Ncert solutions for class 9 maths || ncert class 9 maths chapter 2 polynomials solutions || class 9 maths chapter 2 exercise 2.5 question 5 | class 9 maths ncert solutions chapter 2 exercise 2.5 class 9 | ncert solutions for class 9 maths chapter 2 exercise 2.5 class 9 | ncert solution class 9 maths chapter 2 exercise 2.5 class 9 | ncert solutions class 9 maths chapter 2 exercise 2.5 || cbse class 9 maths chapter 2 polynomials solutions || ncert exemplar class 9 maths solutions || class 9 maths ncert solution up board
Explore detailed, step-by-step solutions to Class 9 Chapter 2 Exercise 2.5 based on Polynomials. This exercise focuses on solving polynomial equations using the Factor Theorem and various algebraic identities. Our expertly crafted solutions are designed to make the process of factorisation simple and accessible, guiding students through each problem with clarity. These NCERT solutions help students develop a strong foundation in algebra, boost exam readiness, and confidently tackle school homework. For additional practice and conceptual clarity, students are encouraged to work through NCERT Exemplar Class 9 Maths problems as well.

ncert solutions for class 9 maths || ncert class 9 maths chapter 2 polynomials solutions || class 9 maths chapter 2 exercise 2.5 question 5 | class 9 maths ncert solutions chapter 2 exercise 2.5 class 9 | ncert solutions for class 9 maths chapter 2 exercise 2.5 class 9 | ncert solution class 9 maths chapter 2 exercise 2.5 class 9 | ncert solutions class 9 maths chapter 2 exercise 2.5 || cbse class 9 maths chapter 2 polynomials solutions || ncert exemplar class 9 maths solutions || class 9 maths ncert solution up board
Exercise 2.5
1.
(i) Use suitable identities to find the following products: \(
(x+4)(x+10)\)
Answer
\( (x+4)(x+10) \)Using identity,
\((x+a)(x+b)=x^{2}+(a+b) x+a b\)
In \( (x+4)(x+10), a=4 \) and \( b=10 \)
Now, \( (x+4)(x+10)=x^{2}+(4+10) x+(4 \times 10) \)
\(=x^{2}+14 x+40\)
(ii) Use suitable identities to find the following products:
\((\mathrm{x}+8)(\mathrm{x}-10) \)
Answer
\( (\mathrm{x}+8)(\mathrm{x}-10) \)Using identity,
\((x+a)(x+b)=x^{2}+(a+b) x+a b\)
Here, \( a=8 \) and \( b=-10 \)
\((x+8)(x-10)=x^{2}+\{8+(-10)\} x+\{8 \times(-10)\}\)
\(=x^{2}+(8-10) x-80\)
\(=x^{2}-2 x-80\)
(iii) Use suitable identities to find the following products: \(
(3\mathrm{x}+4)(3 \mathrm{x}-5) \)
Answer
\( (3 x+4)(3 x-5) \)Using identity,
\((x+a)(x+b)=x^{2}+(a+b) x+a b\)
Here, \( x=3 x, a=4 \) and \( b=-5 \)
\((3 x+4)(3 x-5)=(3 x)^{2}+\{4+(-5)\} 3 x+\{4 \times(-5)\}\)
\(=9 x^{2}+3 x(4-5)-20\)
\(=9 x^{2}-3 x-20\)
(iv) Use suitable identities to find the following products:
\(\left(y^{2} +\frac{ 3 }{ 2 }\right)\left(y^{2} -\frac{ 3 }{ 2
}\right) \)
Answer
\(
\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)\)Using identity,
\((x+y)(x-y)=x^{2}-y^{2}\)
Here, \( x=y^{2} \) and \( y=\frac{3}{2} \)
\(\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)=\left(y^{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}\)
\(=y^{4}-\frac{9}{4}\)
(v) Use suitable identities to find the following products: \(
(3-2 x)(3+2 x)\)
Answer
\( (3-2 x)(3+2 x) \)using identity
\((x+y)(x-y)=x^{2}-y^{2}\)
Here, \( x=3 \) and \( y=2 x \)
\((3-2 x)(3+2 x)=3^{2}-(2 x)^{2}\)
\(=9-4 x^{2}\)
2.
