Class 11 maths exercise 8.1 solutions | exercise 8.1 class 11 maths solutions | class 11 ch 8 exercise 8.1 solutions | class 11 chapter 8 exercise 8.1 solution | class 11 maths ncert solutions chapter 8 | ncert solutions for class 11 maths chapter 8 | ncert exemplar class 11 maths | binomial theorem class 11 ncert solutions
Looking for Class 11 Maths Exercise 8.1 solutions? You’re in the right place! This section offers detailed and step-by-step solutions for all questions from Exercise 8.1 of Chapter 8 – Binomial Theorem. These solutions are prepared according to the latest NCERT curriculum and help you understand the expansion of binomial expressions, binomial coefficients, and general terms of the expansion. Whether you’re revising from the Class 11 Ch 8 Exercise 8.1 solutions, practicing with the NCERT Exemplar Class 11 Maths, or strengthening your understanding of the Binomial Theorem Class 11, these explanations are perfect for building a solid foundation. View or download the complete NCERT Solutions for Class 11 Maths Chapter 8 and master the binomial theorem with confidence!

class 11 chapter 8 exercise 8.1 solution || ncert exemplar class 11 maths || class 11 ch 8 exercise 8.1 solutions || ncert solutions for class 11 maths chapter 8 || class 11 maths exercise 8.1 solutions || class 11 maths ncert solutions chapter 8 || exercise 8.1 class 11 maths solutions || binomial theorem class 11 ncert solutions
EXERCISE 8.1
\(= { }^{5} {C}_{0}(1)^{5}-{ }^{5} {C}_{1}(1)^{4}(2 {x})+{ }^{5} {C}_{2}(1)^{3}(2 {x})^{2}-{ }^{5} {C}_{3}(1)^{2}(2 {x})^{3}\) \(+{ }^{5} {C}_{4}(1)^{1}(2 {x})^{4}- { }^{5} {C}_{5}(2 {x})^{5}\)
\(= 1-5(2 {x})+10(4 {x})^{2}-10(8 {x})^{3}+5(16 {x})^{4}-(32 {x})^{5}\)
\(= 1-10 {x}+40 {x}^{2}-80 {x}^{3}+80 {x}^{4}-32 {x}^{5}\)
\(\left\{\frac{2}{x}-\frac{x}{2}\right\}^{5}= {}^{5} {C}_{0}\left(\frac{2}{x}\right)^{5}-{}^{5} {C} _{1}\left(\frac{2}{x}\right)^{4}\left(\frac{x}{2}\right)+{}^{5} {C}_{2}\left(\frac{2}{x}\right)^{3}\left(\frac{x}{2}\right)^{2}\) \(-{}^{5} {C} _{3}\left(\frac{2}{x}\right)^{2}\left(\frac{x}{2}\right)^{3}+{}^{5} {C} _{4}\left(\frac{2}{x}\right)\left(\frac{x}{2}\right)^{4}-{}^{5} C_{5}\left(\frac{x}{2}\right)^{5}\)
\(=\frac{32}{x^{5}}-5\left(\frac{16}{x^{4}}\right)\left(\frac{x}{2}\right)+10\left(\frac{8}{x^{3}}\right)\left(\frac{x^{2}}{4}\right)-10\left(\frac{4}{x^{2}}\right)\left(\frac{x^{2}}{8}\right)+5\left(\frac{2}{x}\right)\left(\frac{x^{4}}{16}\right)-\frac{x^{5}}{32}\)
