Class 11 Maths Ch 1 Miscellaneous Exercise Solutions

Class 11 maths ch 1 miscellaneous exercise solutions | class 11 maths chapter 1 miscellaneous exercise​ | sets class 11 ncert solutions | ncert solution for class 11 maths chapter 1 | ncert exemplar class 11 maths

Looking for NCERT Class 11 Maths Chapter 1 Miscellaneous Exercise solutions? You’re in the right spot! This section provides complete, step-by-step solutions to all the questions in the Miscellaneous Exercise of Chapter 1 – Sets. These problems combine all key concepts from the chapter, including union, intersection, complements, and Venn diagram-based problems, offering a thorough revision of the entire chapter. Ideal for exam preparation and concept reinforcement, these Class 11 Maths NCERT solutions will help you tackle complex questions with confidence. View or download the solutions now and ace your understanding of sets!

class 11 maths ch 1 miscellaneous exercise solutions
ncert exemplar class 11 maths || ncert solution for class 11 maths chapter 1 || class 11 maths ch 1 miscellaneous exercise solutions || sets class 11 ncert solutions || class 11 maths chapter 1 miscellaneous exercise​
Download the Math Ninja App Now

Miscellaneous Exercise

1. Decide, among the following sets, which sets are subsets of one and another:
\( A=\{x: x \in R \) and \( x \) satisfy \( x 2-8 x+12=0\} \),
\( B=\{2,4,6\}, C=\{2,4,6,8, \ldots\}, D=\{6\} \)
Answer
\( A=\{x: x \in R \) and \( x \) satisfies \( x 2-8 x+12=0\} \)
2 and 6 are the only solutions of \( x 2-8 x+12=0 \).
\(\therefore A=\{2,6\}\)
\(B=\{2,4,6\}, C=\{2,4,6,8 \ldots\}, D=\{6\}\)
\(\therefore D \subset A \subset B \subset C\)
Hence, \( \mathrm{A} \subset \mathrm{B}, \mathrm{A} \subset \mathrm{C}, \mathrm{B} \subset \mathrm{C}, \mathrm{D} \subset \mathrm{A}, \mathrm{D} \subset \mathrm{B}, \mathrm{D} \subset \mathrm{C} \)

2. In each of the following, determine whether the statement is true or false. If it is true, prove it. If it is false, give an example:

(i) If \( x \in A \) and \( A \in B \), then \( x \in B \)
Answer
False
Let \( \mathrm{A}=\{1,2\} \) and \( \mathrm{B}=\{1,\{1,2\},\{3\}\} \)
Now,
\( 2 \in\{1,2\} \) and \( \{1,2\} \in\{\{3\}, 1,\{1,2\}\} \)
\( \therefore \mathrm{A} \in \mathrm{B} \)
However,
\( 2 \notin \{\{3\}, 1\{1,2\}\} \)
ncert exemplar class 11 maths || ncert solution for class 11 maths chapter 1 || class 11 maths ch 1 miscellaneous exercise solutions || sets class 11 ncert solutions || class 11 maths chapter 1 miscellaneous exercise​
Download the Math Ninja App Now
(ii) If \( A \subset B \) and \( B \in C \), then \( A \in C \)
Answer
False
Let
\( A=\{2\}, B=\{0,2\} \), and \( C=\{1,\{0,2\}, 3\} \)
As \( \mathrm{A} \subset \mathrm{B} \)
\( B \in C \)
However, \( \mathrm{A} \notin \mathrm{C} \)
(iii) If \( \mathrm{A} \subset \mathrm{B} \) and \( \mathrm{B} \subset \mathrm{C} \), then \( \mathrm{A} \subset \mathrm{C} \)
Answer
True
Let \( \mathrm{A} \subset \mathrm{B} \) and \( \mathrm{B} \subset \mathrm{C} \).
Let \( x \in \mathrm{A} \)
\(=x \in \mathrm{B}[\mathrm{A} \subset \mathrm{B}]\)
\(=x \in \mathrm{C}[\mathrm{B} \subset \mathrm{C}]\)
\(\therefore \mathrm{A} \subset \mathrm{C}\)
(iv) If \( \mathrm{A} \not \subset \mathrm{B} \) and \( \mathrm{B} \not \subset \mathrm{C} \), then \( \mathrm{A} \not \subset \mathrm{C} \)
Answer
False
\( A=\{1,2\}, B=\{0,6,8\} \) and \( C=\{0,1,2,6,9\} \)
\( \mathrm{A} \not \subset \mathrm{B} \) and \( \mathrm{B} \not \subset \mathrm{C} \)
Let
Accordingly,
However, \( \mathrm{A} \subset \mathrm{C} \)
(v) If \( x \in A \) and \( A \not \subset B \), then \( x \in B \)
Answer
False
Let \( \mathrm{A}=\{3,5,7\} \) and \( \mathrm{B}=\{3,4,6\} \)
Now, \( 5 \in \mathrm{A} \) and \( \mathrm{A} \not \subset \mathrm{B} \)
However, \( 5 \notin \mathrm{B} \)
(vi) If \( A \subset B \) and \( x \notin B \), then \( x \notin A \)
Answer
True
Let \( \mathrm{A} \subset \mathrm{B} \) and \( x \notin \mathrm{B} \).
To show: \( x \notin \mathrm{A} \)
If possible, suppose \( x \in A \).
Then, \( x \in B \), which is a contradiction as \( x \notin B \)
\(\therefore x \notin \mathrm{A}\)
ncert exemplar class 11 maths || ncert solution for class 11 maths chapter 1 || class 11 maths ch 1 miscellaneous exercise solutions || sets class 11 ncert solutions || class 11 maths chapter 1 miscellaneous exercise​
Download the Math Ninja App Now
3. Let \( \mathrm{A}, \mathrm{B} \), and C be the sets such that \( \mathrm{A} \cup \mathrm{B}=\mathrm{A} \cup \mathrm{C} \) and \( \mathrm{A} \cap \mathrm{B}= \) \( A \cap C \). Show that \( B=C \).
Answer
Let, \( \mathrm{A}, \mathrm{B} \) and C be the sets such that.
To show: \( \mathrm{B}=\mathrm{C} \)
Let \( x \in \mathrm{B} \)
\(=x \in \mathrm{A} \cup \mathrm{B}[\mathrm{B} \subset \mathrm{A} \cup \mathrm{B}]\)
\(=x \in \mathrm{A} \cup \mathrm{C}[\mathrm{A} \cup \mathrm{B}=\mathrm{A} \cup \mathrm{C}]\)
\(=x \in \mathrm{A} \text { or } x \in \mathrm{C}\)
Case 1 x \( \in \) A
