Class 12 maths chapter 2 miscellaneous exercise solutions | class 12 maths ncert solutions chapter 2 miscellaneous exercise | inverse trigonometric functions class 12 ncert solutions
If you are a Class 12 student looking for reliable and detailed help with Maths, our Class 12 Maths Chapter 2 Miscellaneous Exercise Solutions are just what you need. This chapter focuses on Inverse Trigonometric Functions, an important topic not just for board exams but also for competitive exams like JEE. The Class 12 Maths NCERT Solutions Chapter 2 Miscellaneous Exercise includes all the tricky and challenging questions that are often asked in exams, explained in a simple and easy-to-follow manner. Each solution is provided with clear steps and reasoning to help you understand the logic behind every answer. These Inverse Trigonometric Functions Class 12 NCERT Solutions are prepared by subject experts and follow the latest CBSE guidelines. Whether you are revising the chapter, completing homework, or preparing for your exams, these solutions will give you the clarity and confidence needed to master the topic.

class 12 maths chapter 2 miscellaneous exercise solutions || inverse trigonometric functions class 12 ncert solutions || class 12 maths ncert solutions chapter 2 miscellaneous exercise
Miscellaneous Exercise
\( \operatorname{Cos}^{-1}\left(\cos \frac{13 \pi}{6}\right) \)
(For co\({s}^{-1}\) \( (\cos x) \) type of problem we have to always check whether the angle is in the principal range or not. This angle must be in the principal range. \( [0, \pi]) \)
So here, \( \frac{13 \pi}{6} \notin[0, \pi] \)
Now, \( \cos ^{-1}\left(\cos \frac{13 \pi}{6}\right) \) can be written as,
\( \operatorname{Cos}^{-1}\left(\cos \frac{13 \pi}{6}\right) \)
\( =\cos ^{-1}\left[\cos \left(2 \pi+\frac{\pi}{6}\right)\right] \)
\( =\cos ^{-1}\left(\cos \frac{\pi}{6}\right) \) where \( \frac{\pi}{6} \in[0, \pi] \)
\( =\frac{\pi}{6} \)
Hence, \( \cos ^{-1}\left(\cos \frac{13 \pi}{6}\right)=\frac{\pi}{6} \)
\(
\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)
\)
\tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)
\)
(For \( \tan ^{-1}(\tan x) \) type of problem we have to always check whether the angle is in the principal range or not. This angle must be in the principal range. \( \left.\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right) \)
So here, \( \frac{7 \pi}{6} \notin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \)
Now, \( \tan ^{-1}\left(\tan \frac{7 \pi}{6}\right) \) can be written as,
\( =\tan ^{-1}\left[\tan \left(\pi+\frac{\pi}{6}\right)\right] \)
\( =\tan ^{-1}\left(\tan \frac{\pi}{6}\right) \)
where, \( \frac{\pi}{6} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \)
[since, \( \tan (\pi+x)=\tan x] \)
\( =\frac{\pi}{6} \)
Hence, \( \tan ^{-1}\left(\tan \frac{7 \pi}{6}\right)=\frac{\pi}{6} \)
\( 2 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7} \)
Let
\( \sin ^{-1} \frac{3}{5}=x \)
Then,
\( \operatorname{Sin} x=\frac{3}{5} \)
Therefore,
\( \tan x=\frac{3}{\sqrt{5^{2}-3^{2}}}=\frac{3}{\sqrt{25-9}} \)
\( \therefore \tan x=\frac{3}{4}=x=\tan ^{-1} \frac{3}{4} \)
\( =\sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{3}{4} \ldots (1)\)
and
\( 2 \sin ^{-1} \frac{3}{5}=2 \tan ^{-1} \frac{3}{4} \)
Now, we know
\( 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) \)
\( =2 \tan ^{-1} \frac{3}{4}=\tan ^{-1}\left(\frac{2 \times \frac{3}{4}}{1-\left(\frac{3}{4}\right)^{2}}\right) \)
\( =\tan ^{-1}\left(\frac{\frac{3}{2}}{1-\frac{9}{16}}\right) \)
\( =\tan ^{-1}\left(\frac{\frac{3}{2}}{\frac{7}{16}}\right) \)
\( =\tan ^{-1} \frac{24}{7} \)
As, LHS = RHS
Hence Proved!
