Ex 7.11 Class 12 Maths Ncert Solutions

Ex 7.11 class 12 maths ncert solutions | class 12 maths exercise 7.11 | class 12 maths ncert solutions chapter 7 exercise 7.11 | exercise 7.11 class 12 maths ncert solutions | integrals class 12 ncert solutions

Ex 7.11 Class 12 Maths NCERT solutions cover important questions based on integration techniques. The problems in Class 12 Maths Exercise 7.11 help strengthen a student’s understanding of definite integrals. With the help of Class 12 Maths NCERT solutions Chapter 7 Exercise 7.11, students can easily solve even the tricky questions. These exercise 7.11 Class 12 Maths NCERT solutions are part of the comprehensive Integrals Class 12 NCERT solutions, which are crucial for board preparation and competitive exams.

ex 7.11 class 12 maths ncert solutions
ex 7.11 class 12 maths ncert solutions || integrals class 12 ncert solutions || class 12 maths exercise 7.11 || exercise 7.11 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.11
Download the Math Ninja App Now

Exercise 7.11

1. By using the properties of definite integrals, evaluate the integrals
\(\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x\)
Answer
Given: \( \int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x \)
let, \( \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x\quad\ldots \text{(1)} \)
as, \( \left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\} \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \cos ^{2}\left(\frac{\pi}{2}-x\right) d x \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \sin ^{2}(x) d x \quad\ldots \text{(2)}\)
Adding (1) and (2), we get
\(2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}}\left[\sin ^{2}(x)+\cos ^{2}(x)\right] d x\)
\(\Rightarrow 2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}}[1] d x\)
\(\Rightarrow 2 \mathrm{I}=[x]_{0}^{\frac{\pi}{2}}\)
\(\Rightarrow 2 \mathrm{I}=\frac{\pi}{2}-0\)
\(\Rightarrow 2 \mathrm{I}=\frac{\pi}{2}\)
\(\Rightarrow \mathrm{I}=\frac{\pi}{4}\)
2. By using the properties of definite integrals, evaluate the integrals
\(\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x\)
Answer
Given: \( \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x \)
Let, \( \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x \quad\ldots \text{(1)}\)
as, \( \left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\} \)
\(\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}}{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}+\sqrt{\cos \left(\frac{\pi}{2}-x\right)}} d x\)
\(\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}} d x\quad\ldots \text{(2)}\)
Adding (1) and (2), we get
\(2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}+\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x\)
\(\Rightarrow 2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}}[1] d x\)
\(\Rightarrow 2 \mathrm{I}=[x]_{0}^{\frac{\pi}{2}}\)
\(\Rightarrow 2 \mathrm{I}=\frac{\pi}{2}-0\)
\(\Rightarrow 2 \mathrm{I}=\frac{\pi}{2}\)
\(\Rightarrow \mathrm{I}=\frac{\pi}{4}\)
3. By using the properties of definite integrals, evaluate the integrals
\(\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x d x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x\)
Answer
