Miscellaneous Exercise On Chapter 6 Class 12

Miscellaneous exercise on chapter 6 class 12​ | miscellaneous exercise ch 6 class 12​ | miscellaneous exercise chapter 6 class 12​ | class 12 maths chapter 6 miscellaneous exercise solutions​ | application of derivatives class 12 ncert solutions

If you’re preparing for Class 12 Maths, practicing the miscellaneous exercise on Chapter 6 Class 12 is crucial for mastering concepts. The miscellaneous exercise Ch 6 Class 12 includes a variety of problems that test your understanding of the entire chapter. Whether you’re working on board exam preparation or aiming for competitive exams, solving the miscellaneous exercise Chapter 6 Class 12 helps reinforce your concepts. You can find detailed Class 12 Maths Chapter 6 miscellaneous exercise solutions online to guide you through difficult problems. This chapter, based on Application of Derivatives Class 12 NCERT solutions, covers important topics like maxima, minima, and rate of change, which are essential for a strong foundation in calculus.

miscellaneous exercise on chapter 6 class 12
miscellaneous exercise chapter 6 class 12​ || class 12 maths chapter 6 miscellaneous exercise solutions​ || application of derivatives class 12 ncert solutions || miscellaneous exercise on chapter 6 class 12​ || miscellaneous exercise ch 6 class 12​
Download the Math Ninja App Now

Miscellaneous Exercise

1A. Using differentials, find the approximate value of each of the following:
\(\left(\frac{17}{81}\right)^{\frac{1}{4}}\)
Answer
Let us consider \( y=x^{\frac{1}{4}} \) and \( x=\left(\frac{16}{81}\right) \) and \( \Delta x=\frac{1}{81} \)
Then, \( \Delta y=(x+\Delta x)^{\frac{1}{4}}-x^{\frac{1}{4}} \)
\( =\left(\frac{17}{81}\right)^{\frac{1}{4}}-\left(\frac{16}{81}\right)^{\frac{1}{4}} \)
\(=\left(\frac{17}{81}\right)^{\frac{1}{4}}-\frac{2}{3}\)
Therefore, \( \left(\frac{17}{81}\right)^{\frac{1}{4}}=\frac{2}{3}+\Delta y \)
Now, dy is approximately equal to \( \Delta y \) and is equal to
\(\mathrm{dy}=\left(\frac{d y}{d x}\right) \Delta x=\frac{1}{4(x)^{\frac{3}{4}}}(\Delta x)\)
\(=\frac{1}{4\left(\frac{16}{81}\right)^{\frac{3}{4}}}\left(\frac{1}{81}\right)=\frac{27}{4 \times 8}=\frac{1}{32 \times 3}=\frac{1}{96}=0.010\)
Therefore, the approximate value of \( \left(\frac{17}{81}\right)^{\frac{1}{4}} \) is \( \frac{2}{3}+0.010=0.677 \).
1B. Using differentials, find the approximate value of each of the following:
\( (33)^{\frac{1}{5}} \)
Answer
Let us consider \( y=(x)^{\frac{1}{5}} \) and \( x=32 \) and \( \Delta x=1 \)
Then, \( \Delta y=(x+\Delta x)^{\frac{1}{5}-x \frac{1}{5}} \)
\( =(33)^{\frac{1}{5}}-(32)^{\frac{1}{5}} \)
\( =(33)^{\frac{1}{5}}-\frac{1}{2} \)
Therefore,
\( (33)^{\frac{1}{5}}=\frac{1}{2}+\Delta y \)
Now, dy is approximately equal to \( \Delta y \) and is equal to
\( \mathrm{dy}=\left(\frac{d y}{d x}\right) \Delta x=\frac{-1}{5(x)^{\frac{6}{5}}}(\Delta x) \)
\( =\frac{-1}{5(2)^{6}}=\frac{-1}{320}=-0.003 \)
Therefore, the approximate value of \( (33)^{\frac{1}{5}} \) is \( \frac{1}{2}+(-0.003)=0.497 \)
2. Show that the function given by \( \mathrm{f}(x)=\frac{\log x}{x} \) has maximum at \( x=\mathrm{e} \).
Answer
It is given that \( \mathrm{f}(x)=\frac{\log x}{x} \)
Then, \( \mathrm{f}^{\prime}(x)=\frac{x\left(\frac{1}{x}\right)-\log x}{x^{2}}=\frac{1-\log x}{x^{2}} \)
Now, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow 1-\log x=0\)
\(\Rightarrow \log x=1\)
\(\Rightarrow \log x=\log \mathrm{e}\)
\(\Rightarrow x=\mathrm{e}\)
Now, \( \mathrm{f}^{\prime}(x)=\frac{x^{2}\left(\frac{-1}{x}\right)-(1-\log x)(2 x)}{x^{4}} \)
\(=\frac{-x-2 x(1-\log x)}{x^{4}}\)
\(=\frac{-3+2 \log x}{x^{3}}\)
Now, \( \mathrm{f}^{\prime} \) '(e) \( =\frac{-3+2 \text { loge }}{e^{3}}=\frac{-3+2}{e^{3}}=\frac{-1}{e^{3}} < 0 \)
Therefore, by second derivative test, \( f \) is the maximum at \( x=e \).
3. The two equal sides of an isosceles triangle with fixed base \( b \) are decreasing at the rate of 3 cm per second. How fast is the area decreasing when the two equal sides are equal to the base?
Answer
Let \( \triangle \mathrm{ABC} \) be isosceles where BC is the base of fixed length \( b \).
Let the length of the two equal sides of \( \triangle \mathrm{ABC} \) be a.
Now, draw a perpendicular AD to BC . Then, we have In \( \triangle \mathrm{ADC} \), by using Pythagoras theorem,
\(\mathrm{AD}=\sqrt{a^{2}-\frac{b^{2}}{4}}\)
Then, Area of triangle \( (\mathrm{A})=\frac{1}{2} b \sqrt{a^{2}-\frac{b^{2}}{4}} \)
The rate of change of the area with respect to time \( (\mathrm{t}) \) is given by: \( \frac{d A}{d t}=\frac{1}{2} \mathrm{~b} \frac{2 a}{\sqrt{a^{2}-\frac{b^{2}}{4}}} \frac{d a}{d t}=\frac{a b}{\sqrt{4 a^{2}-b^{2}}} \frac{d a}{d t} \)
It is given that the two equal sides of the triangle are decreasing at the rate of 3 cm per second.
\(\frac{d a}{d t}=-3 \mathrm{~cm} / \mathrm{s}\)
Then
\(\frac{d A}{d t}=\frac{-3 a b}{\sqrt{4 a^{2}-b^{2}}}\)
And when \( \mathrm{a}=\mathrm{b} \) we have,
\(\frac{d A}{d t}=\frac{-3 a b}{\sqrt{4 a^{2}-b^{2}}}=\frac{-3 b^{2}}{\sqrt{3 b^{2}}}=-\sqrt{3} b\)
Therefore, if the two sides are equal to the base, then the area of the triangle is decreasing at the rate of \( \sqrt{3} \mathrm{~b} \mathrm{~cm}^{2} / \mathrm{s} \).
4. Find the equation of the normal to curve \( x^{2}=4 y \) which passes through the point \( (1,2) \).
Answer
It is given that curve is \( y^{2}=4 x \).