Also, \( x \in B \)
\( \therefore x \in \mathrm{A} \) and \( x \in \mathrm{C} \)
\( \therefore x \in \mathrm{C} \)
\( \therefore \mathrm{B} \subset \mathrm{C} \)
Similarly, we can show that \( \mathrm{C} \subset \mathrm{B} \).
\( \therefore \mathrm{B}=\mathrm{C} \)
4. Show that the following four conditions are equivalent:
(i) \( \mathrm{A} \subset \mathrm{B} \) (ii) \( \mathrm{A}-\mathrm{B}=\phi \) (iii) \( \mathrm{A} \cup \mathrm{B}=\mathrm{B} \)
(iv) \( \mathrm{A} \cap \mathrm{B}=\mathrm{A} \)
Answer
First, we have to show that (i) \( \Leftrightarrow \) (ii).
Let \( \mathrm{A} \subset \mathrm{B} \)
To show: \( \mathrm{A}-\mathrm{B} \neq \phi \)
If possible, suppose \( A-B \neq \phi \)
This means that there exists \( x \in A, x \neq B \), which is not possible as \( A \subset \) B.
\( \therefore \mathrm{A}-\mathrm{B}=\phi \)
\( \therefore \mathrm{A} \subset \mathrm{B} \Rightarrow \mathrm{A}-\mathrm{B}=\phi \)
Let \( \mathrm{A}-\mathrm{B}=\phi \)
To show: \( \mathrm{A} \subset \mathrm{B} \)
Let \( x \in \mathrm{A} \)
Clearly, \( x \in B \) because if \( x \notin B \), then \( A-B \neq \phi \)
\( \therefore \mathrm{A}-\mathrm{B}=\phi \Rightarrow \mathrm{A} \subset \mathrm{B} \)
\( \therefore \) (i) \( \Leftrightarrow \) (ii)
Let \( \mathrm{A} \subset \mathrm{B} \)
To show: \( \mathrm{A} \cup \mathrm{B}=\mathrm{B} \)
Clearly, \( \mathrm{B} \subset \mathrm{A} \cup \mathrm{B} \)
Let \( x \in \mathrm{A} \cup \mathrm{B} \)
\( =x \in \mathrm{A} \) or \( x \in \mathrm{B} \)
Case I: \( x \in A \)
\( x \in B[A \subset B] \)
\( A \cup B \subset B \)
Case II: \( x \in B \)
Then, \( \mathrm{A} \cup \mathrm{B}=\mathrm{B} \)
Conversely, let
Let \( x \in \mathrm{A} \)
\( =x \in A \cup B \)
\( =x \in \mathrm{B} \)
\( \mathrm{A} \subset \mathrm{B} \)
Hence, (i) \( \Leftrightarrow \) (iii)
Now, we have to show that (i) \( \Leftrightarrow \) (iv).
Let \( \mathrm{A} \subset \mathrm{B} \)
Clearly
Let \( x \in \mathrm{A} \)
We have to show that
As \( \mathrm{A} \subset \mathrm{B}, x \in \mathrm{B} \)
Hence, \( A=A \cap B \)
Conversely, suppose \( A \cap B=A \)
Let \( x \in \mathrm{A} \)
\(\Rightarrow x \in \mathrm{A} \cap \mathrm{B}\)
\(\Rightarrow x \in \mathrm{A} \text { and } x \in \mathrm{B}\)
\(\Rightarrow x \in \mathrm{B}\)
\(\therefore \mathrm{A} \subset \mathrm{B}\)
Hence, (i) \( \Leftrightarrow \) (iv).
5. Show that if \( \mathrm{A} \subset \mathrm{B} \), then \( \mathrm{C}-\mathrm{B} \subset \mathrm{C}-\mathrm{A} \).
Answer
Let \( \mathrm{A} \subset \mathrm{B} \)
To show: \( \mathrm{C}-\mathrm{B} \subset \mathrm{C}-\mathrm{A} \)
Let \( x \in \mathrm{C}-\mathrm{B} \)
\( \Rightarrow x \in \mathrm{C} \) and \( x \notin \mathrm{B} \)
\( \Rightarrow x \in \mathrm{C} \) and \( x \notin \mathrm{A}[\mathrm{A} \subset \mathrm{B}] \)
\( \Rightarrow x \in \mathrm{C}-\mathrm{A} \)
\( \therefore \mathrm{C}-\mathrm{B} \subset \mathrm{C}-\mathrm{A} \)
6. Assume that \( P(A)=P(B) \). Show that \( A=B \)
Answer