Given: \( \int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x \)
Let \( \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x\quad\ldots \text{(1)} \)
as, \( \left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\} \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)}{\sin ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)+\cos ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)} d x \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{\frac{3}{2}} x}{\cos ^{\frac{3}{2}} x+\sin ^{\frac{3}{2}} x} d x \quad\ldots \text{(2)}\)
Adding (1) and (2), we get
\(2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x\)
\(\Rightarrow 2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}}[1] d x\)
\(\Rightarrow 2 \mathrm{I}=[x]_{0}^{\frac{\pi}{2}}\)
\(\Rightarrow 2 \mathrm{I}=\frac{\pi}{2}-0\)
\(\Rightarrow 2 \mathrm{I}=\frac{\pi}{2}\)
\(\Rightarrow \mathrm{I}=\frac{\pi}{4}\)
ex 7.11 class 12 maths ncert solutions || integrals class 12 ncert solutions || class 12 maths exercise 7.11 || exercise 7.11 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.11
Download the Math Ninja App Now
4. By using the properties of definite integrals, evaluate the integrals
\(\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x d x}{\sin ^{5} x+\cos ^{5} x}\)
Answer
Given: \( \int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x d x}{\sin ^{5} x+\cos ^{5} x} d x \)
Let \( \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5} x d x}{\sin ^{5} x+\cos ^{5} x} d x \quad\ldots \text{(1)}\)
as, \( \left\{\int_{0}^{\mathrm{a}} \mathrm{f}(x) \mathrm{d}x=\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{a}-x) \mathrm{d}x\right\} \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{5}\left(\frac{\pi}{2}-x\right)}{\sin ^{5}\left(\frac{\pi}{2}-x\right)+\cos ^{5}\left(\frac{\pi}{2}-x\right)} d x \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{5} x}{\cos ^{5} x+\sin ^{5} x} d x \quad\ldots \text{(2)}\)
Adding (1) and (2), we get
\(2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{5} x+\cos ^{5} x}{\sin ^{5} x+\cos ^{5} x} d x\)
\(\Rightarrow 2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}}[1] d x\)
\(\Rightarrow 2 \mathrm{I}=[x]_{0}^{\frac{\pi}{2}}\)
\(\Rightarrow 2 \mathrm{I}=\frac{\pi}{2}-0\)
\(\Rightarrow 2 \mathrm{I}=\frac{\pi}{2}\)
\(\Rightarrow \mathrm{I}=\frac{\pi}{4}\)
5. By using the properties of definite integrals, evaluate the integrals
\(\int_{-5}^{5}|x+2| d x\)
Answer
Given: \( \int_{-5}^{5}|x+2| d x \)
As we can see that \( (x+2) \leq 0 \) on \( [-5,-2] \) and \( (x+2) \geq 0 \) on \( [-2,5] \)
\(\text {as, }\left\{\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(x) \mathrm{d}x=\int_{\mathrm{a}}^{\mathrm{c}} \mathrm{f}(x) \mathrm{d}x+\int_{\mathrm{c}}^{\mathrm{b}} \mathrm{f}(x) \mathrm{d}x\right\}\)
\(\Rightarrow \mathrm{I}=\int_{-5}^{-2}(x+2) d x+\int_{-5}^{5}|x+2| d x\)
\(\Rightarrow \mathrm{I}=-\left[\frac{x^{2}}{2}+2 x\right]_{-5}^{-2}+\left[\frac{x^{2}}{2}+2 x\right]_{-5}^{5}\)
\(\Rightarrow \mathrm{I}=\left[\frac{(-2)^{2}}{2}+2(-2)-\frac{(-5)^{2}}{2}-2(-5)\right]+\)\(\left[\frac{(5)^{2}}{2}+2(5)-\frac{(-2)^{2}}{2}-2(-2)\right]\)
\(\Rightarrow \mathrm{I}=-\left[2-4-\frac{25}{2}+10\right]+\left[\frac{25}{2}+10-2+4\right]\)
\(\Rightarrow \mathrm{I}=-2+4+\frac{25}{2}-10+\frac{25}{2}+10-2+4\)