Differentiating with respect to \(x \), we get,
\(2 y \frac{d y}{d x}=4\)
\(\Rightarrow \frac{d y}{d x}=\frac{4}{2 y}=\frac{2}{y}\)
\(\left.\therefore \frac{d y}{d x}\right]_{(1,2)}=\frac{2}{2}=1\)
Now, the slope of the normal at point \( (1,2) \) is \( \frac{-1}{\left.\frac{d y}{d x}\right]_{(1,2)}}=\frac{-1}{1}=-1 \)
Therefore, Equation of the normal at \( (1,2) \) is \( y-2=-1(x-1) \)
\(\Rightarrow y-2=-x+1\)
\(\Rightarrow x+y-3=0\)
5. Show that the normal at any point \( \theta \) to the curve \( x=\mathrm{a} \cos \theta+\mathrm{a} \theta \sin \theta, y=\mathrm{a} \sin \theta-\mathrm{a} \theta \cos \theta \) is at a constant distance from the origin.
Answer
We have \( x=\mathrm{a} \cos \theta+\mathrm{a} \theta \sin \theta \),
\(\Rightarrow \frac{d x}{d \theta}=-\mathrm{a} \sin \theta+\mathrm{a} \sin \theta+\mathrm{a} \theta \cos \theta=\mathrm{a} \theta \cos \theta\)
And \( y=\operatorname{asin} \theta-a \theta \cos \theta \)
\(\Rightarrow \frac{d y}{d \theta}=\mathrm{a} \cos \theta-\mathrm{a} \cos \theta+\mathrm{a} \theta \cos \theta=\mathrm{a} \theta \cos \theta\)
So, \( \frac{d y}{d x}=\frac{d y}{d \theta} \cdot \frac{d \theta}{d x}=\frac{a \theta \sin \theta}{a \theta \cos \theta}=\tan \theta \)
Then, Slope of the normal at any point \( \theta \) is \( \frac{-1}{\tan \theta} \).
The equation of the normal at a given point \( (x, y) \) is:
\( y-\mathrm{asin} \theta+\mathrm{a} \theta \cos \theta=\frac{-1}{\tan \theta}(x-\mathrm{a} \cos \theta-\mathrm{a} \theta \sin \theta) \)
\( \Rightarrow y \sin \theta-\mathrm{asin}^{2} \theta+\mathrm{a} \theta \sin \theta \cos \theta=-x \cos \theta+\mathrm{acos}^{2} \theta+\mathrm{a} \theta \sin \theta \cos \theta \)
\( \Rightarrow x \cos \theta+y \sin \theta-\mathrm{a}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=0 \)
\( \Rightarrow x \cos \theta+y \sin \theta-\mathrm{a}=0 \)
Now, the perpendicular distance of the normal from the origin is \( \frac{|-a|}{\sqrt{\cos ^{2} \theta+sin^{2} \theta}}=\frac{|-a|}{\sqrt{1}}=|-\mathrm{a}| \), which is independent of \( \theta \).
Therefore, the perpendicular distance of the normal from the origin is constant.
6. Find the intervals in which the function f given by \( \mathrm{f}(x)=\frac{4 \sin x-2 x-x \cos x}{2+\cos x} \) is (i) strictly increasing (ii) strictly decreasing.
Answer
(i) It is given that \( \mathrm{f}(x)=\frac{4 \sin x-2 x-x \cos x}{2+\cos x} \)
\(\therefore f^{\prime}(x)\)
\(=\frac{(2+\cos x)(4 \cos x-2-\cos x+x \sin x)-(4 \sin x-2 x-x \cos x)(-\sin x)}{(2+\cos x)^{2}}\)
\(=\frac{(2+\cos x)(3 \cos x-2-x \sin x)+\sin x(4 \sin x-2 x-x \cos x)}{(2+\cos x)^{2}}\)
\(=\frac{6 \cos x-4+2 x \sin x+3 \cos ^{2} x-2 \cos x+x \sin x \cos x+4 \sin ^{2} x-2 x \sin x-x \sin x \cos x}{(2+\cos x)^{2}}\)
\(=\frac{4 \cos x-4+3 \cos ^{2} x+4 \sin ^{2} x}{(2+\cos x)^{2}}\)
\(=\frac{4 \cos x-4+3 \cos ^{2} x+4-4 \cos ^{2} x}{(2+\cos x)^{2}}\)
\(=\frac{4 \cos x-\cos ^{2} x}{(2+\cos x)^{2}}\)
\(=\frac{\cos x(4-\cos x)}{(2+\cos x)^{2}}\)
Now, if \(\mathrm{f}^\prime(x)=0\)
\(\Rightarrow \cos x=0 \text { or } \cos x=4\)
But, \( \cos x=4 \) is not possible
Therefore, \( \cos x=0 \)
\(\Longrightarrow x=\frac{\pi}{2}, \frac{3 \pi}{2}\)
Now, \( x=\frac{\pi}{2}, \frac{3 \pi}{2} \) divides \( (0,2 \pi) \) into three disjoints intervals \( \left(0, \frac{\pi}{2}\right),\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \) and \( \left(\frac{3 \pi}{2}, 2 \pi\right) \)
In the intervals \( \left(0, \frac{\pi}{2}\right) \) and \( \left(\frac{3 \pi}{2}, 2 \pi\right), \mathrm{f}^{\prime}(x) > 0 \)
Therefore, \( f(x) \) is increasing for \( 0 < x < \frac{\pi}{2} \) and \( \frac{3 \pi}{2} < x < 2 \pi \).
In interval \( \left(\frac{\pi}{2}, \frac{3 \pi}{2}\right), \mathrm{f}^{\prime}(x) < 0 \)
Therefore, \( \mathrm{f}(x) \) is decreasing for \( \frac{\pi}{2} < x < \frac{3 \pi}{2} \).
7. Find the intervals in which the function f given by \( \mathrm{f}(x)=x^{3}+\frac{1}{x^{3}} \), \( x \neq 0 \) is
(i) Increasing (ii) decreasing.
Answer
It is given that \( \mathrm{f}(x)=x^{3}+\frac{1}{x^{3}} \)
\(\therefore f^{\prime}(x)=3 x^{2}-\frac{3}{x^{4}}=\frac{3 x^{6}-3}{x^{4}}\)
Then, \( \mathrm{f}^{\prime}(x)=0 \)
\(\Rightarrow 3 x^{6}-3=0\)
\(\Rightarrow x^{6}=1\)
\(\Rightarrow x= \pm 1\)
Now, the points \( x=1 \) and \( x=-1 \) divide the real line into three disjoint intervals
\( (-\infty,-1),(-1,1) \) and \( (1, \infty) \).
In interval \( (-\infty,-1) \) and \( (1, \infty) \) when \( x < -1 \) and \( x > 1 \) then \( \mathrm{f}^{\prime}(x) > 0 \)
Therefore, when \( x < -1 \) and \( x > 1 \), f is increasing.
And, in interval \( (-1,1) \) when \( -1 < x < 1 \) then \( \mathrm{f}^{\prime}(x) < 0 \).