\(=\frac{32}{x^{5}}-\frac{40}{x^{3}}+\frac{20}{x}-5 x+\frac{5}{8} x^{2}-\frac{x^{5}}{32}\)
\((2 {x}-3)^{6}={ }^{6} {C}_{0}(2 {x})^{6}-{ }^{6} {C}_{1}(2 {x})^{5}(3)+{ }^{6} {C}_{2}(2 {x})^{4}(3)^{2}\) \(-{ }^{6} {C}_{3}(2 {x})^{3}(3)^{3}+{ }^{6} {C}_{4}(2 {x})^{2}(3)^{4}-{ }^{6} {C}_{5}(2 {x})(3)^{5}+{ }^{6} {C}_{6}(3)^{6}\)
\(=64 {x}^{6}-6\left(32 {x}^{5}\right)(3)+15\left(16 {x}^{4}\right)(9)-20\left(8 {x}^{3}\right)(27)\) \(+15\left(4 {x}^{2}\right)(81)-6(2 {x})(243)+729\)
\(=64 {x}^{6}-576 {x}^{5}+2160 {x}^{4}-4320 {x}^{3}+4860 {x}^{2}-2916 {x}+729\)
class 11 chapter 8 exercise 8.1 solution || ncert exemplar class 11 maths || class 11 ch 8 exercise 8.1 solutions || ncert solutions for class 11 maths chapter 8 || class 11 maths exercise 8.1 solutions || class 11 maths ncert solutions chapter 8 || exercise 8.1 class 11 maths solutions || binomial theorem class 11 ncert solutions
\(\left\{\frac{X}{3}+\frac{1}{X}\right\}^{5}={}^{5} {C}_{0}\left(\frac{X}{3}\right)^{5}+{}^{5} {C}_{1}\left(\frac{X}{3}\right)^{4}\left(\frac{1}{X}\right)+{}^{5} {C}_{2}\left(\frac{X}{3}\right)^{3}\left(\frac{1}{X}\right)^{2}\) \(+{}^{5} {C}_{3}\left(\frac{X}{3}\right)^{2}\left(\frac{1}{X}\right)^{3}+{}^{5} {C}_{4}\left(\left(\frac{X}{3}\right)\right)\left(\frac{1}{X}\right)^{4}+{}^{5} {C}_{5}\left(\frac{1}{X}\right)^{5}\)
\(=\frac{X^{5}}{243}+5\left(\frac{X^{4}}{81}\right)\left(\frac{1}{X}\right)+10\left(\frac{X^{3}}{27}\right)\left(\frac{1}{X^{2}}\right)+10\left(\frac{X^{2}}{9}\right)\left(\frac{1}{X^{3}}\right)\) \(+5\left(\frac{X}{3}\right)\left(\frac{1}{X^{4}}\right)+\frac{1}{X^{5}}\)
\(=\frac{X^{5}}{243}+\frac{5 X^{3}}{81}+\frac{10 X}{9 X}+\frac{5}{3 X^{3}}+\frac{1}{X^{5}}\)
\(\left\{x+\frac{1}{x}\right\}^{6}={ }^{5} {C}_{0}({x})^{6}+{ }^{5} {C}_{1}({x})^{5}\left(\frac{1}{x}\right)+{ }^{6} {C}_{2}({x})^{4}\left(\frac{1}{x}\right)^{2}\) \(+{ }^{6} {C}_{3}({x})^{3}\left(\frac{1}{x}\right)^{3}+{ }^{6} {C}_{4}({x})^{2}\left(\frac{1}{x}\right)^{4}+{ }^{6} {C}_{5}({x})\left(\frac{1}{x}\right)^{4}+{ }^{6} {C}^{6}\left(\frac{1}{x}\right)^{4}\)
\(= x^{6}+6(x)^{5}\left(\frac{1}{x}\right)+15(x)^{4}\left(\frac{1}{x^{2}}\right)+20(x)^{3}\left(\frac{1}{x^{3}}\right)+15(x)^{2}\left(\frac{1}{x^{4}}\right)\) \(+6({x})\left(\frac{1}{x^{5}}\right)+\frac{1}{x^{6}}\)