\(\Rightarrow \mathrm{I}=29\)
6. By using the properties of definite integrals, evaluate the integrals
\(\int_{2}^{8}|x-5| d x\)
Answer
Given: \( \int_{2}^{8}|x-5| d x \)
As we can see that \( (x-5) \leq 0 \) on \( [2,5] \) and \( (x+2) \geq 0 \) on \( [5,8] \) as,
\(\left\{\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(x) \mathrm{d}x=\int_{\mathrm{a}}^{\mathrm{c}} \mathrm{f}(x) \mathrm{d}x+\int_{\mathrm{c}}^{\mathrm{b}} \mathrm{f}(x) \mathrm{d}x\right\}\)
\(\Rightarrow \mathrm{I}=\int_{2}^{5}-(x-5) d x+\int_{5}^{8}(x-5) d x\)
\(\Rightarrow \mathrm{I}=-\left[\frac{x^{2}}{2}-5 x\right]_{2}^{5}+\left[\frac{x^{2}}{2}-5 x\right]_{5}^{8}\)
\(\Rightarrow \mathrm{I}=\left[\frac{(5)^{2}}{2}-5(5)-\frac{(2)^{2}}{2}+5(2)\right]+\)\(\left[\frac{(8)^{2}}{2}+5(8)-\frac{(5)^{2}}{2}+5(5)\right]\)
\(\Rightarrow \mathrm{I}=-\left[\frac{25}{2}-25-2+10\right]+\left[\frac{64}{2}-40-\frac{25}{2}+25\right]\)
\(\Rightarrow \mathrm{I}=-\frac{25}{2}+17+32-15+\frac{25}{2}\)
\(\Rightarrow \mathrm{I}=9\)
7. By using the properties of definite integrals, evaluate the integrals
\(\int_{0}^{1} z(1-x)^{n} d x\)
Answer
Given: \( \int_{0}^{1} x(1-x)^{n} d x \)
Let, \( \mathrm{I}=\int_{0}^{1} z(1-x)^{n} d x \)
as, \( \left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\} \)
\(\Rightarrow \mathrm{I}=\int_{0}^{1}(1-x)(1-(1-x))^{n} d x\)
\(\Rightarrow \mathrm{I}=\int_{0}^{1}(1-x)(x)^{n} d x\)
\(\Rightarrow \mathrm{I}=\int_{0}^{1}(x)^{n}-(x)^{n+1} d x\)
\(\Rightarrow \mathrm{I}=\left[\frac{(x)^{n+1}}{n+1}-\frac{(x)^{n+2}}{n+2}\right]_{0}^{1}\)
\(\Rightarrow \mathrm{I}=\left[\frac{1}{n+1}-\frac{1}{n+2}\right]\)
\(\Rightarrow \mathrm{I}=\left[\frac{(n+2)-(n+1)}{(n+1)(n+2)}\right]\)
\(\Rightarrow \mathrm{I}=\left[\frac{1}{(n+1)(n+2)}\right]\)
8. By using the properties of definite integrals, evaluate the integrals
\(\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x\)
Answer
Given: \( \int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x \)
Let \( \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x\quad\ldots \text{(1)} \)
as, \( \left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\} \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \log \left[1+\tan \left(\frac{\pi}{4}-x\right)\right] d x \)
As, \( \left\{\tan (A-B)=\frac{\tan (A)-\tan (B)}{1+\tan (A) \tan (B)}\right\} \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \log \left(1+\frac{\tan \left(\frac{\pi}{4}\right)-\tan (x)}{1+\tan \left(\frac{\pi}{4}\right) \tan (x)}\right) d x \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \log \left(1+\frac{1-\tan (x)}{1+\tan (x)}\right) d x \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \log \left[\frac{2}{1+\tan (x)}\right] d x \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \log [2] d x-\int_{0}^{\frac{\pi}{4}} \log [1+\tan (x)] d x \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \log [2] d x-\mathrm{I}\{ \)from \( (1)\} \)
\(\Rightarrow 2 \mathrm{I}=[x \log 2]_{0}^{\frac{\pi}{4}}\)
\(\Rightarrow 2 \mathrm{I}=\frac{\pi}{4} \log 2-0\)
\(\Rightarrow \mathrm{I}=\frac{\pi}{8} \log 2\)
9. By using the properties of definite integrals, evaluate the integrals
\(\int_{0}^{2} x \sqrt{2-x} d x\)
Answer
Given: \( \int_{0}^{2} x \sqrt{2-x} d x \)