Therefore, when \( -1 < x < 1 \), f is decreasing.
miscellaneous exercise chapter 6 class 12​ || class 12 maths chapter 6 miscellaneous exercise solutions​ || application of derivatives class 12 ncert solutions || miscellaneous exercise on chapter 6 class 12​ || miscellaneous exercise ch 6 class 12​
Download the Math Ninja App Now
8. Find the maximum area of an isosceles triangle inscribed in the ellipse \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \) with its vertex at one end of the major axis.
Answer
It is given that ellipse \( \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \)
Let the major axis be along the \( x- \) axis.1).
Let ABC be the triangle inscribed in the ellipse where vertex C is at \( (a, 0) \).
Since, the ellipse is symmetrical w.r.t. \(x\) - axis and \(y\) - axis, we can assume the coordinates of A to be \( \left(-x_{1}, y_{1}\right) \) and the coordinates of B to be \( \left(-x_{1},-y_{1}\right) \).
Now, we have \( y_{1}= \pm \frac{b}{a} \sqrt{a^{2}-x_{1}^{2}} \)
Therefore, Coordinates of A \( \left(-x_{1}, \frac{b}{a} \sqrt{a^{2}-x_{1}^{2}}\right) \) and the coordinates of B \( \left(-x_{1},-\frac{b}{a} \sqrt{a^{2}-x_{1}^{2}}\right) \)
As the point \( \left(x_{1}, y_{1}\right) \) lies on the ellipse, the area of triangle \( A B C(A) \) is given by:
\(\mathrm{A}=\frac{1}{2}\left|a\left(\frac{2 b}{a} \sqrt{a^{2}-x_{1}^{2}}\right)+\left(-x_{1}\right)\left(-\frac{b}{a} \sqrt{a^{2}-x_{1}^{2}}\right)+\left(-x_{1}\right)\left(-\frac{b}{a} \sqrt{a^{2}-x_{1}^{2}}\right)\right|\)
\(\Rightarrow \mathrm{A}=\mathrm{b} \sqrt{a^{2}-x_{1}^{2}}+x_{1} \frac{b}{a} \sqrt{a^{2}-x_{1}^{2}} \ldots \ldots .(1)\)
\(\therefore \frac{d A}{d x_{1}}=\frac{-2 x_{1} b}{2 \sqrt{a^{2}-x_{1}^{2}}}+\frac{b}{a} \sqrt{a^{2}-x_{1}^{2}}-\frac{2 b x_{1}^{2}}{a^{2} \sqrt{a^{2}-x_{1}^{2}}}\)
\(=\frac{b}{a^{2} \sqrt{a^{2}-x_{1}^{2}}}\left[-x_{1} a+\left(a^{2}-x_{1}^{2}\right)-x_{1}^{2}\right]\)
\(=\frac{b\left(-2 x_{1}^{2}-x_{1}+a^{2}\right)}{a \sqrt{a^{2}-x_{1}^{2}}}\)
\(\text { Now, } \frac{d A}{d x_{1}}=0\)
\(\Rightarrow-2 x_{1}^{2}-x_{1} a+a^{2}=0\)
\(\Rightarrow x_{1}=\frac{a \pm \sqrt{a^{2}-4(-2)\left(a^{2}\right)}}{2(-2)}\)
\(=\frac{a \pm \sqrt{9 a^{2}}}{-4}\)
\(=\frac{a \pm 3 a}{-4}\)
\(\Rightarrow x_{1}=-\mathrm{a}, \frac{a}{2}\)
But, \( x_{1} \) cannot be equal to a.
\(\Rightarrow x_{1}=\frac{a}{2}\)
\(y_{1}=\frac{b}{a} \sqrt{a^{2}-\frac{a^{2}}{4}}=\frac{b a}{2 a} \sqrt{3}=\frac{\sqrt{3 t}}{2}\)
Now, \( \frac{d^{2} A}{d x_{1}^{2}}=\frac{b}{a}\left\{\frac{\sqrt{a^{2}-x_{1}^{2}\left(-4 x_{1}-a\right)-\left(-2 x_{1}^{2}-x_{1} a+a^{2}\right) \frac{\left(-2 x_{1}\right)}{\sqrt[2]{a^{2}-x_{1}^{2}}}}}{a^{2}-x_{1}^{2}}\right\} \)
\(=\frac{b}{a}\left\{\frac{\left(a^{2}-x_{1}^{2}\right)\left(-4 x_{1}-a\right)+x_{1}\left(-2 x_{1}^{2}-x_{1} a+a^{2}\right)}{\left(a^{2}-x_{1}^{2}\right)^{\frac{3}{2}}}\right\}\)
\(=\frac{b}{a}\left\{\frac{2 x^{3}-3 a^{2} x-a^{3}}{\left(a^{2}-x_{1}^{2}\right)^{\frac{3}{2}}}\right\}\)
Also, when \( x_{1}=\frac{a}{2} \), then,
\(\frac{d^{2} A}{d x_{1}^{2}}=\frac{b}{a}\left\{\frac{2 \frac{a^{3}}{8}-3 \frac{a^{3}}{2}-a^{3}}{\left(\frac{3 a}{4}\right)^{\frac{3}{2}}}\right\}\)
\(=\frac{b}{a}\left\{\frac{\frac{a^{3}}{4}-\frac{3 a^{3}}{2}-a^{3}}{\left(\frac{3 a}{4}\right)^{\frac{3}{2}}}\right\}\)
\(=\frac{b}{a}\left\{\frac{\frac{9 a^{3}}{4}}{\left(\frac{3 a}{4}\right)^{\frac{3}{2}}}\right\} < 0\)
Then, the area is the maximum when \( x_{1}=\frac{a}{2} \).
Therefore, Maximum area of the triangle is given by:
\(\mathrm{A}=b \sqrt{a^{2}-\frac{a^{2}}{4}}+\left(\frac{a}{2}\right) \frac{b}{a} \sqrt{a^{2}-\frac{a^{2}}{4}}\)
\(=\mathrm{ab} \frac{\sqrt{3}}{2}+\left(\frac{a}{2}\right) \frac{b}{a} \times \frac{a \sqrt{3}}{2}\)
\(=\frac{a b \sqrt{3}}{2}+\frac{a b \sqrt{3}}{4}\)
\(=\frac{3 \sqrt{3}}{4} \mathrm{ab}\)
9. A tank with rectangular base and rectangular sides, open at the top is to be constructed so that its depth is 2 m and volume is \( 8 \mathrm{~m}^{3} \). If building of tank costs Rs 70 per sq metres for the base and Rs 45 per square metre for sides. What is the cost of least expensive tank?
Answer
Let \( \mathrm{l}, \mathrm{b} \), and h be the length, breadth and height of the tank respectively.
then, we have \( \mathrm{h}=2 \mathrm{~m} \)
Volume of the tank \( =8 \mathrm{~m}^{3} \)
Volume of the tank \( =1 \times \mathrm{b} \times \mathrm{h} \)
\(\Rightarrow 8=1 \times \mathrm{b} \times 2\)
\(\Rightarrow \mathrm{lb}=4\)
\(\Rightarrow \mathrm{b}=\frac{4}{1}\)
Now, area of the base \( =1 b=4 \)
Area of the 4 walls \( (A)=2 h(1+b) \)
\(\therefore \mathrm{A}=4\left(1-\frac{4}{I^{2}}\right)\)
Now, \( \frac{d A}{d l}=0 \)
\(\Rightarrow 1-\frac{4}{I^{2}}=0\)
\(\Rightarrow l^{2}=4\)
\(\Rightarrow l= \pm 2\)
Since, length cannot be negative therefore \( l=2 \).