\(= x^{6}+6 x^{4}+15 x^{2}+20+\frac{15}{x^{2}}+\frac{6}{x^{4}}+\frac{1}{x^{6}}\)
It can be written that, \( 96=100-4 \)
\((96)^{3}=(100-4)^{3}\)
\(={ }^{3} {C}_{0}(100)^{3}-{ }^{3} {C}_{1}(100)^{2}(4)+{ }^{3} {C}_{2}(100)(4)^{2}-{ }^{3} {C}_{2}(4)^{3}\)
\(=(100)^{3}-3(100)^{2}(4)+3(100)(4)^{2}-(4)^{3}\)
\(=1000000-120000+4800-64\)
\(=884736\)
It can be written that, \( 102=100+2 \)
\((102)^{5}=(100+2)^{5}\)
\(={ }^{5} {C}_{0}(100)^{5}+{ }^{5} {C}_{1}(100)^{4}(2)+{ }^{5} {C}_{2}(100)^{3}(2)^{2}+{ }^{5} {C}_{3}(100)^{4}(2)^{3}\) \(+{ }^{5} {C}_{4}(100)(2)^{4}+{ }^{5} {C}_{5}(2)^{5}\)
\(=1000000000+100000000+40000000+80000+800032\)
\(=11040808032\)
It can be written that, \( 101=100+1 \)
\((101)^{4}=(100+1)^{4}\)
\(={ }^{4} {C}_{0}(100)^{4}+{ }^{4} {C}_{1}(100)^{3}(1)+{ }^{4} {C}_{2}(100)^{2}(1)^{2}+{ }^{4} {C}_{3}(100)(1)^{3}+{ }^{4} {C}_{4}(1)^{4}\)
\(=(100)^{4}+4(100)^{3}+6(100)^{2}+4(100)+(1)^{4}\)
\(=10000000+4000000+60000+400+1\)
\(=104060401\)
class 11 chapter 8 exercise 8.1 solution || ncert exemplar class 11 maths || class 11 ch 8 exercise 8.1 solutions || ncert solutions for class 11 maths chapter 8 || class 11 maths exercise 8.1 solutions || class 11 maths ncert solutions chapter 8 || exercise 8.1 class 11 maths solutions || binomial theorem class 11 ncert solutions
It can be written that, \( 99=100-1 \)
\((99)^{5}=(100-1)^{5}\)
\(={ }^{5} {C}_{0}(100)^{5}-{ }^{5} {C}_{1}(100)^{4}(1)+{ }^{5} {C}_{2}(100)^{3}(1)^{2}-{ }^{5} {C}_{3}(100)^{2}(1)^{3}\) \(+{ }^{5} {C}_{4}(100)(1)^{4}-{ }^{5} {C}_{5}(1)^{5}\)
\(=(100)^{5}-5(100)^{4}+10(100)^{3}-10(100)^{2}+5(100)-1\)
\(=10000000000-500000000+1000000-100000+500-1\)
\(=10010000500-500100001\)
\(=9509900499\)
as
\((1.1)^{10000}=(1+0.1) 1000\)
\(={ }^{10000} {C}_{0}+{ }^{10000} {C}_{2}(1.1)+\text { other positive terms }\)
\(=1+10000 \times 1.1+\text { other positive terms }\)
\(=1+10000+\text { other positive terms } > 1000\)
Hence, \((1.1) 10000 > 1000 \).
\(({a}+{b})^{4}={ }^{4} {C}_{0} {a}^{4}+{ }^{4} {C}_{1} {a}^{3} {~b}+{ }^{4} {C}_{2} {a}^{2} {~b}^{2}+{ }^{4} {C}_{3} {ab}^{3}+{ }^{4} {C}_{4} {b}^{4}\)
\(({a}-{b})^{4}={ }^{4} {C}_{0} {a}^{4}-{ }^{4} {C}_{1} {a}^{3} {b}+{ }^{4} {C}_{2} {a}^{2} {b}^{2}-{ }^{4} {C}_{3} {ab}^{3}+{ }^{4} {C}_{4} {b}^{4}\)