(i) Evaluate the following products without multiplying directly:
\( 103 \times 107\)
Answer
Using identity,\((x+a)(x+b)=x^{2}+(a+b) x+a b\)
Here, \( x=100, a=3 \) and \( b=7 \)
\(103 \times 107=(100+3)(100+7)\)
\(=(100)^{2}+(3+7) 100+(3 \times 7)\)
\(=10000+1000+21\)
\(=11021\)
(ii) Evaluate the following products without multiplying
directly: \( 95 \times 96\)
Answer
Using identity, \((x-a)(x-b)=x^{2}-(a+b) x+a b\)
Here, \( x=100, a=5 \) and \( b=4 \)
\(95 \times 96=(100-5)(100-4)\)
\(=(100)^{2}-(5+4) 90+(5 \times 4)\)
\(=10000-1800+20\)
\(=9120\)
(iii) Evaluate the following products without multiplying
directly: \( 104 \times 96\)
Answer
Using identity,\((x+y)(x-y)=x^{2}-y^{2}\)
Here, \( x=100 \) and \( y=4 \)
\(104 \times 96=(100+4)(100-4)\)
\(=(100)^{2}-(4)^{2}\)
\(=10000-16\)
\(=9984\)
3.
(i) Factorize the following using appropriate identities: \( 9
x^{2}-6 xy+y^{2} \)
Answer
\( 9 x^{2}+6 x y+y^{2} \)\(=(3 \mathrm{x})^{2}+(2 \times 3 \mathrm{x} \times \mathrm{y})+\mathrm{y}^{2}\)
Using identity,
\((a+b)^{2}=a^{2}+2 a b+b^{2}\)
Here, \( \mathrm{a}=3 \mathrm{x} \) and \( \mathrm{b}=\mathrm{y} \)
\(9 x^{2}+6 x y+y^{2}=(3 x)^{2}+(2 \times 3 \times y)+y^{2}\)
\(=(3 x+y)^{2}\)
\(=(3 x+y)(3 x+y)\)
(ii) Factorize the following using appropriate identities: \( 4
y^{2}-4 y+1\)
Answer
\( 4 y^{2}-4 y+1=(4 y)^{2}-(2 \times 2 y \times 1)+12 \) Using identity, \( (a-b)^{2}=a^{2}-2 a b+b^{2} \)
Here, \( \mathrm{a}=2 \mathrm{y} \) and \( \mathrm{b}=1 \)
\(4 y^{2}-4 y+1=(2 y)^{2}-(2 \times 2 y \times 1)+12\)
\(=(2 y-1)^{2}\)
\(=(2 y-1)(2 y-1)\)
(iii) Factorize the following using appropriate identities:
\(\mathrm{x}^{2}-\frac{y^{2}}{100} \)
Answer
Using identity,\(a^{2}-b^{2}=(a+b)(a-b)\)
Here, \( \mathrm{a}=\mathrm{x} \) and \( \mathrm{b}=\left(\frac{y}{10}\right) \)
\(\mathrm{x}^{2}-\frac{y^{2}}{100}=\mathrm{x}^{2}-\left(\frac{y}{10}\right)^{2}\)
\(=\left(x+\frac{y}{10}\right)\left(x-\frac{y}{10}\right)\)
ncert solutions for class 9 maths || ncert class 9 maths chapter 2 polynomials solutions || class 9 maths chapter 2 exercise 2.5 question 5 | class 9 maths ncert solutions chapter 2 exercise 2.5 class 9 | ncert solutions for class 9 maths chapter 2 exercise 2.5 class 9 | ncert solution class 9 maths chapter 2 exercise 2.5 class 9 | ncert solutions class 9 maths chapter 2 ex 2.5 || cbse class 9 maths chapter 2 polynomials solutions || ncert exemplar class 9 maths solutions || class 9 maths ncert solution up board
4.