Let \( \mathrm{I}=\int_{0}^{2} x \sqrt{2-x} d x \quad\ldots \text{(1)}\)
as, \( \left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\} \)
\(\Rightarrow \mathrm{I}=\int_{0}^{2}(2-x) \sqrt{2-(2-x)} d x\)
\(\Rightarrow \mathrm{I}=\int_{0}^{2}(2-x) \sqrt{(x)} d x\)
\(\Rightarrow \mathrm{I}=\int_{0}^{2}\left(2 x^{\frac{1}{2}}-x^{\frac{3}{2}}\right) d x\)
\(\Rightarrow \mathrm{I}=\left[2\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)-\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\right]_{0}^{2}\)
\(\Rightarrow \mathrm{I}=\left[\frac{4}{3}\left(x^{\frac{3}{2}}\right)-\frac{2}{5}\left(x^{\frac{5}{2}}\right)\right]_{0}^{2}\)
\(\Rightarrow \mathrm{I}=\left[\frac{4}{3}\left((2)^{\frac{3}{2}}\right)-\frac{2}{5}\left((2)^{\frac{5}{2}}\right)\right]_{0}^{2}\)
\(\Rightarrow \mathrm{I}=\frac{4}{3} \times 2 \sqrt{2}-\frac{2}{5} \times 4 \sqrt{2}\)
\(\Rightarrow \mathrm{I}=\frac{8 \sqrt{2}}{3}-\frac{8 \sqrt{2}}{5}\)
\(\Rightarrow \mathrm{I}=\frac{40 \sqrt{2}-24 \sqrt{2}}{15}\)
\(\Rightarrow \mathrm{I}=\frac{16 \sqrt{2}}{15}\)
ex 7.11 class 12 maths ncert solutions || integrals class 12 ncert solutions || class 12 maths exercise 7.11 || exercise 7.11 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.11
Download the Math Ninja App Now
10. By using the properties of definite integrals, evaluate the integrals
\(\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x\)
Answer
Given: \( \int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x \)
Let \( \mathrm{I}=\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}}\{2 \log \sin x-\log (2 \sin x \cos x)\} d x \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}}\{2 \log \sin x-\log (2)-\log (\sin x) \)\(-\log (\cos x)\} d x \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}}\{\log \sin x-\log 2-\log \cos x\} d x \quad\ldots \text{(1)}\)
as, \( \left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\} \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}}\left\{\log \sin \left(\frac{\pi}{2}-x\right)-\log 2-\log \cos\right.\)\(\left. \left(\frac{\pi}{2}-x\right)\right\} d x \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}}\{\log \cos x-\log 2-\log \sin x\} d x\quad\ldots \text{(2)} \)
Adding (1) and (2), we get
\(2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}}(-\log 2-\log 2) d x\)
\(2 \mathrm{I}=-2 \log 2 \int_{0}^{\frac{\pi}{2}}(1) d x\)
\(\Rightarrow 2 \mathrm{I}=-2 \log 2 \int_{0}^{\frac{\pi}{2}}[1] d x\)
\(\Rightarrow 2 \mathrm{I}=-2 \log 2[x]_{0}^{\frac{\pi}{2}}\)
\(\Rightarrow 2 \mathrm{I}=-2 \log 2\left[\frac{\pi}{2}-0\right]\)
\(\Rightarrow 2 \mathrm{I}=-2 \log 2\left(\frac{\pi}{2}\right)\)
\(\Rightarrow \mathrm{I}=\frac{\pi}{2}(-\log 2)\)
\(\Rightarrow \mathrm{I}=\frac{\pi}{2}\left(\log \frac{1}{2}\right)\)
11. By using the properties of definite integrals, evaluate the integrals
\(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} x d x\)
Answer
Given: \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\sin ^{2} x\right) d x \)
Let \( \mathrm{I}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\sin ^{2} x\right) d x \)
As we can see \( f(x)=\sin ^{2} x \) and \( f(-x)=\sin ^{2}(-x)=(\sin (-x))^{2}=(-\sin x)^{2}= \) \( \sin ^{2} x \).
i.e. \( f(x)=f(-x) \)
so, \( \sin ^{2} x \) is an even function.