\(\Rightarrow b=2\)
Now, \( \frac{d^{2} A}{d l^{2}}=\frac{32}{1^{3}} \)
When \( l=2 \),
\(\frac{d^{2} A}{d l^{2}}=\frac{32}{8}=4 > 0\)
Then, by second derivative test, the area is the minimum when \( l=2 \).
We have, \( l=\mathrm{b}=\mathrm{h}=2 \)
Therefore, Cost of building the base \( = \) Rs \( 70 \times(\mathrm{lb})= \) Rs \( 70(4)= \) Rs 280 .
Cost of building the walls \( = \) Rs \( 2 \mathrm{~h}(l+\mathrm{b}) \times 45= \) Rs \( 90(2)(2+2) \) \( = \) Rs \( 8(90)= \) Rs 720 .
Required total cost \( =\operatorname{Rs}(280+720)= \) Rs 1000.
Therefore, the total cost of the tank will be Rs 1000 .
10. The sum of the perimeter of a circle and square is \( k \), where \( k \) is some constant. Prove that the sum of their areas is least when the side of square is double the radius of the circle.
Answer
Let \( r \) be the radius of the circle and a be the side of the square.
Then, \( 2 \pi \mathrm{r}+4 \mathrm{a}=\mathrm{k} \) (where k is constant)
\(\Rightarrow \mathrm{a}=\frac{k-2 \pi r}{4}\)
The sum of the areas of the circle and square \( (\mathrm{A}) \) is
\(=\pi \mathrm{r}^{2}+\mathrm{a}^{2}=\pi \mathrm{r}^{2}+\left(\frac{k-2 \pi r}{4}\right)^{2}\)
\(\therefore \frac{d A}{d r}=2 \pi r+\frac{2(k-2 \pi r)(-2 \pi)}{16}=2 \pi r-\frac{\pi(k-2 \pi r)}{4}\)
Now, \( \frac{d A}{d r}=0 \)
\(\Rightarrow 2 \pi r=\frac{\pi(k-2 \pi r)}{4}\)
\(8 \mathrm{r}=\mathrm{k}-2 \pi \mathrm{r}\)
\(\Rightarrow(8+2 \pi) \mathrm{r}=\mathrm{k}\)
\(\Rightarrow \mathrm{r}=\frac{k}{8+2 \pi}=\frac{k}{2(4+\pi)}\)
Now, \( \frac{d^{2} A}{d r^{2}}=2 \pi+\frac{\pi^{2}}{2} > 0 \)
Therefore, When \( \mathrm{r}=\frac{k}{2(4+\pi)}, \frac{d^{2} A}{d r^{2}} > 0 \)
\( \Rightarrow \) The sum of the area is least when \( \mathrm{r}=\frac{k}{2(4+\pi)} \)
So, when \( \mathrm{r}=\frac{k}{2(4+\pi)} \)
Then \( \mathrm{a}=\frac{k-2 \pi\left[\frac{k}{2(4+\pi)}\right]}{4}=2 \mathrm{r} \)
Therefore, it is proved that the sum of their areas is least when the side of the square is double the radius of the circle.
11. A window is in the form of a rectangle surmounted by a semi circular opening.
The total perimeter of the window is 10 m . Find the dimensions of the window to admit maximum light through the whole opening.
Answer
Let \(x\) and \(y\) be the length and breadth of the rectangular window.
Radius of the semi - circular opening \( =\frac{x}{2} \)
It is given that the perimeter of the window is 10 m .
\(\Rightarrow x+2 y+\frac{\pi x}{2}=10\)
\(\Rightarrow x\left(1+\frac{\pi}{2}\right)+2 y=10\)
\(\Rightarrow 2 y=10-x\left(1+\frac{\pi}{2}\right)\)
\(\Rightarrow y=5-x\left(\frac{1}{2}+\frac{\pi}{4}\right)\)
Therefore, Area of the window (A) is given by
\(=xy+\frac{\pi}{2}\left(\frac{x}{y}\right)^{2}\)
\(=xy+\frac{\pi}{2}\left(\frac{x}{y}\right)^{2}\)
\(=x\left[5-x\left(\frac{1}{2}+\frac{\pi}{4}\right)\right]+\frac{\pi x^{2}}{8}\)
\(=5 x-x^{2}\left(\frac{1}{2}+\frac{\pi}{4}\right)+\frac{\pi x^{2}}{8}\)
\(\therefore \frac{d A}{d x}=5-2 x\left(\frac{\pi}{4}+\frac{1}{2}\right)+\frac{\pi}{4} x\)
\(=5-x\left(1+\frac{\pi}{2}\right)+\frac{\pi}{4} x\)
\(\therefore \frac{d^{2} A}{d x^{2}}=-\left(1+\frac{\pi}{2}\right)+\frac{\pi}{4}=-1-\frac{\pi}{4}\)
Now, \( \frac{d A}{d x}=0 \), then
\(\Rightarrow 5-x\left(1+\frac{\pi}{2}\right)+\frac{\pi}{4} x=0\)
\(\Rightarrow 5-x-\frac{\pi}{4} x=0\)
\(\Rightarrow x\left(1+\frac{\pi}{4}\right)=5\)
\(\Rightarrow x=\frac{5}{\left(1+\frac{\pi}{4}\right)}=\frac{20}{\pi+4}\)
Then, when \( x=\frac{20}{\pi+4} \) then \( \frac{d^{2} A}{d x^{2}} < 0 \).
Therefore, by second derivative test, the area is maximum when length \( x=\frac{20}{\pi+4} \mathrm{~m} \).
Now, \( y=5-\frac{20}{\pi+4}\left(\frac{2+\pi}{4}\right)=6=5-\frac{5(2+\pi)}{4}=\frac{10}{\pi+4} \mathrm{~m} \)
Therefore, the required dimensions of the window to admit maximum light is given by length \( =\frac{20}{\pi+4} \mathrm{~m} \) and breadth \( =\frac{20}{\pi+4} \mathrm{~m} \).
12. A point on the hypotenuse of a triangle is at distance \(a\) and \(b\) from the sides of the triangle. Show that the maximum length of the hypotenuse is \( \left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{3}{2}} \)
Answer
Let \( \triangle \mathrm{ABC} \) be right - angled at B . Let \( \mathrm{AB}=x \) and \( \mathrm{BC}=y \).
Let P be a point on the hypotenuse of the triangle such that P is at a distance of a and b from the sides AB and Bc respectively.
Let \( < \mathrm{C}=\theta \).