Let \( \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B}) \)
To show: \( \mathrm{A}=\mathrm{B} \)
Let \( x \in \mathrm{A} \)
\( \mathrm{A} \in \mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B}) \)
\( \therefore x \in \mathrm{C} \), for some \( \mathrm{C} \in \mathrm{P}(\mathrm{B}) \)
Now, \( \mathrm{C} \subset \mathrm{B} \)
\( \therefore x \in \mathrm{B} \)
\( \therefore \mathrm{A} \subset \mathrm{B} \)
Similarly, B \( \subset \mathrm{A} \)
\( \therefore \mathrm{A}=\mathrm{B} \)
7. Is it true that for any sets A and \( \mathrm{B}, \mathrm{P}(\mathrm{A}) \cup \mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \) ? Justify your answer.
Answer
False
Let \( \mathrm{A}=\{0,1\} \) and \( \mathrm{B}=\{1,2\} \)
\(\begin{array}{l}
\therefore A \cup B=\{0,1,2\} \\
P(A)=\{\phi,\{0\},\{1\},\{0,1\}\} \\
P(B)=\{\phi,\{1\},\{2\},\{1,2\}\} \\
P(A \cup B)=\{\phi,\{0\},\{1\},\{2\},\{0,1\},\{1,2\},\{0,2\},\{0,1,2\}\} \\
P(A) \cup P(B)=\{\phi,\{0\},\{1\},\{0,1\},\{2\},\{1,2\}\} \\
\therefore P(A) \cup P(B) \neq P(A \cup B)
\end{array}\)
8. Show that for any sets \( A \) and \( B \),
\(A=(A \cap B) \cup(A-B) \text { and } A \cup(B-A)=(A \cup B)\)
Answer
To show: \( A=(A \cap B) \cup(A-B) \)
Let \( x \in \mathrm{A} \)
We have to show that \( x \in(A \cap B) \cup(A-B) \) Case I \( x \in A \cap B \)
Then, \( x \in(A \cap B) \subset(A \cup B) \cup(A-B) \) Case II \( x \notin A \cap B \)
\( \Rightarrow x \notin \mathrm{A} \) or \( x \notin \mathrm{B} \)
\( \therefore x \notin \mathrm{B}[x \notin \mathrm{A}] \)
\( \therefore x \notin \mathrm{A}-\mathrm{B} \subset(\mathrm{A} \cup \mathrm{B}) \cup(\mathrm{A}-\mathrm{B}) \)
\( \therefore \mathrm{A} \subset(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A}-\mathrm{B}) \ldots (1)\)
It is clear that
\( \mathrm{A} \cap \mathrm{B} \subset \mathrm{A} \) and \( (\mathrm{A}-\mathrm{B}) \subset \mathrm{A} \)
\( \therefore(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A}-\mathrm{B}) \subset \mathrm{A} \ldots (2)\)
From (1) and (2), we obtain
\(A=(A \cap B) \cup(A-B)\)
To prove: \( \mathrm{A} \cup(\mathrm{B}-\mathrm{A}) \subset \mathrm{A} \cup \mathrm{B} \)
Let \( x \in \mathrm{A} \cup(\mathrm{B}-\mathrm{A}) \)
\(\begin{array}{l}
\Rightarrow x \in A \text { or } x \in(B-A) \\
\Rightarrow x \in A \text { or }(x \in B \text { and } x \notin A) \\
\Rightarrow(x \in A \text { or } x \in B) \text { and }(x \in A \text { or } x \notin A) \\
\Rightarrow x \in(A \cup B) \\
\therefore A \cup(B-A) \subset(A \cup B) \ldots(3)
\end{array}\)
Next, we show that \( (A \cup B) \subset A \cup(B-A) \).
Let \( y \in A \cup B \)
\(\Rightarrow y \in A \text { or } y \in B\)
\(\Rightarrow(y \in A \text { or } y \in B) \text { and }(y \in A \text { or } y \notin A)\)
\(\Rightarrow y \in A \text { or }(y \in B \text { and } y \notin A)\)
\(\Rightarrow y \in A \cup(B-A)\)
\(\therefore A \cup B \subset A \cup(B-A) \ldots(4)\)
Hence, from (3) and (4), we obtain \( A \cup(B-A)=A \cup B \).