It is also known that if \( f(x) \) is an even function then,
\(\left\{\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x\right\}\)
\(\Rightarrow \mathrm{I}=2 \cdot \int_{0}^{\frac{\pi}{2}}\left(\sin ^{2} x\right) d x\)
\(\Rightarrow \mathrm{I}=2 \cdot \int_{0}^{\frac{\pi}{2}} \frac{1-\cos 2 x}{2} d x\)
\(\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}}(1-\cos 2 x) d x\)
\(\Rightarrow \mathrm{I}=\left[x-\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}}\)
\(\Rightarrow \mathrm{I}=\frac{\pi}{2}-\sin \pi-0+\sin 0\)
\(\Rightarrow \mathrm{I}=\frac{\pi}{2}\)
12. By using the properties of definite integrals, evaluate the integrals
\(\int_{0}^{\pi} \frac{x d x}{1+\sin x}\)
Answer
Given: \( \int_{0}^{\pi} \frac{x}{1+\sin x} d x \)
Let \( \mathrm{I}=\int_{0}^{\pi} \frac{x}{1+\sin x} d x \quad\ldots \text{(1)}\)
as, \( \left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\} \)
\(\Rightarrow \mathrm{I}=\int_{0}^{\pi} \frac{(\pi-x)}{1+\sin (\pi-x)} d x\)
\(\Rightarrow \mathrm{I}=\int_{0}^{\pi} \frac{(\pi-x)}{1+\sin x} d x\quad\ldots \text{(2)}\)
Adding (1) and (2), we get
\(2 \mathrm{I}=\int_{0}^{\pi} \frac{(\pi-x)+x}{1+\sin x} d x\)
\(2 \mathrm{I}=\int_{0}^{\pi} \frac{\pi}{1+\sin x} d x\)
\(2 \mathrm{I}=\pi \int_{0}^{\pi} \frac{(1-\sin x)}{(1+\sin x)(1-\sin x)} d x\)
\(2 \mathrm{I}=\pi \int_{0}^{\pi} \frac{(1-\sin x)}{\cos ^{2} x} d x\)
\(2 \mathrm{I}=\pi \int_{0}^{\pi}\left\{\frac{1}{\cos ^{2} x}-\frac{\sin x}{\cos ^{2} x}\right\} d x\)
\(2 \mathrm{I}=\pi \int_{0}^{\pi}\left\{\sec ^{2} x-\tan x \sec x\right\} d x\)
\(\Rightarrow 2 \mathrm{I}=\pi[\tan x-\sec x]_{0}^{\pi}\)
\(\Rightarrow 2 \mathrm{I}=\pi[2]\)
13. By using the properties of definite integrals, evaluate the integrals
\(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{7} x d x\)
Answer
Given: \( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\sin ^{7} x\right) d x \)
Let \( \mathrm{I}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\sin ^{7} x\right) d x \)
As we can see \( f(x)=\sin ^{7} x \) and \( f(-x)=\sin ^{7}(-x)=(\sin (-x))^{2}=(-\sin x)^{7}= \) \( \sin ^{7} \mathrm{x} \).
i.e. \( f(x)=f(-x) \)
so, \( \sin ^{7} x \) is an even function.
It is also known that if \( f(x) \) is an even function then,
\(\left\{\int_{-\mathrm{a}}^{\mathrm{a}} \mathrm{f}(x) \mathrm{d}x=0\right\}\)
\(\Rightarrow \mathrm{I}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\sin ^{7} x\right) d x=0\)
14. By using the properties of definite integrals, evaluate the integrals
\(\int_{0}^{2 \pi} \cos ^{2} x d x\)
Answer
Given: \( \int_{0}^{2 \pi}\left(\cos ^{2} x\right) d x \)
Let \( \mathrm{I}=\int_{0}^{2 \pi}\left(\cos ^{2} x\right) d x \)
As we see, \( f(x)=\cos ^{5} x \) and
\( f(2 \pi-x)=\cos ^{5}(2 \pi-x)=\cos ^{5} x=f(x) \)
Because, \( \int_{0}^{2 a} \mathrm{f}(x) \mathrm{d}x=\int_{0}^{a} \mathrm{f}(x) d x \),
if \( \mathrm{f}(2 \mathrm{a}-x)=\mathrm{f}(x) \)
And \( \int_{0}^{2 a} \mathrm{f}(x) \mathrm{d}x=0 \), if \( \mathrm{f}(2 \mathrm{a}-x)=-\mathrm{f}(x) \)
\(\Rightarrow \mathrm{I}=2 \cdot \int_{0}^{\pi}\left(\cos ^{2} x\right) d x\)