\( \operatorname{Sin}^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{77}{36} \)
\( \operatorname{Sin}^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{77}{36} \)
\( \operatorname{Sin}^{-1}\left(\frac{8}{17}\right)=x \)
\( \operatorname{Sin} x=\frac{8}{17} \)
\( \operatorname{Cos} x=\sqrt{1-\left(\frac{8}{17}\right)^{2}} \)
\( =\sqrt{\frac{225}{289}} \)
\( =\frac{15}{17} \)
\( \therefore \tan x=\frac{8}{15}=x=\tan ^{-1} \frac{8}{15} \)
\( =\sin ^{-1} \frac{8}{17}=\tan ^{-1} \frac{8}{15} \ldots (1) \)
Let \( \sin -1 \frac{3}{5}=y \)
Then, \( \sin y=\frac{3}{5} \)
\( =\cos y=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\frac{4}{5} \)
\( =\tan y=\frac{3}{4}=y=\tan ^{-1} \frac{3}{4} \)
\( =\sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{3}{4} \ldots (2) \)
Now,
L.H.S. \( =\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5} \)
\( =\tan ^{-1} \frac{8}{15}+\tan ^{-1} \frac{3}{4} \) putting the value from equation (1) and (2)
\( =\tan ^{-1} \frac{\frac{8}{15}+\frac{3}{4}}{1-\frac{8}{15} \times \frac{3}{4}}\left[\right. \) since, tan\( \left.{ }^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1-x y}\right] \)
\( =\tan ^{-1} \frac{32+45}{60-24} \)
\( =\tan ^{-1} \frac{77}{36} \)
\( = \) R.H.S
Hence proved.
class 12 maths chapter 2 miscellaneous exercise solutions || inverse trigonometric functions class 12 ncert solutions || class 12 maths ncert solutions chapter 2 miscellaneous exercise
\( \operatorname{Cos}^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}=\cos ^{-1} \frac{33}{65} \)
Let \( \cos ^{-1} \frac{4}{5}=x \)
Then, \( \cos x=\frac{4}{5} \)
\( =\sin x=\sqrt{1-\left(\frac{4}{5}\right)^{2}}=\frac{3}{5} \)
\( =\tan x=\frac{3}{4}=x=\tan ^{-1} \frac{3}{4} \)
\( =\cos ^{-1} \frac{4}{3}=\tan ^{-1} \frac{3}{4} \ldots \) (1)
Let, \( \cos ^{-1} \frac{12}{13}=y \)
Then \( \cos y=\frac{12}{13} \)
\( =\sin y=\sqrt{1-\left(\frac{12}{13}\right)^{2}}=\frac{5}{13} \)
\( =\tan y=\frac{5}{12}=y=\tan ^{-1} \frac{5}{12} \)
\( =\cos ^{-1} \frac{12}{13}=\tan ^{-1} \frac{5}{12} \ldots (2)\)
Let, \( \cos ^{-1} \frac{33}{65}=z \)
Then, \( \cos z=\frac{33}{65} \)
\( =\sin z=\sqrt{1-\left(\frac{33}{65}\right)^{2}}=\frac{56}{65} \)
\( \tan z=\frac{56}{33}=y=\tan -1 \frac{56}{33} \)
\( =\cos -1 \frac{33}{65}=\tan -1 \frac{56}{33} \ldots (3)\)
Now,
L.H.S. \( =\cos -1 \frac{4}{5}+\cos ^{-1} \frac{12}{13} \)
\( =\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{5}{12} \) putting the value from the equation \( (1) \) and \( (2) \)
\( =\tan ^{-1} \frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4} \times \frac{5}{12}}\left[\right. \) since, tan \( \left.{ }^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1-x y}\right] \)
\( =\tan ^{-1} \frac{36+20}{48-15} \)
\( =\tan ^{-1} \frac{56}{33} \ldots \) by equation \( (3) \)
\( = \) R.H.S.