Now, we have,
\( \mathrm{AC}=\sqrt{x^{2}+y^{2}} \)
Now, \( \mathrm{PC}=\mathrm{b} \operatorname{cosec} \theta \)
And \( \mathrm{AP}=\mathrm{a} \sec \theta \)
\( \Rightarrow \mathrm{AC}=\mathrm{AP}+\mathrm{PC} \)
\( \Rightarrow \mathrm{AC}=\mathrm{a} \sec \theta+\mathrm{b} \operatorname{cosec} \theta \)
\(\therefore \frac{d(A C)}{d \theta}=-\mathrm{b} \operatorname{cosec} \theta+\mathrm{asec} \theta \cot \theta\)
Now, if \( \frac{d(A C)}{d \theta}=0 \)
\(\Rightarrow a \sec \theta \tan \theta=b \operatorname{cosec} \theta \cot \theta\)
\(\Rightarrow \frac{a}{\cos \theta} \cdot \frac{\sin \theta}{\cos \theta}=\frac{a}{\sin \theta} \cdot \frac{\cos \theta}{\sin \theta}\)
\(\Rightarrow a \sin^{3} \theta=b \cos ^{3} \theta\)
\(\Rightarrow(a)^{\frac{1}{3}} \sin \theta=(b)^{\frac{1}{3}} \sin \theta\)
\(\Rightarrow \tan \theta=\left(\frac{b}{a}\right)^{\frac{1}{3}}\)
\(\therefore \sin \theta=\frac{(b)^{\frac{1}{3}}}{\sqrt{a^{\frac{2}{3}}+b^{\frac{2}{3}}}} \text { and } \cos \theta=\frac{(a)^{\frac{1}{3}}}{\sqrt{a^{\frac{2}{3}}+b^{\frac{2}{3}}}}\ldots(1)\)
So, it is clear that \( \frac{d^{2} A}{d \theta^{2}} < 0 \) when \( \tan \theta=\left(\frac{b}{a}\right)^{\frac{1}{3}} \)
Therefore, by second derivative test, the length of the hypotenuse is the maximum when \( \tan \theta=\left(\frac{b}{a}\right)^{\frac{1}{3}} \)
Now, when \( \tan \theta=\left(\frac{b}{a}\right)^{\frac{1}{3}} \), we get,
\(\operatorname{Ac}=\frac{b \sqrt{a^{\frac{2}{3}}+b^{\frac{2}{3}}}}{(b)^{\frac{1}{3}}}+\frac{a \sqrt{a^{\frac{2}{3}}+b^{\frac{2}{3}}}}{(a)^{\frac{1}{3}}}\)
\( =\sqrt{a^{\frac{2}{3}}+b^{\frac{2}{3}}}\left(b^{\frac{2}{3}}+a^{\frac{2}{3}}\right) \)
\( =\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{3}{2}} \)
Therefore, the maximum length of the hypotenuses is \( \left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{3}{2}} \).
13. Find the points at which the function f given by \( \mathrm{f}(x)=(x-2)^{4}(x \) \( +1)^{3} \) has
(i) local maxima (ii) local minima (iii) point of inflexion
Answer
It is given that function is \( f(x)=(x-2)^{4}(x+1)^{3} \)
\(\Rightarrow f^{\prime}(x)=4(x-2)^{3}(x+1)^{3}+3(x+1)^{2}(x-2)^{4}\)
\(=(x-2)^{3}(x+1)^{2}[4(x+1)+3(x-2)]\)
\(=(x-2)^{3}(x+1)^{2}(7 x-2)\)
Now, \( f^{\prime}(x)=0 \)
\( \Rightarrow x=-1 \) and \( x=\frac{2}{7} \) or \( x=2 \)
Now, for values of \( x \) close to \( \frac{2}{7} \) and to the left of \( \frac{2}{7} \)
\(f^{\prime}(x) > 0\)
Also, for values of \( x \) close to \( \frac{2}{7} \) and to the right of \( \frac{2}{7}, f^{\prime}(x) < 0 \).
Then, \( x=\frac{2}{7} \) is the point of local maxima.
Now, for values of \( x \) close to 2 and to the left of \( 2, f^{\prime}(x) < 0 \).
Also, for values of \( x \) close to 2 and to the right of \( 2 . f^{\prime}(x) > 0 \).
Then, \( x=2 \) is the point of local minima.
Now, as the value of \(x\) varies through - \( 1, \mathrm{f}^{\prime}(x) \) does not changes its sign.
Then, \( x=-1 \) is the point of inflexion.
miscellaneous exercise chapter 6 class 12​ || class 12 maths chapter 6 miscellaneous exercise solutions​ || application of derivatives class 12 ncert solutions || miscellaneous exercise on chapter 6 class 12​ || miscellaneous exercise ch 6 class 12​
Download the Math Ninja App Now
14. Find the absolute maximum and minimum values of the function f given by \(f(x)=\cos ^{2} x+\sin x, x \in[0, \pi]\)
Answer
It is given that \( f(x)=\cos ^{2} x+\sin x, x \in[0, \pi] \)
\(f^{\prime}(x)=2 \cos x(-\sin x)+\cos x\)
\(=-2 \sin x \cos x+\cos x\)
Now, if \( f^{\prime}(x)=0 \)
\( \Rightarrow 2 \sin x \cos x=\cos x \)
\( \Rightarrow \cos x(2 \sin x-1)=0 \)
\( \Rightarrow \sin x=\frac{1}{2} \) or \( \cos x=0 \)
\( \Rightarrow x=\frac{\pi}{6} \), or \( \frac{\pi}{2} \) as \( x \in[0, \pi] \)
Now, evaluating the value of \( f \) at critical points \( x=\frac{\pi}{2} \) and \( x=\frac{\pi}{6} \) and at the end points of the interval \( [0, \pi] \), (ie, at \( x=0 \) and \( x=\pi \) ), we get,
\(\mathrm{f}\left(\frac{\pi}{6}\right)=\cos ^{2} \frac{\pi}{6}+\sin \frac{\pi}{6}=\left(\frac{\sqrt{3}}{2}\right)^{2}+\frac{1}{2}=\frac{5}{4}\)
\(\mathrm{f}(0)=\cos ^{2} 0+\sin 0=1+0=1\)
\(\mathrm{f}(\pi)=\cos ^{2} \pi+\sin \pi=(-1)^{2}+0=1\)
\(\mathrm{f}\left(\frac{\pi}{2}\right)=\cos ^{2} \frac{\pi}{2}+\sin \frac{\pi}{2}=0+1=1\)
Therefore, the absolute maximum value of f is \( \frac{5}{4} \) occurring at \( x=\frac{\pi}{6} \) and the absolute minimum value of f is 1 occuring at \( x=1, \frac{\pi}{2} \) and \( \pi \).
15. Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is \( \frac{4 r}{3} \).
Answer
Let R and h be the radius and the height of the cone respectively.