Now \( \left\{\cos ^{5}(\pi-x)=-\cos ^{5} x\right\} \)
\(\Rightarrow \mathrm{I}=0\)
15. By using the properties of definite integrals, evaluate the integrals
\(\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x\)
Answer
Given: \( \int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x \)
Let \( \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x\quad\ldots \text{(1)} \)
as, \( \left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\} \)
\(\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\sin \left(\frac{\pi}{2}-x\right)-\cos \left(\frac{\pi}{2}-x\right)}{1+\sin \left(\frac{\pi}{2}-x\right) \cos \left(\frac{\pi}{2}-x\right)} d x\)
\(\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{1+\cos x \sin x} d x\)
Adding (1) and (2), we get
\(2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\sin x-\cos x+\cos x-\sin x}{1+\sin x \cos x} d x\)
\(\Rightarrow 2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{0}{1+\sin x \cos x} d x\)
\(\Rightarrow \mathrm{I}=0\)
ex 7.11 class 12 maths ncert solutions || integrals class 12 ncert solutions || class 12 maths exercise 7.11 || exercise 7.11 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.11
Download the Math Ninja App Now
16. By using the properties of definite integrals, evaluate the integrals
\(\int_{0}^{\pi} \log (1+\cos x) d x\)
Answer
Given: \( \int_{0}^{\pi} \log (1+\cos x) d x \)
Let \( \mathrm{I}=\int_{0}^{\pi} \log (1+\cos x) d x\quad\ldots \text{(1)} \)
as, \( \left\{\int_{0}^{\mathrm{a}} \mathrm{f}(x) \mathrm{d}x=\int_{0}^{\mathrm{a}} \mathrm{f}(\mathrm{a}-x) \mathrm{d}x\right\} \)
\(\Rightarrow \mathrm{I}=\int_{0}^{\pi} \log (1+\cos (\pi-x)) d x\)
\(\Rightarrow \mathrm{I}=\int_{0}^{\pi} \log (1-\cos x) d x\quad\ldots \text{(2)}\)
Adding (1) and (2), we get
\(2 \mathrm{I}=\int_{0}^{\pi}\{\log (1+\cos x)+\log (1-\cos x)\} d x\)
\(2 \mathrm{I}=\int_{0}^{\pi} \log \left(1-\cos ^{2} x\right) d x\)
\(2 \mathrm{I}=\int_{0}^{\pi} \log \left(\sin ^{2} x\right) d x\)
\(2 \mathrm{I}=\int_{0}^{\pi} 2 \cdot \log (\sin x) d x\)
\(2 \mathrm{I}=2 \cdot \int_{0}^{\pi} \log (\sin x) d x\)
\(I=\int_{0}^{\pi} \log (\sin x) d x\quad\ldots \text{(3)}\)
Because, \( \int_{0}^{2 a} \mathrm{f}(x) \mathrm{d}x=\int_{0}^{a} \mathrm{f}(x) d x \),
if \( \mathrm{f}(2 \mathrm{a}-x)=\mathrm{f}(x) \)
Here, if \( f(x)=\log (\sin x) \)
and \( f(\pi-x)=\log (\sin (\pi-x))=\log (\sin x)= \) \( \mathrm{f}(x) \)
\(\Rightarrow \mathrm{I}=2 \cdot \int_{0}^{\frac{\pi}{2}} \log (\sin x) d x\quad\ldots \text{(4)}\)
\(\Rightarrow \mathrm{I}=2 \cdot \int_{0}^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2}-x\right) d x\)
\(\Rightarrow \mathrm{I}=2 \cdot \int_{0}^{\frac{\pi}{2}} \log (\cos x) d x\quad\ldots \text{(5)}\)
Adding (1) and (2), we get
\(\Rightarrow 2 \mathrm{I}=2 \cdot \int_{0}^{\frac{\pi}{2}}(\log \sin x+\log \cos x) d x\)
\(\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}}(\log \sin x+\log \cos x+\log 2-\log 2) d x\)
\(\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}}(\log (2 \sin x \cos x)-\log 2) d x\)