9. Using properties of sets, show that:

ncert exemplar class 11 maths || ncert solution for class 11 maths chapter 1 || class 11 maths ch 1 miscellaneous exercise solutions || sets class 11 ncert solutions || class 11 maths chapter 1 miscellaneous exercise​
Download the Math Ninja App Now
(i) \( \mathrm{A} \cup(\mathrm{A} \cap \mathrm{B})=\mathrm{A} \)
Answer
To show: \( \mathrm{A} \cup(\mathrm{A} \cap \mathrm{B})=\mathrm{A} \)
We know that
\( \mathrm{A} \subset \mathrm{A} \)
\( \mathrm{A} \cap \mathrm{B} \subset \mathrm{A} \)
\( \therefore \mathrm{A} \cup(\mathrm{A} \cap \mathrm{B}) \subset \mathrm{A} \ldots(1) \)
Also, \( \mathrm{A} \subset \mathrm{A} \cup(\mathrm{A} \cap \mathrm{B}) \ldots(2) \)
\( \therefore \) From (1) and (2), \( \mathrm{A} \cup(\mathrm{A} \cap \mathrm{B})=\mathrm{A} \)
(ii) \( \mathrm{A} \cap(\mathrm{A} \cup \mathrm{B})=\mathrm{A} \).
Answer
To show: \( \mathrm{A} \cap(\mathrm{A} \cup \mathrm{B})=\mathrm{A} \)
\( A \cap(A \cup B)=(A \cap A) \cup(A \cap B) \)
\( =A \cup(A \cap B) \)
\( =\mathrm{A}\{ \) from \( (1)\} \)
10. Show that \( A \cap B=A \cap C \) need not imply \( B=C \).
Answer
Let \( \mathrm{A}=\{0,1\}, \mathrm{B}=\{0,2,3\} \), and \( \mathrm{C}=\{0,4,5\} \)
Accordingly, \( \mathrm{A} \cap \mathrm{B}=\{0\} \) and \( \mathrm{A} \cap \mathrm{C}=\{0\} \)
Here, \( \mathrm{A} \cap \mathrm{B}=\mathrm{A} \cap \mathrm{C}=\{0\} \)
However, \( \mathrm{B} \neq \mathrm{C}[2 \in \mathrm{B} \) and \( 2 \notin \mathrm{C}] \)
11. Let \( A \) and \( B \) be sets. If \( A \cap X=B \cap X=f \) and \( A \cup X=B \cup X \) for some set X , show that \( \mathrm{A}=\mathrm{B} \).
(Hints \( \mathrm{A}=\mathrm{A} \cap(\mathrm{A} \cup x), \mathrm{B}=\mathrm{B} \cap(\mathrm{B} \cup x) \) and use Distributive law)
Answer
Let \( A \) and \( B \) be two sets such that \( A \cap X=B \cap X=f \) and \( A \cup X=B \cup X\) for
some set X .
To show: \( \mathrm{A}=\mathrm{B} \)
It can be seen that
\(A=A \cap(A \cup X)=A \cap(B \cup X)[A \cup X=B \cup X]\)
\(=(A \cap B) \cup(A \cap X)[\text { Distributive law }]\)
\(=(A \cap B) \cup \phi[A \cap X=\phi]\)
\(=A \cap B \ldots \ldots (1) \)
Now, \( B=B \cap(B \cup X) \)
\(=B \cap(A \cup X)[A \cup X=B \cup X]\)
\(=(B \cap A) \cup(B \cap X) \text { [Distributive law] }\)
\(=(B \cap A) \cup \phi[B \cap X=\phi]\)
\(=\mathrm{B} \cap \mathrm{A}\)
\(=A \cap B \ldots \ldots (2) \)
Hence, from (1) and (2), we obtain \( \mathrm{A}=\mathrm{B} \).
12. Find sets \( A, B \) and \( C \) such that \( A \cap B, B \cap C \) and \( A \cap C \) are non-empty sets and \( A \cap B \cap C=f \).
Answer
Let \( A=\{0,1\}, B=\{1,2\} \), and \( C=\{2,0\} \).
Accordingly, \( \mathrm{A} \cap \mathrm{B}=\{1\}, \mathrm{B} \cap \mathrm{C}=\{2\} \), and \( \mathrm{A} \cap \mathrm{C}=\{0\} \).
\( \therefore \mathrm{A} \cap \mathrm{B}, \mathrm{B} \cap \mathrm{C} \), and \( \mathrm{A} \cap \mathrm{C} \) are non-empty.
However, \( \mathrm{A} \cap \mathrm{B} \cap \mathrm{C}=\phi \)
13. In a survey of 600 students in a school, 150 students were found to be taking tea and 225 taking coffee, 100 were taking both tea and coffee. Find how many students were taking neither tea nor coffee?
Answer
Let \( U \) be the set of all students who took part in the survey.
Let T be the set of students taking tea.
Let C be the set of students taking coffee.
Accordingly, \( \mathrm{n}(\mathrm{U})=600, \mathrm{n}(\mathrm{T})=150, \mathrm{n}(\mathrm{C})=225, \mathrm{n}(\mathrm{T} \cap \mathrm{C})=100 \)
To find: Number of student taking neither tea nor coffee i.e., we have to find \( n\left(T^{\prime} \cap C^{\prime}\right) \).
\(\begin{array}{l}
n\left(T^{\prime} \cap C^{\prime}\right)=n(T \cup C)^{\prime} \\
=n(U)-n(T \cup C) \\
=n(U)-[n(T)+n(C)-n(T \cap C)] \\
=600-[150+225-100] \\
=600-275 \\
=325
\end{array}\)
Hence, 325 students were taking neither tea nor coffee.
14. In a group of students, 100 students know Hindi, 50 know English and 25 know both. Each of the students knows either Hindi or English. How many students are there in the group?
Answer
Let \( U \) be the set of all students in the group.
Let \( E \) be the set of all students who know English.
Let H be the set of all students who know Hindi.
\( \therefore \mathrm{H} \cup \mathrm{E}=\mathrm{U} \)
Accordingly, \( \mathrm{n}(\mathrm{H})=100 \) and \( \mathrm{n}(\mathrm{E})=50 \)
\( n(H \cup E)=n(H)+n(E)-n(H \cap E) \)
\( =100+50-25 \)
\( =125 \)
Hence, there are 125 students in the group.
15. In a survey of 60 people, it was found that 25 people read newspaper H, 26 read newspaper T, 26 read newspaper I, 9 read both \( H \) and I, 11 read both H and T, 8 read both T and I, 3 read all three newspapers. Find:
(i) The number of people who read at least one of the newspapers.
(ii) The number of people who read exactly one newspaper.
Answer
Let \( A \) be the set of people who read newspaper H. Let B be the set of people
who read newspaper T. Let C be the set of people who read newspaper I.
Accordingly,
\(n(A)=25, n(B)=26, n(C)=26, n(A \cap C)=9, n(A \cap B)=11\)
\(n(B \cap C)=8, n(A \cap B \cap C)=3\)
Let \( U \) be the set of people who took part in the survey.
(i) Accordingly,
\( \mathrm{n}(\mathrm{A} \mathrm{B} \mathrm{C})=\mathrm{n}(\mathrm{A})+\mathrm{n}(\mathrm{B})+\mathrm{n}(\mathrm{C})-\mathrm{n}(\mathrm{A} \cap \mathrm{B})-\mathrm{n}(\mathrm{B} \cap \mathrm{C})-\mathrm{n}(\mathrm{C} \cap \mathrm{A})+ \) \( \mathrm{n}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=25+26+26-11-8-9+3=52 \)
Hence, 52 people read at least one of the newspapers.
(ii) Let a be the number of people who read newspapers H and T only.

