\(\Rightarrow 2(x-\mathrm{a}) \times \frac{d}{d x}(x-a)+2(y-b) \times \frac{d}{d x}(y-b)=0\)
\(\Rightarrow 2(x-\mathrm{a}) \times 1+2(y-\mathrm{b}) \times \frac{d y}{d x}=0\)
\(\therefore \frac{d y}{d x}=-\frac{x-a}{y-b}\)
Differentiating again with respect to \(x\)
\(\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[-\frac{(x-a)}{y-b}\right]\)
Using Quotient Rule
\(\Rightarrow \frac{d^{2} y}{d x^{2}}=-\left[\frac{(y-b) \times \frac{d}{d x}(x-a)-(x-a) \times \frac{d}{d x}(y-b)}{(y-b)^{2}}\right]\)
\(\Rightarrow \frac{d^{2} y}{d x^{2}}=-\left[\frac{(y-b)-(x-a) \times \frac{d}{d x}}{(y-b)^{2}}\right]\)
Substituting the value of \( \frac{d y}{d x} \) in the above equation
\(\Rightarrow \frac{d^{2} y}{d x^{2}}=-\left[\frac{(y-b)-(x-a) \times\left\{-\frac{(x-a)}{y-b}\right\}}{(y-b)^{2}}\right]\)
\(\Rightarrow \frac{d^{2} y}{d x^{2}}=-\left[\frac{(y-b)^{2}+(x-a)^{2}}{(y-b)^{3}}\right]\)
\(\therefore\left[\frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}\right]^{\frac{3}{2}}=\frac{\left[1+\frac{(x-a)^{2}}{(y-b)^{2}}\right]^{\frac{3}{2}}}{-\left[\frac{(y-b)^{2}+(x-a)^{2}}{(y-b)^{3}}\right]}=\frac{\left[\frac{(y-b)^{2}+(x-a)^{2}}{(y-b)^{2}}\right]^{\frac{3}{2}}}{-\left[\frac{(y-b)^{2}+(x-a)^{2}}{(y-b)^{3}}\right]}=\frac{\left[\frac{c^{3}}{(y-b)^{3}}\right]}{\frac{c^{2}}{(y-b)^{3}}}=-c\)
\(\therefore\left[\frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}\right]^{\frac{3}{2}}=-\mathrm{c}, \text { which is independent of a and b }\)
Hence, Proved
Differentiating both sides with respect to \(x\)
\(\frac{d}{d y}[\cos y]=\frac{d}{d x}[x \cos (a+y)]\)
\(\Rightarrow-\sin y \frac{d y}{d x}=\cos (a+y) \times \frac{d}{d x}(x)+x \times \frac{d}{d x}[\cos (a+y)]\)
\(\Rightarrow-\sin y \frac{d y}{d x}=\cos (a+y)+x[-\sin (a+y)] \frac{d y}{d x}\)
\(\Rightarrow[x \sin (a+y)-\sin y] \frac{d y}{d x}=\cos (a+y) \ldots (i)\)
Since, \( \cos y=x \cos (a+y) \Rightarrow x=\cos y / \cos (a+y) \)
Substituting the value of \( x \) in (I)
\({\left[\frac{\cos y}{\cos (a+y)} \times \sin (a+y)-\sin y\right] \frac{d y}{d x}=\cos (a+y)}\)
\(\Rightarrow[\cos y \times \sin (a+y)-\sin y \times \cos (a+y)] \frac{d y}{d x}=\cos (a+y) \times \cos (a+y)\)
\(\Rightarrow \sin (a+y-y) \frac{d y}{d x}=\cos ^{2}(a+y)\)
\(\Rightarrow \sin a \times \frac{d y}{d x}=\cos ^{2}(a+y)\)
\(\Rightarrow \frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\sin a}\)
Hence, proved
miscellaneous exercise on chapter 5 class 12 || continuity and differentiability class 12 ncert solutions || class 12 maths chapter 5 miscellaneous exercise solutions || miscellaneous exercise chapter 5 class 12 || miscellaneous exercise class 12 chapter 5
To find \( \frac{d y}{d x} \) we need to find out \( \frac{d x}{d t} \) and \( \frac{d y}{d t} \)
So, \( \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \) and \( \frac{d^{2} y}{d x^{2}}=\frac{\frac{d y}{d x}}{d t} \times \frac{d t}{d x} \)
\(x=a(\cos t+t \sin t)\)
Differentiating with respect to \( t \).