\(\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \log (\sin 2 x) d x-\int_{0}^{\frac{\pi}{2}} \log 2 d x\)
Let \( 2 x=\mathrm{t} \Rightarrow 2 \mathrm{d}x=\mathrm{dt} \)
When \( x=0, \mathrm{t}=0 \) and when \( x=\frac{\pi }{ 2}, \mathrm{t}=\pi \)
\(\Rightarrow \mathrm{I}=\left[\frac{1}{2} \int_{0}^{\pi}(\log (\sin t) d t)\right]-\left(\frac{\pi}{2} \log 2\right)\)
\(\Rightarrow \mathrm{I}=\left[\frac{1}{2}\right]-\left(\frac{\pi}{2} \log 2\right)\)
\(\Rightarrow \mathrm{I}=-\left(\frac{\pi}{2} \log 2\right)\)
\(\Rightarrow \mathrm{I}=-(\pi \log 2)\)
17. By using the properties of definite integrals, evaluate the integrals
\(\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a}-x} d x\)
Answer
Given: \( \int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a}-x} d x \)
Let \( \mathrm{I}=\int_{0}^{a} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a}-x} d x\quad\ldots \text{(1)} \)
as, \( \left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\} \)
\(\Rightarrow \mathrm{I}=\int_{0}^{a} \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x\quad\ldots \text{(2)}\)
Adding (1) and (2), we get
\(2 \mathrm{I}=\int_{0}^{a} \frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}} d x\)
\(\Rightarrow 2 \mathrm{I}=\int_{0}^{a}[1] d x\)
\(\Rightarrow 2 \mathrm{I}=[x]_{0}^{a}\)
\(\Rightarrow 2 \mathrm{I}=\mathrm{a}\)
\(\Rightarrow \mathrm{I}=\frac{a}{2}\)
18. By using the properties of definite integrals, evaluate the integrals
\(\int_{0}^{4}|x-1| d x\)
Answer
Given: \( \int_{0}^{4}|x-1| d x \)
As we can see that \( (x-1) \leq 0 \) when \( 0 \leq x \leq 1 \) and \( (x-1) \geq 0 \) when \( 1 \leq x \leq 4 \)
\(\text {as, }\left\{\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(x) \mathrm{d}x=\int_{\mathrm{a}}^{\mathrm{c}} \mathrm{f}(x) \mathrm{d}x+\int_{\mathrm{c}}^{\mathrm{b}} \mathrm{f}(x) \mathrm{d}x\right\}\)
\(\Rightarrow \mathrm{I}=\int_{0}^{1}-(x-1) d x+\int_{1}^{4}(x-1) d x\)
\(\Rightarrow \mathrm{I}=-\left[\frac{x^{2}}{2}-x\right]_{0}^{1}+\left[\frac{x^{2}}{2}-x\right]_{1}^{4}\)
\(\Rightarrow \mathrm{I}=-\left[\frac{(1)^{2}}{2}-1-\frac{(0)^{2}}{2}+0\right]+\left[\frac{(4)^{2}}{2}-4-\frac{(1)^{2}}{2}+1\right]\)
\(\Rightarrow \mathrm{I}=-\left[\frac{1}{2}-1\right]+\left[8-4-\frac{1}{2}+1\right]\)
\(\Rightarrow \mathrm{I}=\frac{1}{2}+5-\frac{1}{2}\)
\(\Rightarrow \mathrm{I}=5\)
19. By using the properties of definite integrals, evaluate the integrals
Show that \( \int_{0}^{a} f(x) g(x) d x=2 \int_{0}^{a} f(x) d x \) if \( f \) and \( g \) are defined as \( f(x)= \) \( \mathrm{f}(\mathrm{a}-x) \) and \( \mathrm{g}(x)=\mathrm{g}(\mathrm{a}-x)=4 \)
Answer
Given: \( \int_{0}^{a} f(x) g(x) d x \)
Let \( \mathrm{I}=\int_{0}^{a} \mathrm{f}(x) g(x) \mathrm{d} x\quad\ldots \text{(1)}\)
as, \( \left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\} \)
\(\Rightarrow \mathrm{I}=\int_{0}^{a} \mathrm{f}(\mathrm{a}-x) \mathrm{g}(\mathrm{a}-x) \mathrm{d}x\quad\ldots \text{(2)}\)
Adding (1) and (2), we get
\(2 \mathrm{I}=\int_{0}^{a}\{\mathrm{f}(x) \mathrm{g}(x)+\mathrm{f}(x) \mathrm{g}(\mathrm{a}-x)\} \mathrm{d}x\)