Hence, proved.
\(
\cos ^{-1} \frac{12}{13}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{56}{65}
\)
\cos ^{-1} \frac{12}{13}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{56}{65}
\)
We can also solve this problem by using the identity \( \operatorname{Sin}(A+B)=\sin A \) \( \operatorname{Cos} \mathrm{B}+\cos \mathrm{A} \operatorname{Sin} \mathrm{B} \)
Let, \( \sin -1 \frac{3}{5}=A \) and \( \cos -1 \frac{12}{13}=B \)
So,
\( \sin A=\frac {3} {5} \) and \( \cos B= \frac{12}{13} \) Therefore, \( \cos A=\frac{4} {5} \) and \( \sin B=\frac {5} {13} \)
As R.H.S. is sin-1 we will use \( \sin (\mathrm{A}+\mathrm{B}) \)
\(
\begin{array}{l}
=\sin (\mathrm{A}+\mathrm{B})=\sin \mathrm{A} \operatorname{Cos} \mathrm{B}+\cos \mathrm{A} \operatorname{Sin} \mathrm{B} \\
=\frac{3}{5} \times \frac{12}{13}+\frac{4}{5} \times \frac{5}{13}=\frac{36}{65}+\frac{20}{65} \\
=\frac{56}{65}
\end{array}
\)
Thus, \( \mathrm{A}+\mathrm{B}=\sin ^{-1} \frac{56}{65} \)
\( = \) R.H.S.
Hence Proved.
\(
\tan ^{-1} \frac{63}{16}=\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}
\)
\tan ^{-1} \frac{63}{16}=\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}
\)
let, \( \sin ^{-1} \frac{5}{13}=x \) then, \( \sin x=\frac{5}{13} \)
\( =\cos x=\sqrt{1-\left(\frac{5}{13}\right)^{2}}=\frac{12}{13} \)
\( =\tan x=\frac{5}{12}=x=\tan ^{-1} \frac{5}{12} \)
\( =\sin ^{-1} \frac{5}{13}=\tan ^{-1} \frac{5}{12} \ldots (1)\)
Let, \( \cos ^{-1} \frac{3}{5}=y \). then, \( \cos y=\frac{3}{5} \)
\( =\sin y=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\frac{4}{5} \)
\( =\tan y=\frac{4}{3}=y=\tan ^{-1} \frac{4}{3} \)
\( =\cos ^{-1} \frac{3}{5}=\tan ^{-1} \frac{4}{3} \ldots (2)\)
Now,
R.H.S. \( =\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5} \)
\( =\tan ^{-1} \frac{5}{12}+\tan ^{-1} \frac{4}{3} \) putting the value from equation (1) and (2)
\( =\tan ^{-1} \frac{\frac{5}{12}+\frac{4}{3}}{1-\frac{5}{12} \times \frac{4}{3}}\left(\right. \) since, tan \( \left.{ }^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1-x y}\right) \)
\( =\tan ^{-1} \frac{15+48}{36-20} \)
\( =\tan ^{-1} \frac{63}{16} \)
\( = \) L.H.S.
Hence, proved.