\(\frac{d x}{d t}=\frac{d}{d t}[a(\cos t+t \sin t)]\)
\(\Rightarrow \frac{d x}{d t}=a \times \frac{d}{d t}(\cos t+t \sin t)=a\left[-\sin t+\sin t \times \frac{d}{d t}(t)+t \times\right.\)
\(\left.\frac{d}{d t}(\sin t)\right]\)
\(\Rightarrow \frac{d x}{d t}=a[-\sin t+\sin t+t \cos t]=a t \cos t\)
\(y=a(\sin t-t \cos t)\)
Differentiating with respect to \( t \).
\(\frac{d y}{d t}=a \frac{d}{d t}(\sin t-t \cos t)=a\left[\cos t-\left\{\cos t \times \frac{d}{d t}(t)+t \times \frac{d}{d t}(\cos t\}\right]\right.\)
\(\Rightarrow \frac{d y}{d t}=a[\cos t-\cos t+t \sin t]=a t \sin t\)
\(\therefore \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{a t \sin t}{a t \cos t}=\tan t\)
Differentiating \( \frac{ \mathrm{dy} }{ \mathrm{dx} } \) with respect to \(t\)
\(\frac{\frac{d y}{d x}}{d t}=\frac{d}{d t}(\tan t)=\sec ^{2} t\)
And \( \frac{d t}{d x}=\frac{1}{a t \cos t}=\frac{\sec t}{a t} \)
\(\frac{d^{2} y}{d x^{2}}=\frac{\frac{d y}{d x}}{d t} \times \frac{d t}{d x}\)
\(\Rightarrow \frac{d^{2} y}{d x^{2}}=\sec ^{2} t \times \frac{\sec t}{a t}\)
\(\therefore \frac{d^{2} y}{d x^{2}}=\frac{\sec ^{3} t}{a t}\)
x, \text { if } x \geq 0 \\
-x, \text { if } x < 0
\end{array}\right.\)
When, \( x \geq 0 \),
\(f(x)=|x|^{3}=x^{3}\)
So, \( \mathrm{f}^{\prime}(x)=3 x^{2} \)
And \( \mathrm{f}^{\prime}(x)=\mathrm{d}\left(\mathrm{f}^{\prime}(x)\right) / \mathrm{dx}=6 x \)
\(\therefore \mathrm{f}^{\prime}(x)=6 x\)
When \( x < 0 \),
\(\mathrm{f}(x)=|x|^{3}=(-x)^{3}=-x^{3}\)
\(\mathrm{f}^{\prime}(x)=-3 x^{2}\)
\(\mathrm{f}^{\prime}(x)=-6 x\)
\( \therefore \mathrm{f}^{\prime \prime}(x)=\left\{\begin{array}{c}
6 x, x \geq 0 \\
-6 x, x < 0
\end{array}\right.\)
For \( \mathrm{n}=1 \),
\(\mathrm{LHS}=\frac{d}{d x}(x)=1\)
\(\mathrm{RHS}=1 \times x 1-1=1\)
So, LHS \( = \) RHS
\( \therefore \mathrm{P}(1) \) is true.
\( \therefore \mathrm{P}(\mathrm{n}) \) is true for \( \mathrm{n}=1 \)
Let \( \mathrm{P}(\mathrm{k}) \) be true for some positive integer \( k \).
i.e. \( \mathrm{P}(\mathrm{k})=\frac{d y}{d x}\left(x^{k}\right)=k x^{k-1} \)
Now, to prove that \( P(k+1) \) is also true
\(\mathrm{RHS}=(\mathrm{k}+1) x(\mathrm{k}+1)-1\)
\(\mathrm{LHS}=\frac{d}{d x}\left(x^{k+1}\right)=\frac{d}{d x}\left(x \times x^{k}\right)\)
\(=x^{k} \times \frac{d}{d x}(x)+x \times \frac{d}{d x}\left(x^{k}\right)\)
\(=x^{k} \times 1+x \times k \times x^{k-1}\)
\(=x^{k}+k x^{k}\)
\(=(k+1) \times x^{k}\)
\(=(k+1) x^{(k+1)-1}\)
\(\therefore \text { LHS }=\text { RHS }\)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Therefore, by the principle of mathematical induction, the statement \( \mathrm{P}(\mathrm{n}) \) is true for every positive integer \( n \).