(i) Expand each of the following, using suitable identities: \(
(x+2 y+4 z)^{2}\)
Answer
Using identity, \((a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a\)
Here, \( a=x, b=2 y \) and \( c=4 z \)
\((x+2 y+4 z)^{2}=x^{2}+(2 y)^{2}+(4 z)^{2}+(2 \times x \times 2 y)+(2 \times 2 y \times 4 z)+(2\times 4 z \times x)\)
\(=x^{2}+4 y^{2}+16 z^{2}+4 x y+16 y z+8 x z\)
(ii) Expand each of the following, using suitable identities: \(
(2\mathrm{x}-\mathrm{y}+\mathrm{z})^{2} \)
Answer
Using identity,\((a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a\)
Here, \( a=2 x, b=-y \) and \( c=z \)
\((2 x-y+z)^{2}\)
\(=(2 x)^{2}+(-y)^{2}+z^{2}+(2 \times 2 x \times-y)+(2 \times-y \times z)+(2 \times z \times 2x)\)
\(=4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z\)
(iii) Expand each of the following, using suitable identities: \(
(-2 x+3 y+2z)^{2} \)
Answer
Using identity, \( (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c
a\)Here, \( a=-2 x, b=3 y \) and \( c=2 z \)
\((-2 \mathrm{x}+3 \mathrm{y}+2 \mathrm{z})^{2}\)
\(=(-2 \mathrm{x})^{2}+(3 \mathrm{y})^{2}+(2\mathrm{z})^{2}+(2 \times-2 \mathrm{x} \times 3 \mathrm{y})+(2 \times 3 \mathrm{y} \times 2\mathrm{z}) +(2 \times 2 \mathrm{z} \times-2 \mathrm{x})\)
\(=4 \mathrm{x}^{2}+9 \mathrm{y}^{2}+4 \mathrm{z}^{2}-12 \mathrm{xy}+12 \mathrm{yz}-8\mathrm{xz}\)
(iv) Expand each of the following, using suitable identities: \(
(3 a-7 b-c)^{2}\)
Answer
Using identity, \( (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c
a\) Here, \( \mathrm{a}=3 \mathrm{a}, \mathrm{b}=-7 \mathrm{b} \) and \( \mathrm{c}=-\mathrm{c}\)
\((3 a-7 b-c)^{2}\)
\(=(3 a)^{2}+(-7 b)^{2}+(-c)^{2}+(2 \times 3 a \times-7 b)+(2 \times-7 b\times-c)+(2 \times-c \times 3 a)\)
\(=9 a^{2}+49 b^{2}+c^{2}-42 a b+14 b c-6 a c\)
(v) Expand each of the following, using suitable identities: \(
(-2 x+5 y-3z)^{2} \)
Answer
Using identity, \( (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c
a\)Here, \( \mathrm{a}=-2 \mathrm{x}, \mathrm{b}=5 \mathrm{y} \) and \( \mathrm{c}=-3 \mathrm{z}\)
\((-2 \mathrm{x}+5 \mathrm{y}-3 \mathrm{z})^{2}\)
\(=(-2 \mathrm{x})^{2}+(5 \mathrm{y})^{2}+(-3\mathrm{z})^{2}+(2 \times-2 \mathrm{x} \times 5 \mathrm{y})+(2 \times 5 \mathrm{y} \times-3\mathrm{z}) +(2 \times-3 \mathrm{z} \times-2 \mathrm{x})\)
\(=4 \mathrm{x}^{2}+25 \mathrm{y}^{2}+9 \mathrm{z}^{2}-20 \mathrm{xy}-30 \mathrm{yz}+12\mathrm{xz}\)
ncert solutions for class 9 maths || ncert class 9 maths chapter 2 polynomials solutions || class 9 maths chapter 2 exercise 2.5 question 5 | class 9 maths ncert solutions chapter 2 exercise 2.5 class 9 | ncert solutions for class 9 maths chapter 2 exercise 2.5 class 9 | ncert solution class 9 maths chapter 2 exercise 2.5 class 9 | ncert solutions class 9 maths chapter 2 ex 2.5 || cbse class 9 maths chapter 2 polynomials solutions || ncert exemplar class 9 maths solutions || class 9 maths ncert solution up board
(vi) Expand each of the following, using suitable identities:
\(\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2} \)
Answer
Using identity, \( (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c
a\)Here, \( a=\frac{1}{4} \mathrm{a}, \mathrm{b}=\frac{-1}{2} \mathrm{b} \) and \( \mathrm{c}=1 \)
\(\left(\frac{1}{4} a+\frac{-1}{2} b+1\right)^{2}\)
\(=\left(\frac{1}{4}a\right)^{2}+\left(\frac{-1}{2} b\right)^{2}+(1)^{2}+\left(2 \times \frac{1}{4} a \times\frac{-1}{2} b\right)+ \left(2 \times \frac{-1}{2} b \times 1\right)\left(2 \times 1 \times \frac{1}{4}a\right)\)
\(=\frac{1}{16} a^{2}+\frac{1}{4} b^{2}+1-\frac{1}{4} a b-b+\frac{1}{2} a\)
5.
(i) Factorize: \( 4 x^{2}+9 y^{2}-16 z^{2}+12 x y-24 x y-16 x z
\)
Answer
Using identity, \( (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a\)
\(4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z\)
\(=(2 x)^{2}+(3 y)^{2}+(-4 z)^{2}+(2 \times 2 \times 3 y)+(2 \times 3 y \times-4 z)+(2 \times-4 z \times 2 x)\)
\(=(2 x+3 y-4 z)^{2}\)
\(=(2 x+3 y-4 z)(2 x+3 y-4 z) \)
(ii) Factorize: \( 2x^{2}+y^{2}+8 z^{2}-\sqrt[2]{2 x
y}+\sqrt[4]{2 y z}+8 \mathrm{xz} \)
Answer
Using identity,\((a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a\)
\(2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{ } 2 x y+4 \sqrt{2 } y z-8 x z\)
\(=(-\sqrt{ 2} x)^{2}+(y)^{2}+(2 \sqrt{2 } z)^{2}+(2 \times-\sqrt{ 2} x \times y)+(2 \times y \times 2 \sqrt{ 2} z)+(2 \times 2 \sqrt{2 } z \times-\sqrt{ 2} x)\)
\(=(-\sqrt{ 2} x+y+2 \sqrt{2 } z)^{2}\)
\(=(-\sqrt{ 2} x+y+2 \sqrt{ 2} z)(-\sqrt{ 2} x+y+2 \sqrt{2 } z)\)
6.
(i) Write the following cubes in expanded form: \(
(2\mathrm{x}+1)^{3} \)
Answer
\( (2 \mathrm{x}+1)^{3} \) Using identity,
\((a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)\)
\((2 x+1)^{3}=(2 x)^{3}+(1)^{3}+(3 \times 2 x \times 1)(2 x+1)\)
\(=8 x^{3}+1+6 x(2 x+1)\)
\(=8 x^{3}+12 x^{2}+6 x+1\)
(ii) Write the following cubes in expanded form: \( (2 a-3
b)^{3}\)
Answer
Using identity, \((a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)\)
\((2 a-3 b)^{3}=(2 a)^{3}-(3 b)^{3}-(3 \times 2 a \times 3 b)(2 a-3 b)\)
\(=8 a^{3}-27 b^{3}-18 a b(2 a-3 b)\)
\(=8 a^{3}-27 b^{3}-36 a^{2} b+54 a b^{2}\)
(iii) Write the following cubes in expanded form:
\(\left[\frac{3}{2} x+1\right]^{3} \)
Answer
Using identity, \((a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)\)
\(\left(\frac{3}{2} \mathrm{x}+1\right)^{3}=(\mathrm{x})^{3}+1^{3}+(3 \times \mathrm{x} \times1)(\mathrm{x}+1)\)
\(=\frac{27}{8} x^{3}+1+\frac{27}{4} x^{2}+\frac{9}{2}x\)
\(=\frac{27}{8} x^{3}+\frac{27}{4} x^{2}+\frac{9}{2} x+1\)
(iv) Write the following cubes in expanded form: \( [x-\frac{ 2
}{3 } y]^{-3} \)
Answer
Using identity \((a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)\)
\(\left(x-\frac{2}{3} y\right)^{3}=(x)^{3}-\left(\frac{2}{3} y\right)^{3}-\left(3 \times x\times \frac{2}{3} y\right)\left(x-\frac{2}{3} y\right)\)
\(=x^{3}-\frac{8}{27} y^{3}-2 x y\left(x-\frac{2}{3} y\right)\)
\(=x^{3}-\frac{8}{27} y^{3}-2 x^{2} y+\frac{4}{3} x y^{2}\)
7.