\(
\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4}
\)
\( =\tan -1 \frac{\frac{1}{5}+\frac{1}{7}}{1-\frac{1}{5} \times \frac{1}{7}}+\tan -1 \frac{\frac{1}{3}+\frac{1}{8}}{1-\frac{1}{3} \times \frac{1}{38}} \quad\left[\text{Since}, {tan}^{-1} x-\tan ^{-1} y= \tan ^{-1} \frac{x-y}{1-x y}\right] \)
\( =\tan -1 \frac{7+5}{35-1}+\tan -1 \frac{8+3}{24-1} \)
\( =\tan ^{-1} \frac{12}{34}+\tan -1 \frac{11}{23} \)
\( =\tan ^{-1} \frac{6}{17}+\tan -1 \frac{11}{23} \)
\( =\tan ^{-1} \frac{\frac{6}{17}+\frac{11}{23}}{1-\frac{6}{17} \times \frac{11}{23}}\left[\right. \) since, \( \left.\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1-x y}\right] \)
\( =\tan ^{-1} \frac{138+187}{391-66} \)
\( =\tan ^{-1} \frac{325}{325}=\tan ^{-1}=\frac{\pi}{4} \)
\( = \) R.H.S.
Hence, proved.
\( \tan ^{-1} \sqrt{x}=\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right), x \in[0,1] \)
Let \( x=\tan 2 \theta \).Then, \( \sqrt{x}=\tan \theta \)
\( =\theta=\tan ^{-1} \sqrt{x} \)
\( \therefore \frac{1-x}{1+x}=\frac{1-\tan ^{2}}{1+\tan ^{2}}=\cos 2 \theta \)
So now putting the value, we get,
R.H.S. \( =\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right) \)
\( =\frac{1}{2} \cos ^{-1}(\cos 2 \theta)=\frac{1}{2} \times 2 \theta=\tan ^{-1} \sqrt{x} \)
\( = \) L.H.S.
\( \operatorname{Cot}^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)=\frac{x}{2}, x \in\left(0, \frac{\pi}{4}\right) \)
Consider, \( \left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right) \)
On Rationalizing, we get,
\( =\frac{(\sqrt{1+\sin x}+\sqrt{1-\sin x})^{2}}{(\sqrt{1+\sin x})^{2}-(\sqrt{1+\sin x})^{2}} \)
\( =\frac{(1+\sin x)+(1-\sin x)+2 \sqrt{(1+\sin x)(1-\sin x)}}{1+\sin x-1+\sin x} \)
\( =\frac{2\left(1+\sqrt{1-\sin ^{2} x}\right)}{2 \sin x}=\frac{1+\cos x}{\sin x}=\frac{2 \cos ^{2} \frac{x}{2}}{2 \sin{\frac{x}{2}} \cos \frac{x}{2}}=\cot \frac{x}{2} \)
Now,
L.H.S. \( =\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right) \)
\(
\begin{array}{l}
=\cot ^{-1}\left(\cot \frac{x}{2}\right)=\frac{x}{2} \\
=\text { R.H.S. }
\end{array}
\)
Hence Proved
\(
\tan -1\left(\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}\right)=\frac{\pi}{4}-\frac{1}{2} \cos -1 x
\)
\tan -1\left(\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}\right)=\frac{\pi}{4}-\frac{1}{2} \cos -1 x
\)
Let \( x=\cos 2 \theta \) so that \( \theta=\frac{1}{2} \cos -1 x \)
Now,
\(
\begin{array}{l}
\text { L.H.S. }=\tan -1\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) \\
=\tan -1\left(\frac{\sqrt{1+\cos 2 \theta}-\sqrt{1-\cos 2 \theta}}{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}\right) \\
=\tan ^{-1}\left(\frac{\sqrt{2 \cos ^{2} \theta}-\sqrt{2 \sin ^{2} \theta}}{\sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}}\right) \\
=\tan ^{-1}\left(\frac{\sqrt{2} \cos \theta-\sqrt{2} \sin \theta}{\sqrt{2} \cos \theta+\sqrt{2} \sin \theta}\right) \\
=\tan ^{-1}\left(\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}\right) \\
=\tan ^{-1}\left(\frac{1-\tan \theta}{1+\tan \theta}\right) \\
=\tan ^{-1} 1-\tan { }^{-1}(\tan \theta)=\frac{\pi}{4}-\theta \\
=\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x
\end{array}
\)
\( = \) R.H.S.