The volume \( (\mathrm{V}) \) of the cone is given by;
\(\mathrm{V}=\frac{1}{3} \pi r^{2} \mathrm{~h}\)
Now, from the right triangle BCD , we get,
\(\mathrm{BC}=\sqrt{r^{2}-R^{2}}\)
\(\therefore \mathrm{h}=\mathrm{r}+\sqrt{r^{2}-R^{2}}\)
\(\mathrm{~V}=\frac{1}{3} \pi r^{2} \mathrm{~h}\left(r+\sqrt{r^{2}-R^{2}}\right)\)
\(=\frac{1}{3} \pi r^{2} \mathrm{~h}+\frac{1}{3} \pi R^{2} \sqrt{r^{2}-R^{2}}\)
\(\frac{d V}{d R}=\frac{2}{3} \pi \mathrm{Rr}+\frac{2}{3} \pi \mathrm{R} \sqrt{r^{2}-R^{2}}+\frac{R^{3}}{3} \cdot \frac{(-2 R)}{2 \sqrt{r^{2}-R^{2}}}\)
\(=\frac{2}{3} \pi \mathrm{Rr}+\frac{2}{3} \pi \mathrm{R} \sqrt{r^{2}-R^{2}}+\frac{R^{3}}{3 \sqrt{r^{2}-R^{2}}}\)
\(=\frac{2}{3} \pi \mathrm{Rr}+\frac{2 \pi R\left(r^{2}-R^{2}\right)-\pi R^{3}}{3 \sqrt{r^{2}-R^{2}}}\)
\(=\frac{2}{3} \pi \mathrm{Rr}+\frac{2 \pi R r^{2}-3 \pi R^{3}}{3 \sqrt{r^{2}-R^{2}}}\)
Now, if \( \frac{d V}{d R}=0 \), then
\(\frac{2}{3} \pi \mathrm{Rr}=-\frac{2 \pi R r^{2}-3 \pi R^{3}}{3 \sqrt{r^{2}-R^{2}}}\)
\(\Rightarrow 2 \mathrm{r} \sqrt{r^{2}-R^{2}}=3 R^{2}-2 r^{2}\)
\(\Rightarrow 4 r^{2}\left(r^{2}-R^{2}\right)=\left(3 R^{2}-2 r^{2}\right)^{2}\)
\(\Rightarrow 4 r^{4}-4 r^{2} R^{2}=9 R^{4}+4 r^{4}-12 R^{2} r^{2}\)
\(\Rightarrow 9 R^{4}-8 r^{2} R^{2}=0\)
\(\Rightarrow 9 R^{2}=8 r^{2}\)
\(\Rightarrow R^{2}=\frac{8 r^{2}}{9}\)
Now, \( \frac{d^{2} V}{d R^{2}}=\frac{2 \pi r}{3}+\frac{3 \sqrt{r^{2}-R^{2}}\left(2 \pi r^{2}-9 \pi R^{2}\right)-\left(2 \pi R r^{2}-3 \pi R^{3}\right)(-6 R) \frac{1}{2 \sqrt{r^{2}-R^{2}}}}{9 \sqrt{r^{2}-R^{2}}} \)
Now, when \( R^{2}=\frac{8 r^{2}}{9} \), it can be shown that \( \frac{d^{2} V}{d R^{2}} < 0 \).
Therefore, the volume is the maximum when \( R^{2}=\frac{8 r^{2}}{9} \).
When \( R^{2}=\frac{8 r^{2}}{9} \),
Height of the cone \( =\mathrm{r}+\sqrt{r^{2}-\frac{8 r^{2}}{9}}=\mathrm{r}+\sqrt{\frac{r^{2}}{9}}=\mathrm{r}+\frac{r}{3}=\frac{4 r}{3} \).
Therefore, it can be seen that the altitude of the circular cone of maximum volume that can be inscribed in a sphere of radius \( r \) is \( \frac{4 r}{3} \).
16. Let \( f \) be a function defined on \( [a, b] \) such that \( f^{\prime}(x) > 0 \), for all \( x \in(a, b) \). Then prove that \( f \) is an increasing function on \( (a, b) \).
Answer
Since, \( \mathrm{f}^{\prime}(x) > 0 \) on \( (\mathrm{a}, \mathrm{b}) \)
Then, f is a differentiating function \( (\mathrm{a}, \mathrm{b}) \)
Also, every differentiable function is continuous,
Therefore, \( f \) is continuous on \( [a, b] \)
Let \( x_{1}, x_{2} \epsilon(\mathrm{a}, \mathrm{b}) \) and \( x_{2} > x 1 \) then by LMV theorem, there exists \( \mathrm{c} \epsilon(\mathrm{a}, \mathrm{b}) \) s.t.
\( \mathrm{f}^{\prime}(\mathrm{c})=\frac{f\left(x_{2}-\mathrm{f}\left(x_{1}\right)\right)}{x_{2}-x_{2}} \)
\( =\mathrm{f}\left(x_{2}\right)-\mathrm{f}\left(x_{1}\right)=\left(x_{2}-x_{1}\right) \mathrm{f}^{\prime}(\mathrm{c}) \)
\(\Rightarrow \mathrm{f}\left(x_{2}\right)-\mathrm{f}\left(x_{1}\right) > 0 \text { as }\left(x_{2} < x_{1}\right) \mathrm{f}^{\prime}(\mathrm{c})\)
\(\Rightarrow \mathrm{f}\left(x_{2}\right)-\mathrm{f}\left(x_{1}\right) > 0 \text { as } x_{2} > x_{1} \text { and } \mathrm{f}^{\prime}(x) > 0\)
\(\Rightarrow \mathrm{f}\left(x_{1}\right) > \mathrm{f}\left(x_{2}\right)\)
\(\therefore \text { for } x_{1} < x_{2} \Rightarrow \mathrm{f}\left(x_{1}\right) < \mathrm{f}\left(x_{2}\right)\)
Therefore, f is an increasing function.
17. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius \( R \) is \( \frac{2 R}{\sqrt{3}} \). Also find the maximum volume.
Answer
Let r and h be the radius and the height of the cylinder respectively.
Now, \( \mathrm{h}=2 \sqrt{R^{2}-r^{2}} \)
The volume \( (\mathrm{V}) \) of the cylinder is given by:
\(\mathrm{V}=\pi r^{2} \mathrm{~h}=2 \pi r^{2} \sqrt{R^{2}-r^{2}}\)
\(\frac{d V}{d r}=4 \pi r \sqrt{R^{2}-r^{2}}+\frac{2 \pi r^{2}(-2 r)}{2 \sqrt{R^{2}-r^{2}}}\)
\(=4 \pi r \sqrt{R^{2}-r^{2}}-\frac{2 \pi r^{3}}{\sqrt{R^{2}-r^{2}}}\)
\(=\frac{4 \pi r\left(R^{2}-r^{2}\right)-2 \pi r^{3}}{\sqrt{R^{2}-r^{2}}}\)
\(=\frac{4 \pi R^{2}-6 \pi r^{3}}{\sqrt{R^{2}-r^{2}}}\)
Now, if \( \frac{d V}{d r}=0 \Rightarrow 4 \pi R^{2}-6 \pi r^{3}=0 \)
\( \Longrightarrow r^{2}=\frac{2 R^{2}}{3} \)
Now, \( \frac{d^{2} V}{d r^{2}}=\frac{\sqrt{R^{2}-r^{2}}\left(4 \pi R^{2}-18 \pi r^{2}\right)-\left(4 \pi R^{2}-6 \pi r^{3}\right) \frac{(-2 r)}{2 \sqrt{R^{2}-r^{2}}}}{\left(R^{2}-r^{2}\right)} \)
\( =\frac{\left(R^{2}-r^{2}\right)\left(4 \pi R^{2}-18 \pi r^{2}\right)+\left(4 \pi R^{2}-6 \pi r^{3}\right)}{\left(R^{2}-r^{2}\right)^{\frac{3}{2}}} \)
\( =\frac{4 \pi R^{4}-22 r^{2} R^{2}+12 \pi r^{4}+4 \pi r^{2} R^{2}}{\left(R^{2}-r^{2}\right)^{\frac{3}{2}}} \)
Now, we can see that at \( r^{2}=\frac{2 R^{2}}{3}, \frac{d^{2} V}{d r^{2}} < 0 \).