Hence, proved.
miscellaneous exercise on chapter 5 class 12 || continuity and differentiability class 12 ncert solutions || class 12 maths chapter 5 miscellaneous exercise solutions || miscellaneous exercise chapter 5 class 12 || miscellaneous exercise class 12 chapter 5
Differentiating with respect to \(x \), we get
\(\frac{d}{d x}[\sin (\mathrm{A}+\mathrm{B})]=\frac{d}{d x}(\sin \mathrm{A} \cos \mathrm{B})+\frac{d}{d x}(\cos \mathrm{A} \sin \mathrm{B})\)
\(\Rightarrow \cos (\mathrm{A}+\mathrm{B}) \frac{d}{d x}(\mathrm{~A}+\mathrm{B})=\cos \mathrm{B} \frac{d}{d x}(\sin \mathrm{A})+\sin \mathrm{A} \frac{d}{d x}(\cos \mathrm{B})+\sin\)
\(\mathrm{B} \frac{d}{d x}(\cos \mathrm{A})+\cos \mathrm{A} \frac{d}{d x}(\sin \mathrm{B})\)
\(\Rightarrow \cos (\mathrm{A}+\mathrm{B}) \frac{d}{d x}(\mathrm{~A}+\mathrm{B})=\cos \mathrm{B} \cos \mathrm{A} \frac{d A}{d x}+\sin \mathrm{A}(-\sin \mathrm{B}) \frac{d B}{d x}+\sin \mathrm{B}\)
\((-\sin \mathrm{A}) \frac{d A}{d x}+\cos \mathrm{A} \cos \mathrm{B} \frac{d B}{d x}\)
\(\Rightarrow \cos (\mathrm{A}+\mathrm{B}) \times\left[\frac{d A}{d x}+\frac{d B}{d x}\right]=(\cos \mathrm{A} \cos \mathrm{B}-\sin \mathrm{A} \sin \mathrm{B}) \times\left[\frac{d A}{d x}+\frac{d B}{d x}\right]\)
\(\therefore \cos (\mathrm{A}+\mathrm{B})=\cos \mathrm{A} \mathrm{Cos} \mathrm{B}-\sin \mathrm{A} \sin \mathrm{B}\)
\(f(x)=|x|+|x+1|\)
The above function f is continuous everywhere, but is not differentiable at \( x=0 \) and \( x=-1 \)
\(\begin{array}{l}
\mathrm{f}(x)=\left\{\begin{array}{c}
-x-(x+1), x \leq-1 \\
-x+(x+1),-1 < x < 0 \\
x+(x+1), x \geq 0
\end{array}\right. \\
=\left\{\begin{array}{c}
-2 x-1, x \leq-1 \\
1,-1 < x < 0 \\
2 x+1, x \geq 0
\end{array}\right.
\end{array}\)
Now, checking continuity
CASE I: At \( x < -1 \)
\(f(x)=-2 x-1\)
\( \mathrm{f}(x) \) is a polynomial
\( \Rightarrow \mathrm{f}(x) \) is continuous [ \( \because \) Every polynomial function is continuous]
CASE II: \( x > 0 \)
\(f(x)=2 x+1\)
\( \mathrm{f}(x) \) is a polynomial
\( \Rightarrow \mathrm{f}(x) \) is continuous [ \( \because \) Every polynomial function is continuous]
CASE III: At \( -1 < x < 0 \)
\( \mathrm{f}(x)=1 \)
\( \mathrm{f}(x) \) is constant
\( \Rightarrow \mathrm{f}(x) \) is continuous
CASE IV: At \( x=-1 \)
\( \mathrm{f}(x)=\left\{\begin{array}{c}-2 x-1, x \leq-1 \\ 1,-1 < x < 0 \\ 2 x+1, x \geq 0\end{array}\right. \)
A function will be continuous at \( x=-1 \)
If \( \mathrm{LHL}=\mathrm{RHL}=\mathrm{f}(-1) \)
i.e. \( \lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)=f(-1) \)
\( \mathrm{LHL}=\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}}-2 x-1 \)
Putting \( x=-1 \)
LHL \( =-2 \times(-1)-1=2-1=1 \)
\( \mathrm{RHL}=\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} 1=1 \)
\( f(x)=-2 x-1 \)
\( \mathrm{f}(-1)=-2 \times(-1)-1=2-1=1 \)
so, \( \mathrm{LHL}=\mathrm{RHL}=\mathrm{f}(-1) \)
\( \Rightarrow \mathrm{f} \) is continuous.