ncert solutions for class 9 maths || ncert class 9 maths chapter 2 polynomials solutions || class 9 maths chapter 2 exercise 2.5 question 5 | class 9 maths ncert solutions chapter 2 exercise 2.5 class 9 | ncert solutions for class 9 maths chapter 2 exercise 2.5 class 9 | ncert solution class 9 maths chapter 2 exercise 2.5 class 9 | ncert solutions class 9 maths chapter 2 ex 2.5 || cbse class 9 maths chapter 2 polynomials solutions || ncert exemplar class 9 maths solutions || class 9 maths ncert solution up board
(i) Evaluate the following using suitable identities: \( (99)^{3}
\)
Answer
\( (99)^{3}=(100-1)^{3} \) Using identity,
\((a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)\)
\((100-1)^{3}=(100)^{3}-1^{3}-(3 \times 100 \times 1)(100-1)\)
\(=1000000-1-300(100-1)\)
\(=1000000-1-30000+300\)
\(=970299\)
(ii) Evaluate the following using suitable identities: \(
(102)^{3}\)
Answer
\( (102)^{3}=(100+2)^{3} \) Using identity,
\((a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)\)
\((100+2)^{3}=(100)^{3}+2^{3}+(3 \times 100 \times 2)(100+2)\)
\(=1000000+8+600(100+2)\)
\(=1000000+8+60000+1200\)
\(=1061208\)
(iii) Evaluate the following using suitable identities: \(
(998)^{3}\)
Answer
\( (998)^{3}=(1000-2)^{3} \) Using identity,
\((a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)\)
\((1000-2)^{3}=(1000)^{3}-2^{3}-(3 \times 1000 \times 2)(1000-2)\)
\(=1000000000-8-6000(1000-2)\)
\(=1000000000-8-6000000+12000\)
\(=994011992\)
8.