\(({a}+{b})^{4}-({a}-{b})^{4}={ }^{4} {C}_{0} {a}^{4}+{ }^{4} {C}_{1} {a}^{3} {b}+{ }^{4} {C}_{2} {a}^{2} {b}^{2}+{ }^{4} {C}_{3} {ab}^{3}+{ }^{4} {C}_{4} {b}^{4}\)
\(-\left[{ }^{4} {C}_{0} {a}^{4}-{ }^{4} {C}_{1} {a}^{3} {b}+{ }^{4} {C}_{2} {a}^{2} {b}^{2}-{ }^{4} {C}_{3} {ab}^{3}+{ }^{4} {C}_{4} {b}^{4}\right]\)
\(=2\left({ }^{4} {C}_{2} {a}^{3} {b}+{ }^{4} {C}_{3} {ab}^{3}\right)=2\left(4 {a}^{3} {b}+4 {ab}^{3}\right)\)
\(=8 {ab}\left({a}^{2}+{b}^{2}\right)\)
By putting \( {a}=\sqrt{3} \) and \( {b}=\sqrt{2} \), we obtain
\((\sqrt{3}+\sqrt{2})^{2}-(\sqrt{3}-\sqrt{2})^{2}=8(\sqrt{3})(\sqrt{2})\left\{(\sqrt{3})^{2}+(\sqrt{2})^{2}\right\}\)
\(=8(\sqrt{6})[3+2]=40 \sqrt{6}\)
\(({x}+1)^{6}={ }^{6} {C}_{0} {x}^{6}+{ }^{6} {C}_{1} {x}^{5}+{ }^{6} {C}_{2} {x}^{4}+{ }^{6} {C}_{3} {x}^{3}+{ }^{6} {C}_{4} {x}^{2}+{ }^{6} {C}_{5} {x}+{ }^{6} {C}_{6}\)
\(({x}-1)^{6}={ }^{6} {C}_{0} {x}^{5}-{ }^{6} {C}_{1} {x}^{5}+{ }^{6} {C}_{2} {x}^{4}-{ }^{6} {C}_{3} {x}^{3}-{ }^{6} {C}_{2} {x}^{2}+{ }^{6} {C}_{4} {x}^{2}-{ }^{6} {C}_{5} {x}^{6}+{ }^{6} {C}_{6}\)
\(({x}+1)^{6}+({x}-1)^{6}=2\left[{ }^{6} {C}_{0} {x}^{6}+{ }^{6} {C}_{2} {x}^{4}+{ }^{6} {C}_{4} {x}^{2}+{ }^{6} {C}_{6}\right]\)
\(=2\left[{x}^{6}+15 {x}^{4}+15 {x}^{2}+1\right]\)
By putting \( x=\sqrt{2} \), we obtain
\((\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}=2\left[(\sqrt{2})^{6}+15(\sqrt{2})^{4}+15(\sqrt{2})^{2}+1\right]\)
\(=2(8+15 \times 4+15 \times 2+1)\)
\(=2(8+60+30+1)\)
\(=2(99)=198\)
Where \(k\) is some natural number
By binomial theorem,
\((1+a)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} a+{ }^{n} C_{2} a _{2}+\ldots+{ }^{n} C n \text { an }\)
For \( {a}=8 \) and \( {m}={n}+1 \), we obtain
\((1+8)^{n+1}={ }^{n+1} C_{0}+{ }^{n+1} C_{1}(8)+\ldots+{ }^{n+1} C_{n+1}(8)^{n+1}\)
\(=9^{n+1}=9+8 n+64\left\{{ }^{n+1} C_{2}+{ }^{n+1} C_{3} \times 8+\ldots+{ }^{n+1} C_{n+1}(8)^{n+1}\right\}\)
\( =9 n+1-8 n-9=64 k, \text{ where }k={ }^{n+1} C_{2}+{ }^{n+1} C_{3} \times 8\) \(+\ldots+{ }^{n+1} C_{n+1}(8)^{n+1} \) is a natural number.
Thus, \( 9 n+1-8 n-9 \) is divisible by \(64 \), whenever \( n \) is a positive integer.
\(\sum_{r=0}^{n} n_{c_{r}}, {a}^{{n}-{r}} {b}^{{r}}=({a}+{b})^{{n}}\)
By putting \( {b}=3 \) and \( {a}=1 \) in the above equation, we obtain
\(\sum_{r=0}^{n} n_{c_{r}}(1)^{{n}-{r}}(3)^{{r}}=(1+3)^{{n}}\)
\(=\sum_{r=0}^{n} 3^{r}{ }^{{n}} C r=4^{{n}}\)
Hence, proved