CASE V: At \( x=0 \)
\(\mathrm{f}(x)=\left\{\begin{array}{c}
-2 x-1, x \leq-1 \\
1,-1 < x < 0 \\
2 x+1, x \geq 0
\end{array}\right.\)
A function will be continuous at \( x=0 \)
If \( \mathrm{LHL}=\mathrm{RHL}=\mathrm{f}(0) \)
i.e. \( \lim _{x \rightarrow 0^{-1}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0) \)
LHL \( =\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} 1=1 \)
\( \mathrm{RHL}=\lim _{x \rightarrow 0^{+}}=\lim _{x \rightarrow 0^{+}} 2 x+1 \)
Putting \( x=0 \)
\( \mathrm{RHL}=2 \times 0+1=1 \)
\( \mathrm{f}(x)=2 x+1 \)
\( \mathrm{f}(0)=2 \times 0+1=0+1=1 \)
so, \( \mathrm{LHL}=\mathrm{RHL}=\mathrm{f}(0) \)
\( \Rightarrow \mathrm{f} \) is continuous.
Thus \( f(x)=|x|+|x+1| \) is continuous for all values of \( x \).
Checking differentiability
CASE I: At \( x < -1 \)
\(\begin{array}{l}
f(x)=-2 x-1 \\
f^{\prime}(x)=-2
\end{array}\)
\( \mathrm{f}(x) \) is polynomial.
\( \Rightarrow \mathrm{f}(x) \) is differentiable
CASE II: At \( x > 0 \)
\(f(x)=2 x+1\)
\(f^{\prime}(x)=2\)
\( \mathrm{f}(x) \) is polynomial.
\( \Rightarrow \mathrm{f}(x) \) is differentiable
CASE III: At \( -1 < x < 0 \)
\(f(x)=1\)
\( \mathrm{f}(x) \) is constant.
\( \Rightarrow \mathrm{f}(x) \) is differentiable
CASE IV: At \( x=-1 \)
\(\mathrm{f}(x)=\left\{\begin{array}{c}
-2 x-1, x \leq-1 \\
1,-1 < x < 0 \\
2 x+1, x \geq 0
\end{array}\right.\)
f is differentiable at \( x=-1 \) if
\(\mathrm{LHD}=\mathrm{RHD}=\mathrm{f}^{\prime}(-1)\)
i.e. \( \lim _{h \rightarrow-1^{-}} \frac{f(-1)-f(-1-h)}{h}=\lim _{h \rightarrow-1^{+}} \frac{f(-1+h)-f(-1)}{h}=f^{\prime}(-1) \)
\( \mathrm{LHD}=\lim _{h \rightarrow-1^{-}} \frac{f(-1)-f(-1-h)}{h}=\lim _{h \rightarrow-1^{-}} \frac{-2 \times(-1)-1-(-2 \times(-1-h)-1)}{h}= \) \( \lim _{h \rightarrow-1^{-}} \frac{2-1(2+2 h-1)}{h} \)
\( \mathrm{LHD}=\lim _{h \rightarrow-1^{-}} \frac{1-2 h-1}{h}=\lim _{h \rightarrow-1^{-}} \frac{-2 h}{h}=-2 \)
\( \mathrm{RHD}=\lim _{h \rightarrow-1^{+}} \frac{f(-1+h)-f(-1)}{h}=\lim _{h \rightarrow-1^{+}} \frac{1-(-2 \times(-1)-1}{h}=\lim _{h \rightarrow-1^{+}} \frac{1-1}{h}=0 \)
Since, LHD \( \neq \) RHD
\( \therefore \mathrm{f} \) is not differentiable at \( x=-1 \)
CASE V: At \( x=0 \)
\(\mathrm{f}(x)=\left\{\begin{array}{c}
-2 x-1, x \leq-1 \\
1,-1 < x < 0 \\
2 x+1, x \geq 0
\end{array}\right.\)
f is differentiable at \( x=0 \) if
\(\mathrm{LHD}=\mathrm{RHD}=\mathrm{f}^{\prime}(0)\)
i.e. \( \lim _{h \rightarrow 0^{-}} \frac{f(0)-f(0-h)}{h}=\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=f^{\prime}(0) \)
\( \mathrm{LHD}=\lim _{h \rightarrow 0^{-}} \frac{f(0)-f(0-h)}{h}=\lim _{h \rightarrow 0^{-}} \frac{2 \times 0+1-1}{h}=0 \)
RHD \( =\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{2 \times(0+h)+1-(2 \times 0+1)}{h}=\lim _{h \rightarrow-1^{+}} \frac{2 h+1-1}{h}=0 \)
Since, LHD \( \neq \) RHD
\( \therefore \mathrm{f} \) is not differentiable at \( x=0 \)
So, f is not differentiable at exactly two-point \( x=0 \) and \( x=1 \), but continuous at all points.