(i) Factorize each of the following: \( 8 a^{3}+b^{3}+12a^{2} b+6
a b^{2} \)
Answer
\( 8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2} \) Using identity:
\((a+b)^{3}=a^{3}+b^{3}+3 a^{2} \mathrm{b}+3 a b^{2}\)
\(=8 a^{3}+b^{3}+12 a^{2} \mathrm{b}+6 a b^{2}\)
\(=(2 a)^{3}+b^{3}+3(2 a)(2 b)+3(2 a)(b)^{2}\)
\(=(2 a+b)^{3}\)
\(=(2 \mathrm{a}+\mathrm{b})(2 \mathrm{a}+\mathrm{b})(2 \mathrm{a}+\mathrm{b})\)
(ii) Factorize each of the following: \( 8a^{3}+b^{3}-12 a^{2}
b+6 a b^{2} \)
Answer
\( 8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2} \) Using identity,
\((a+b)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}\)
\(=8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}\)
\(=(2 a)^{3}-b^{3}-3(2 a)(2 b)+3(2 a)(b)^{2}\)
\(=(2 a-b)^{3}\)
\(=(2 a-b)(2 a-b)(2 a-b)\)
(iii) Factorize each of the following: \( 27-125a^{3}-135 a+225
a^{2} \)
Answer
\( 27-125 a^{3}-135 a+225 a^{2} \) Using identity,
\((a-b)^{3}=a^{3}-b^{3}-3 a^{2} b+3 a b^{2}\)
\(27-125 a^{3}-135 a+225 a^{2}\)
\(=(3)^{3}-(5 a)^{3}-3(3)^{2}(5 a)+3(3)(5 a)^{2}\)
\(=(3-5 a)^{3}\)
\(=(3-5 a)(3-5 a)(3-5 a)\)
(iv) Factorize each of the following: \( 64 a^{3}-27b^{3}-144
a^{2} b+108 a b^{2} \)
Answer
\( 64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2} \)Using identity
\(64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}\)
\(=(4 a)^{3}-(3 b)^{3}-3(4 a)^{2}(3 b)+3(4 a)(3 b)^{2}\)
\(=(4 a-3 b)^{3}\)
\(=(4 a-3 b)(4 a-3 b)(4 a-3 b)\)
(v) Factorize each of the following: \(
27p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p \)
Answer
\( 27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p \)Using identity
\((a+b)^{3}=a^{3}+b^{3}+3 a^{2} \mathrm{b}+3 a b^{2}\)
\(27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} \mathrm{p}\)
\(=(3 p)^{3}-\left(\frac{1}{6}\right)^{3}-3(3 p)^{2}\left(\frac{1}{6}\right)+3(3p)\left(\frac{1}{6}\right)^{2}\)
\(=\left(3 p-\frac{1}{6}\right)^{3}\)
\(=\left(3 p-\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right)\)
ncert solutions for class 9 maths || ncert class 9 maths chapter 2 polynomials solutions || class 9 maths chapter 2 exercise 2.5 question 5 | class 9 maths ncert solutions chapter 2 exercise 2.5 class 9 | ncert solutions for class 9 maths chapter 2 exercise 2.5 class 9 | ncert solution class 9 maths chapter 2 exercise 2.5 class 9 | ncert solutions class 9 maths chapter 2 ex 2.5 || cbse class 9 maths chapter 2 polynomials solutions || ncert exemplar class 9 maths solutions || class 9 maths ncert solution up board
9.
(i) Verify: \(x^{3}+y^{3}=(x+y)\left(x^{2}+y^{2}-x y\right) \)
Answer
\( x^{3}+y^{3}=(x+y)\left(x^{2}+y^{2}-x y\right) \) we know that
\((x+y)^{3}=(x+y)^{3}-3 x y(x+y)\)
\(\Rightarrow\mathrm{x}^{3}+\mathrm{y}^{3}=(\mathrm{x}+\mathrm{y})\left(\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{xy}\right)\)
[Taking \( (x+y) \) common]
\(\Rightarrow x^{3}+y^{3}=(x+y)\left[(x+y)^{2}-3 x y\right]\)
\(\Rightarrow x^{3}+y^{3}=(x+y)\left[\left(x^{2}+y^{2}+2 x y\right)-3 x y\right] \ldots \ldots\left[(x+y)^{2}=x^{2}+y^{2}+2 x y\right]\)
(ii) Verify: \(x^{3}-y^{3}=(x-y)\left(x^{2}+y^{2}+x y\right)
\)
Answer
\( x^{3}-y^{3}=(x-y)\left(x^{2}+y^{2}+x y\right) \)We know that,
\(\Rightarrow(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)\)
Taking \((x-y)\) common
\(\Rightarrow x^{3}-y^{3}=(x-y)\left[(x-y)^{2}+3 x y\right]\)
\(\Rightarrow x^{3}-y^{3}=(\mathrm{x}-\mathrm{y})\left[\left(x^{2}+y^{2}-2 x y\right)+3\mathrm{xy}\right] \ldots \ldots \left[(x-y)^{2}=x^{2}+y^{2}-2 x y\right]\)
\(=x^{3}-y^{3}=(x-y)\left(x^{2}+y^{2}+x y\right)\)
10.