Therefore, the volume is the maximum when \( r^{2}=\frac{2 R^{2}}{3} \).
When \( r^{2}=\frac{2 R^{2}}{3} \), the height of the cylinder is \( 2 \sqrt{R^{2}-\frac{2 R^{2}}{3}}=2 \sqrt{\frac{R^{2}}{3}}=\frac{2 R}{\sqrt{3}} \).
Therefore, the volume of the cylinder is the maximum when the height of the cylinder is \( \frac{2 R}{\sqrt{3}} \).
Hence Proved.
18. Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height \( h \) and semi vertical angle \( \alpha \) is one - third that of the cone and the greatest volume of cylinder is \( \frac{4}{27} \pi h^{3} \tan ^{2} \alpha \).
Answer
The figure is given below:

Let VAB be a given cone of height h , semi-vertical angle \( \alpha \) and let \( x \) be the radius of the base of the cylinder \( A^{\prime} B^{\prime} D C \) which is inscribed in the cone VAB.
In triangle \( \mathrm{VO}^{\prime} \mathrm{A}^{\prime} \),
\(\tan \alpha=\frac{\mathrm{O}^{\prime} \mathrm{A}^{\prime}}{\mathrm{VO}^{\prime}}=\frac{x}{\mathrm{VO}^{\prime}}\)
\( \mathrm{VO}^{\prime}=x \cot \alpha \)
\( \mathrm{OO}^{\prime}=\mathrm{VO}-\mathrm{VO}^{\prime}=\mathrm{h}-x \cot \alpha \)
Let V be the volume of the cylinder.
Then, \( \mathrm{V}=\pi\left(\mathrm{O}^{\prime} \mathrm{B}^{\prime}\right)^{2}\left(\mathrm{OO}^{\prime}\right) \)
\( \mathrm{V}=\pi x^{2}(\mathrm{~h}-x \cot \alpha) \)
Differentiating with respect to \(x \), we get,
\(\frac{d V}{d x}=2 \pi x h-3 \pi x^{2} \cot \alpha\)
Now, putting \( \mathrm{dV} / \mathrm{dx}=0 \), for maxima or minima, we get,
\( 2 \pi x h-3 \pi x^{2} \cot \alpha \)
\( x=\frac{2 h}{3} \tan t \alpha \)
Now, \( \frac{d^{2} V}{d x^{2}}=2 \pi \mathrm{h}-6 \pi x \cot \alpha \)
Putting the value of \( x \), we get,
\(\frac{d^{2} V}{d x^{2}}=\pi(2 h-4 h)=-2 \pi h < 0\)
Therefore, there is maxima at \( x=\frac{2 h}{3} \tan \alpha \) Hence, putting the value of \( x \), in formula of volume, we get,
\(\mathrm{V}=\pi\left(\frac{2 h}{3} \tan \alpha\right)^{2}\left(h-\frac{2 h}{3}\right)=\frac{4}{27} \pi h^{3} \tan ^{2} \alpha\)
And \( O O^{\prime}=\mathrm{h}-x \cot \alpha=\mathrm{h}-\frac{2 h}{3}=\frac{\mathrm{h}}{3}\)
19. A cylindrical tank of radius 10 m is being filled with wheat at the rate of 314 cubic metre per hour. Then the depth of the wheat is increasing at the rate of
A. \( 1 \mathrm{~m} / \mathrm{h} \) B. \( 0.1 \mathrm{~m} / \mathrm{h} \) C. \( 1.1 \mathrm{~m} / \mathrm{h} \) D. \( 0.5 \mathrm{~m} / \mathrm{h} \)
Answer
Let V be the volume of the cylinder
\(
\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}\)
\(=\pi(10)^{2} \mathrm{~h}\)
\(\Rightarrow \mathrm{V}=100 \pi \mathrm{h}\)
Differentiating w.r.t. t we get,
\(\frac{d V}{d t}=100 \pi \frac{d h}{d t}\)
The tank is being filled with wheat at the rate of 314 cubic meter per hour.
\(\frac{d V}{d t}=314 \mathrm{~m}^{3} / \mathrm{h}\)
Then, we have,
\(314=100 \pi \frac{d h}{d t}\)
\(\Rightarrow \frac{d h}{d t}=\frac{314}{100 \times 3.14}=1\)
Therefore, the depth of wheat is increasing at the rate of \( 1 \mathrm{~m} / \mathrm{h} \).
20. The slope of the tangent to the curve \( x=\mathrm{t}^{2}+3 \mathrm{t}-8, y=2 \mathrm{t}^{2}-2 \mathrm{t}- \) 5 at the point \( (2,-1) \) is
A. \( \frac{22}{7} \) B. \( \frac{6}{7} \) C. \( \frac{7}{6} \) D. \( \frac{-6}{7} \)
Answer
It is given that curve \( x=\mathrm{t}^{2}+3 \mathrm{t}-8, y=2 \mathrm{t}^{2}-2 \mathrm{t}-5 \)
Then, \( \frac{d x}{d t}=2 \mathrm{t}+3 \) and \( \frac{d y}{d t}=4 \mathrm{t}-2 \)
\(\Rightarrow \frac{d y}{d x}=\frac{d y}{d t} \cdot \frac{d t}{d x}=\frac{4 \mathrm{t}-2}{2 t-3}\)
The given points is \( (2,-1) \)
At \( x=2 \), we get
\(\mathrm{t}^{2}+3 \mathrm{t}-8=2\)
\(\Rightarrow \mathrm{t}^{2}+3 \mathrm{t}-10=0\)
\(\Rightarrow(\mathrm{t}-2)(\mathrm{t}+5)=0\)
\(\Rightarrow \mathrm{t}=2 \text { and }-5\)
\(\text { At } y=-1 \text {, we get }\)
\(2 \mathrm{t}^{2}-2 \mathrm{t}-5=-1\)
\(\Rightarrow 2 \mathrm{t}^{2}-2 \mathrm{t}-4=0\)
\(\Rightarrow 2\left(\mathrm{t}^{2}-\mathrm{t}-2\right)=0\)
\(\Rightarrow(\mathrm{t}-2)(\mathrm{t}+1)=0\)
\(\Rightarrow \mathrm{t}=2 \text { and }-1\)
Therefore, the common value of \( t \) is 2 .
Hence, the slope of the tangent to the given curve at point \( (2,-1) \) is \( \left.\frac{d y}{d x}\right]_{t=2}=\frac{4(2)-2}{2(2)+3}=\frac{8-2}{4+3}=\frac{6}{7} \)
21. The line \( y=m x+1 \) is a tangent to the curve \( y^{2}=4 x \) if the value of m is
A. 1 B. 2 C. 3 D. \( \frac{1}{2} \)
Answer
It is given that the equation of the tangent to the given curve is
\(y=m x+1\)
Now, substituting the value of \( y \) in \( y^{2}=4 x \), we get
\(\Rightarrow(\mathrm{mx}+1)^{2}=4 x\)
\(\Rightarrow \mathrm{m}^{2} x^{2}+1+2 \mathrm{mx}-4 x=0\)
\(\Rightarrow \mathrm{m}^{2} x^{2}+x(2 \mathrm{~m}-4)+1=0\ldots(1)\)
Since, a tangent touches the curve at one point, the root of equation (1) must be equal.