Differentiation of determinant \( \mathrm{u}=\left|\begin{array}{ccc}e & f & g \\ h & i & j \\ k & l & m\end{array}\right| \) is given b
\(\begin{array}{l}
\frac{d y}{d x}=\left|\begin{array}{ccc}
\frac{d}{d x}(e) & \frac{d}{d x}(f) & \frac{d}{d x}(g) \\
h & i & j \\
k & l & m
\end{array}\right|+\left|\begin{array}{ccc}
e & f & g \\
\frac{d}{d x}(h) & \frac{d}{d x}(i) & \frac{d}{d x}(j) \\
k & l & m
\end{array}\right|+ \\
\left|\begin{array}{ccc}
e & f & g \\
h & i & j \\
\frac{d}{d x}(k) & \frac{d}{d x}(l) & \frac{d}{d x}(m)
\end{array}\right|+ \\
\frac{d y}{d x}=\left|\begin{array}{ccc}
\frac{d}{d x}(f(x)) & \frac{d}{d x}(g(x)) & \frac{d}{d x}(h(x)) \\
1 & m & n \\
a & b & b
\end{array}\right|+ \\
\left|\begin{array}{ccc}
f(x) & g(x) & h(x) \\
\frac{d}{d x}(1) & \frac{d}{d x}(m) & \frac{d}{d x}(n) \\
a & b & c
\end{array}\right|+\left|\begin{array}{ccc}
f(x) & g(x) & h(x) \\
1 & m & n \\
\frac{d}{d x}(a) & \frac{d}{d x}(b) & \frac{d}{d x}(c)
\end{array}\right| \\
\therefore \frac{d y}{d x}=\left|\begin{array}{cccc}
f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\
1 & m & n \\
a & b & c
\end{array}\right|+\left|\begin{array}{ccc}
f(x) & g(x) & h(x) \\
0 & 0 & 0 \\
a & b & c
\end{array}\right|+ \\
\left|\begin{array}{ccc}
f(x) & g(x) & h(x) \\
1 & m & n \\
0 & 0 & 0
\end{array}\right|
\end{array}\)
Since, \( \mathrm{a}, \mathrm{b}, \mathrm{c} \) and \( \mathrm{l}, \mathrm{m}, \mathrm{n} \) are constants so, their differentiation is zero.
Also in a determinant if all the elements of row or column turns to be zero then the value of determinant is zero.
\(\begin{array}{l}
\therefore\left|\begin{array}{ccc}
f(x) & g(x) & h(x) \\
0 & 0 & 0 \\
a & b & c
\end{array}\right|=0 \text { and }\left|\begin{array}{ccc}
f(x) & g(x) & f(x) \\
1 & m & n \\
0 & 0 & 0
\end{array}\right| \\
\therefore \frac{d y}{d x}=\left|\begin{array}{ccc}
f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\
1 & m & n \\
a & b & c
\end{array}\right|
\end{array}\)
Hence, proved.
Taking logarithm both sides, we get
\(\log y=\log e^{a \cos ^{-1} x}\)
\(\Rightarrow \log y=\mathrm{a} \cos -1 x \log \mathrm{e}\)
\(\Rightarrow \log y=\mathrm{a} \cos -1 x[\log \mathrm{e}=1]\)
Differentiating both sides with respect to \(x\)
\(\frac{1}{y} \frac{d y}{d x}=a \times-\frac{1}{\sqrt{1-x^{2}}}\)
\(\Rightarrow \frac{d y}{d x}=-\frac{a y}{\sqrt{1-x^{2}}}\)
Squaring both sides
\(\left(\frac{d y}{d x}\right)^{2}=\frac{a^{2} y^{2}}{1-x^{2}}\)
\(\Rightarrow(1-x^2)\left(\frac{d y}{d x}\right)^{2}=a^{2} y^{2}\)
Differentiating both sides
\(\Rightarrow\left(\frac{d y}{d x}\right)^{2} \frac{d y}{d x}\left(1-x^{2}\right)+\left(1-x^{2}\right) \times \frac{d}{d x}\left[\left(\frac{d y}{d x}\right)^{2}\right]=a^{2} \frac{d}{d x}\left(y^{2}\right)\)
\(\Rightarrow\left(\frac{d y}{d x}\right)^{2}(-2 x)+\left(1-x^{2}\right) \times 2 \times \frac{d}{d x} \times \frac{d^{2} y}{d x^{2}}=a^{2} \times 2 y \times \frac{d y}{d x}\)
\(\Rightarrow-x \times \frac{d y}{d x}+\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}=a^{2} y\)
\(\therefore\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \times \frac{d y}{d x}-a^{2} y=0\)
Hence, proved