(i) Factorize each of the following: \( 27 y^{3}+125z^{3} \)
Answer
Using identity, \(x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)\)
\(27 y^{3}+125 z^{3}=(3 y)^{3}+(5 z)^{3}\)
\(=(3 y+5 z)\left\{(3 y)^{2}-(3 y)(5 z)+(5 z)^{2}\right\}\)
\(=(3 y+5 z)\left(9 y^{2}-15 y z+25 z^{2}\right)\)
(ii) Factorize each of the following: \( 64\mathrm{m}^{3}-343
\mathrm{n}^{3} \)
Answer
Using identity, \(x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)\)
\(64 m^{3}+125 n^{3}=(4 m)^{3}-(7 n)^{3}\)
\(=(4 m-7 n)\left\{(4 m)^{2}-(4 m)(7 n)+(7 n)^{2}\right\}\)
\(=(4 m-7 n)\left(16 m^{2}+28 m n+49 n\right)^{2}\)
11. Factorize: \(27 x^{3}+y^{3}+z^{3}-9 x y z\)
Answer
\(27 x^{3}+y^{3}+z^{3}-9 x y z\)\(=(3 x)^{3}+y^{3}+z^{3}-3 \times 3 x y z\)
Using identity,
\(x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)\)
\(27 x^{3}+y^{3}+z^{3}-9 x y z\)
\(=(3 \mathrm{x}+\mathrm{y}+\mathrm{z})\left\{(3 x)^{2}+y^{2}+z^{2}-3 x y-y z-x z\right\}\)
\(=(3 \mathrm{x}+\mathrm{y}+\mathrm{z})\left(9 x^{2}+y^{2}+z^{2}-3 x y-y z-3 x z\right)\)
12. Verify that:
\(x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\)
\(x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\)
Answer
We know that: \(x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)\)
Dividing and Multiplying RHS by 2 gives,
\(x^{3}+y^{3}+z^{3}-3 x y=\frac{1}{2}(x+y+z) \times 2\left(x^{2}+y^{2}+z^{2}-x y-y z-xz\right)\)
\(=\frac{1}{2}(x+y+z)\left(2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 z x\right)\)
\(=\frac{1}{2}(x+y+z)\left[\left(x^{2}+y^{2}-2 x y\right)+\left(y^{2}+z^{2}-2 yz\right)+\left(z^{2}+x^{2}-\right.\right. 2 z x)]\)
As,
\({\left[(x-y)^{2}=x^{2}+y^{2}-2 x y,(y-z)^{2}=y^{2}+z^{2}-2 y z,(z-x)^{2}=z^{2}+x^{2}-2 zx\right]}\)
\(=\frac{1}{2}(x+y+z)\left(2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 z x\right)\)
\(=\text { R.H.S. }\)
13. If \( x+y+z=0 \), show that \( x^{3}+y^{3}+z^{3}=3 x y z
\).
Answer
We know that, \( x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right) \)
Now, put \( (x+y+z)=0 \)
\( x^{3}+y^{3}+z^{3}-3 x y z=(0)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)\)
\(x^{3}+y^{3}+z^{3}-3 x y z=0\)
\(x^{3}+y^{3}+z^{3}=3 x y z \)
Hence proved.
14.