Thus, we get
\(\text { Discriminant }=0\)
\((2 \mathrm{~m}-4)^{2}-4\left(\mathrm{~m}^{2}\right)(1)=0\)
\(\Rightarrow 4 \mathrm{~m}^{2}+16-16 \mathrm{~m}-4 \mathrm{~m}^{2}=0\)
\(\Rightarrow 16-16 \mathrm{~m}=0\)
\(\Rightarrow \mathrm{m}=1\)
Therefore, the required value of \( m \) is 1 .
22. The normal at the point \( (1,1) \) on the curve \( 2 y+x^{2}=3 \) is
A. \( x+y=0 \) B. \( x-y=0 \) C. \( x+y+1=0 \) D. \( x-y=1 \)
Answer
It is given that the equation of curve is \( 2 y+x^{2}=3 \)
Differentiating w.r.t. \(x\), we get,
\(2 \frac{d y}{d x}+2 x=0\)
\(\Rightarrow \frac{d y}{d x}=-x\)
\(\left.\therefore \frac{d y}{d x}\right]_{(1,1)}=-1\)
The slope of the normal to the given curve at point \( (1,1) \) is
\(\frac{-1}{\left.\frac{d y}{d x}\right]_{(1,1)}}=1\)
Then, the equation of the normal to the curve at \( (1,1) \) is
\(\Rightarrow y-1=1(x-1)\)
\(\Rightarrow y-1=x-1\)
\(\Rightarrow x-y=0\)
23. The normal to the curve \( x^{2}=4 y \) passing \( (1,2) \) is
A. \( x+y=3 \) B. \( x-y=3 \) C. \( x+y=1 \) D. \( x-y=1 \)
Answer
It is given that the equation of curve is \( x^{2}=4 y \)
Differentiating w.r.t. \(x \), we get,
\(2 x=4 \frac{d y}{d x}\)
\(\Rightarrow \frac{d y}{d x}=\frac{x}{2}\)
The slope of the normal to the given curve at point \( (\mathrm{h}, \mathrm{k}) \) is
\(\frac{-1}{\left.\frac{d y}{d x}\right]_{(h, k)}}=\frac{-2}{h}\)
Then, the equation of the normal to the curve at \( (\mathrm{h}, \mathrm{k}) \) is
\(\Rightarrow y-\mathrm{k}=\frac{-2}{h}(x-\mathrm{h})\)
Now, it is given that the normal passes through the point \( (1,2) \)
Thus, we get,
\(\Rightarrow 2-\mathrm{k}=\frac{-2}{h}(1-\mathrm{h})\)
\(\Rightarrow \mathrm{k}=2+\frac{2}{h}(1-\mathrm{h}) \ldots (1)\)
Since ( \( h, k \) ) lies on the curve \( x^{2}=4 y \), we have \( h^{2}=4 k \)
\(\Rightarrow \mathrm{k}=\frac{h^{2}}{4}\)
Now putting the value of of \( k \) in (1), we get
\(\frac{h^{3}}{4}=2+\frac{2}{h}(1-\mathrm{h})\)
\(\Rightarrow \frac{h^{3}}{4}=2 \mathrm{~h}+2-2 \mathrm{~h}=2\)
\(\Rightarrow \mathrm{h}^{3}=8\)
\(\Rightarrow \mathrm{h}=2\)
Therefore, the equation of the normal is given as:
\(\Rightarrow y-1=\frac{-2}{2}(x-2)\)
\(\Rightarrow y-1=-(x-2)\)
\(\Rightarrow x+y=3\)
24. The points on the curve \( 9 y^{2}=x^{3} \), where the normal to the curve makes equal intercepts with the axes are
A. \( \left( \pm 4, \frac{3}{8}\right) \) B. \( \left(4, \frac{-8}{3}\right) \) C. \( \left(4, \pm \frac{3}{8}\right) \) D. \( \left( \pm 4, \frac{3}{8}\right) \)
Answer
It is given that the equation of the curve is \( 9 y^{2}=x^{3} \)
Differentiating w.r.t. \(x\), we get,
\(9(2 y) \frac{d y}{d x}=3 x^{2}\)
\(\Rightarrow \frac{d y}{d x}=\frac{x^{2}}{6 y}\)
The slope of the normal to the given curve at point \( \left(x_{1}, y_{1}\right) \) is
\(\frac{-1}{\left.\frac{d y}{d x}\right]_{(x 1, y 1)}}=\frac{-6 y_{1}}{x_{1}^{2}}\)
Then, the equation of the normal to the curve at \( \left(x_{1}, y_{1}\right) \) is
\(\Rightarrow y-y_{1}=\frac{-6 y_{1}}{x_{1}^{2}}\left(x-x_{1}\right)\)
\(\Rightarrow x_{1}^{2} y-x_{1}^{2} y_{1}=-6 x y_{1}+6 x_{1} y_{1}\)
\(\Rightarrow 6 x y_{1}+x_{1}^{2} y=6 x_{1} y_{1}+x_{1}^{2} y_{1}\)
\(\Rightarrow \frac{6 x y_{1}}{6 x_{1} y_{1}+x_{1}^{2} y_{1}}+\frac{x_{1}^{2} y}{6 x_{1} y_{1}+x_{1}^{2} y_{1}}=1\)
\(\Rightarrow \frac{x}{\frac{x_{1}\left(6+x_{1}\right)}{6}}+\frac{y}{\frac{y_{1}\left(6+x_{1}\right)}{x_{1}}}=1\)
Now, it is given that the normal makes equal intercepts with the axes.
Thus, we get,
\(\Rightarrow \frac{x_{1}\left(6+x_{1}\right)}{6}=\frac{y_{1}\left(6+x_{1}\right)}{x_{1}}\)
\(\Rightarrow \frac{x_{1}}{6}=\frac{y_{1}}{x_{1}}\)
\(\Rightarrow x_{1}^{2}=6 y_{1} \ldots (1)\)
Since, the point \( \left(x_{1}, y_{1}\right) \) lies on the curve \( 9 y_{1}^{2}=x_{1}^{3} \ldots (2)\)
From (1) and (2), we get
\( 9\left(\frac{x_{1}^{2}}{6}\right)^{2}=x_{1}^{3} \Rightarrow \frac{x_{1}^{4}}{4}=x_{1}^{3} \)
\(\Rightarrow x_{1}=4\)
Now putting the value of \( x_{1} \) in (2), we get
\(9 y_{1}^{2}=4^{3}\)
\(\Rightarrow y_{1}^{2}=\frac{64}{9}\)
\(\Rightarrow y_{1}= \pm \frac{8}{3}\)
Therefore, the required points are \( \left(4, \pm \frac{8}{3}\right) \).
miscellaneous exercise chapter 6 class 12​ || class 12 maths chapter 6 miscellaneous exercise solutions​ || application of derivatives class 12 ncert solutions || miscellaneous exercise on chapter 6 class 12​ || miscellaneous exercise ch 6 class 12​
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top