\(\Rightarrow 2 \mathrm{I}=\int_{0}^{a} \mathrm{f}(x)\{\mathrm{g}(x)+\mathrm{g}(\mathrm{a}-x)\} \mathrm{d}x\)
\(\Rightarrow 2 \mathrm{I}=\int_{0}^{a} \mathrm{f}(x)\{4\} d x \text { as, }\{\mathrm{g}(x)=\mathrm{g}(\mathrm{a}-x)=4\}\)
\(\Rightarrow \mathrm{I}=\frac{1}{2} \int_{0}^{a} \mathrm{f}(x) \times 4 d x\)
\(\Rightarrow \mathrm{I}=2 \cdot \int_{0}^{a} \mathrm{f}(x) d x\)
20. The value of \( \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}\left(x^{3}+x \cos x+\tan ^{5} x+1\right) d x \) is
A. 0 B. 2 C. \( \pi \) D. 1
Answer
Given: \( \int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}\left(x^{3}+x \cos x+\tan ^{5} x+1\right) d x \)
Let, \( \mathrm{I}=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}\left(x^{3}+x \cos x+\tan ^{5} x+1\right) d x \)
\(\Rightarrow \mathrm{I}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^{3}\right) d x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(x \cos x) d x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\)\(\left(\tan ^{5} x\right) d x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(1) d x\)
It is also known that if \( f(x) \) is an even function then,
\(\left\{\int_{-\mathrm{a}}^{\mathrm{a}} \mathrm{f}(x) \mathrm{d}x=2 \int_{-\mathrm{a}}^{\mathrm{a}} \mathrm{f}(x) \mathrm{d}x\right\}\)
It is also known that if \( f(x) \) is an odd function then,
\(\Rightarrow \mathrm{I}=0+0+0+2 \cdot \int_{0}^{\frac{\pi}{2}}(1) d x\left\{\int_{-\mathrm{a}}^{\mathrm{a}} \mathrm{f}(x) \mathrm{d}x=0\right\}\)
\(\Rightarrow \mathrm{I}=2 \cdot[x]_{0}^{\frac{\pi}{2}}\)
\(\Rightarrow \mathrm{I}=2 \cdot \frac{\pi}{2}\)
\(\Rightarrow \mathrm{I}=\pi\)
21. The value of \( \int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x \) is
A. 2 B. \( \frac{3}{4} \) C. 0 D. \(-2\)
Answer
Given: \( \int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x \)
Let, \( \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x \quad\ldots \text{(1)}\)
as, \( \left\{\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x\right\} \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \sin \left(\frac{\pi}{2}-x\right)}{4+3 \cos \left(\frac{\pi}{2}-x\right)}\right) d x \)
\( \Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \log \left(\frac{4+3 \cos x}{4+3 \sin }\right) d x \quad\ldots \text{(2)}\)
Adding (1) and (2), we get
\(2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}}\left\{\log \left(\frac{4+3 \sin x}{4+3 \cos x}\right)+\left(\frac{4+3 \cos x}{4+3 \sin }\right)\right\} d x\)
\(\Rightarrow 2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}}\left(\log \frac{4+3 \sin x}{4+3 \cos x} \times \frac{4+3 \cos x}{4+3 \sin }\right) d x\)
\(\Rightarrow 2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \log 1 d x\)
\(\Rightarrow 2 \mathrm{I}=\int_{0}^{\frac{\pi}{2}} 0 \cdot d x\)
\(\Rightarrow \mathrm{I}=0\)
ex 7.11 class 12 maths ncert solutions || integrals class 12 ncert solutions || class 12 maths exercise 7.11 || exercise 7.11 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.11
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top