Let b denote the number of people who read newspapers I and H only.
Let c denote the number of people who read newspapers T and I only.
Let \( d \) denote the number of people who read all three newspapers.
Accordingly, \( d=n(A \cap B \cap C)=3 \)
Now, \( n(A \cap B)=a+d \)
\( \mathrm{n}(\mathrm{B} \cap \mathrm{C})=\mathrm{c}+\mathrm{d} \)
\( \mathrm{n}(\mathrm{C} \cap \mathrm{A})=\mathrm{b}+\mathrm{d} \)
\(\therefore \mathrm{a}+\mathrm{d}+\mathrm{c}+\mathrm{d}+\mathrm{b}+\mathrm{d}=11+8+9=28\)
\(\Rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=28-2 \mathrm{~d}=28-6=22\)
Hence, \( (52-22)=30 \) people read exactly one newspaper.
16. In a survey it was found that 21 people liked product A, 26 liked product B and 29 liked product C. If 14 people liked products A and B , 12 people liked products C and \( \mathrm{A}, 14 \) people liked products B and C and 8 liked all the three products. Find how many liked product C only.
Answer
Let \( \mathrm{A}, \mathrm{B} \), and C be the set of people who like product A , product B , and productC respectively.
Accordingly, \( \mathrm{n}(\mathrm{A})=21, \mathrm{n}(\mathrm{B})=26, \mathrm{n}(\mathrm{C})=29, \mathrm{n}(\mathrm{A} \cap \mathrm{B})=14, \mathrm{n}(\mathrm{C} \cap \mathrm{A})=12, \)
\(\mathrm{n}(\mathrm{B} \cap \mathrm{C})=14, \mathrm{n}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=8 \)
The Venn diagram for the given problem can be drawn as

It can be seen that number of people who like product C only is \( \{29-(4+8+6)\}=11 \)
ncert exemplar class 11 maths || ncert solution for class 11 maths chapter 1 || class 11 maths ch 1 miscellaneous exercise solutions || sets class 11 ncert solutions || class 11 maths chapter 1 miscellaneous exercise​
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top