(i) Without actually calculating the cubes, find the value of
each of the following: \((-12)^{3}+(7)^{3}+(5)^{3} \)
Answer
Let \( \mathrm{x}=-12, \mathrm{y}=7 \) and \( \mathrm{z}=5 \)
We observed that,
\(x+y+z=-12+7+5=0\)
We know that if,
\(x+y+z=0\)
Then,
\(x^{3}+y^{3}+z^{3}=3 x y z\)
\((-12)^{3}+(7)^{3}+(5)^{3}=3(-12)(7)(5)\)
\(=-1260\)
(ii) Without actually calculating the cubes, find the value of
each of the following: \((28)^{3}+(-15)^{3}+(-13)^{3} \)
Answer
Let \( \mathrm{x}=28, \mathrm{y}=-15 \) and \( \mathrm{z}=-13
\)We observed that,
\(x+y+z=28-15-13=0\)
We know that if,
\(x+y+z=0\)
Then,
\(x^{3}+y^{3}+z^{3}=3 x y z\)
\((28)^{3}+(-15)^{3}+(-13)^{3}=3(28)(-15)(-13)\)
\(=16380\)
15.
(i) Give possible expressions for the length and breadth of each
of the following rectangles, in which their areas are given: Area:
\( 25a^{2}-35 a+12 \)
Answer
Area: \( 25 \mathrm{a}^{2}-35 \mathrm{a}+12 \) Since the area is the product of length and breadth therefore by factorizing the given area, we can know the length and breadth of the rectangle
\(25 a^{2}-35 a+12\)
So for factorizing the above equation, we would need two numbers such that, their product is 300 and their sum is 35
\(=25 a^{2}-15 a-20 a+12\)
\(=5 a(5 a-3)-4(5 a-3)\)
\(=(5 a-4)(5 a-3)\)
Possible expression for length \( =(5 \mathrm{a}-4) \) or \( (5 \mathrm{a}-3) \)
Possible expression for breadth \( =(5 a-3) \) or \( (5 \mathrm{a}-4) \)
(ii) Give possible expressions for the length and breadth of each
of the following rectangles, in which their areas are given: Area:
\( 35y^{2}+13 y-12 \)
Answer
Area: \( 35 y^{2}+13 y-12 \)\(35 y^{2}+13 y-12\)
Now we will factorize this equation such that, the product of two numbers is 420 and their difference is 12
\(=35 y^{2}-15 y+28 y-12\)
\(=5 y(7 y-3)+4(7 y-3)\)
\(=(5 y+4)(7 y-3)\)
Possible expression for length \( =(5 y+4) \) or \( (7 y-3) \)
Possible expression for breadth \( =(7 y-3) \) or \( (5 y+4) \)
16.
(i) What are the possible expressions for the dimensions of the
cuboids whose volumes are given below?
Volume: \( 3x^{2}-12 x \)
Volume: \( 3x^{2}-12 x \)
Answer
Volume: \( 3 x^{2}-12 x \) Since, the volume is the product of length, breadth, and height therefore by factorizing the given volume we can know the length, breadth and height of the cuboid
\(3 x^{2}-12 x\)
\(=3 x(x-4)\)
Possible expression for length \( =3 \)
Possible expression for breadth \( =\mathrm{x} \)
Possible expression for height \( =(\mathrm{x}-4) \)
(ii) What are the possible expressions for the dimensions of the
cuboids whose volumes are given below?
Volume: \( 12\mathrm{ky}^{2}+8 \mathrm{ky}-20 \mathrm{k} \)
Volume: \( 12\mathrm{ky}^{2}+8 \mathrm{ky}-20 \mathrm{k} \)
Answer
Volume: \( 12 \mathrm{ky}^{2}+8 \mathrm{ky}-20 \mathrm{k} \)Since, the volume is the product of length, breadth, and height therefore by factorizing the given volume, we can know the length, breadth and height of the cuboid
\( 12 \mathrm{ky}^{2}+8 \mathrm{ky}-20 \mathrm{k} \)
\(=4 k\left(3 y^{2}+2 y-5\right)\)
\(=4 k\left(3 y^{2}+5 y-3 y-5\right)\)
\(=4 k[y(3 y+5)-1(3 y+5)]\)
\(=4 k(3 y+5)(y-1)\)
Possible expression for length \( =4 \mathrm{k} \)
Possible expression for breadth \( =(3 y+5) \)
Possible expression for height \( =(\mathrm{y}-1) \)