Hence Proved.
\(
\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}=\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3} \pi
\)
\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}=\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}
\)
Now, L.H.S. \( \frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3} \)
\(\begin{array}{l}
=\frac{9}{4}\left(\frac{\pi}{2}-si{n}^{-1} \frac{1}{3}\right) \\
=\frac{9}{4} \times \cos ^{-1} \frac{1}{3} \ldots \text { (1) }
\end{array}\)
Now, Let
\( \operatorname{Cos}^{-1} \frac{1}{3}=x \). \( \text{then }\cos x=\frac{1}{3}=\sin x=\sqrt{1-\left(\frac{1}{3}\right)^{3}}=\frac{2 \sqrt{2}}{3} \)
\( \therefore x=\sin ^{-1} \frac{2 \sqrt{2}}{3}=\cos ^{-1} \frac{1}{3}=\sin ^{-1} \frac{2 \sqrt{2}}{3} \)
L.H.S. \( =\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3} \)
\( = \) R.H.S.
Hence Proved
class 12 maths chapter 2 miscellaneous exercise solutions || inverse trigonometric functions class 12 ncert solutions || class 12 maths ncert solutions chapter 2 miscellaneous exercise
\(
2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)
\)
\(
\begin{array}{l}
2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x) \\
=\tan ^{-1}\left(\frac{2 \cos x}{1-\cos ^{2} x}\right)=\tan ^{-1}(2 \operatorname{cosec} x) \\
=\frac{2 \cos x}{1-\cos ^{2} x}=2 \operatorname{cosec} x \\
=\frac{2 \cos x}{\sin ^{2} x}=\frac{2}{\sin x}=\cos x=\sin x \\
=\tan x=1
\end{array}
\)
Hence, \( x=\frac{\pi}{4} \)
\(
\tan ^{-1} \frac{1-x}{1+x}=\frac{1}{2} \tan ^{-1} x,(x > 0)
\)
\tan ^{-1} \frac{1-x}{1+x}=\frac{1}{2} \tan ^{-1} x\)
\( \text{As we know,} \tan ^{-1}(x)-\tan ^{-1}(y)=\tan ^{-1}\left(\frac{x-y}{1+x y}\right) \)
\(
=\tan ^{-1} 1-\tan ^{-1} x=\frac{1}{2} \tan ^{-1} x
\)
We know, \( \tan \frac{\pi}{4}=1 \)
So, \( \tan ^{-1}(1)=\frac{\pi}{4} \)
\(
\begin{array}{l}
=\frac{\pi}{4}-\tan ^{-1}(x)=\frac{1}{2} \tan ^{-1}(x) \\
=\frac{\pi}{4}=\frac{3}{2} \tan ^{-1} x \\
=\tan ^{-1} x=\frac{\pi}{6} \\
=x=\tan \frac{\pi}{6}
\end{array}
\)
Hence,
\(
x=\frac{1}{\sqrt{3}}
\)
\( \operatorname{Sin}\left(\tan ^{-1} x\right),|x| < 1 \) is equal to
A. \( \frac{x}{\sqrt{1+x^{2}}} \)
B. \( \frac{1}{\sqrt{1-x^{2}}} \)
C. \( \frac{1}{\sqrt{1+x^{2}}} \)
D. \( \frac{x}{\sqrt{1+x^{2}}} \)
\( \therefore y=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right) \)
\( =\tan ^{-1} x=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right) \)
\( =\sin \left(\tan ^{-1} x\right)=\sin \left(\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)\right) \)
\( =\frac{x}{\sqrt{1+x^{2}}} \)
\( \operatorname{Sin}^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2} \), then \( x \) is equal to
A. \( 0, \frac{1}{2} \)
B. \( 1, \frac{1}{2} \)
C. 0
D. \( \frac{1}{2} \)
Now we will put Now, we will put \( x=\sin y \) in the given equation, and we get,
\(\operatorname{Sin}^{-1}(1-\sin y)-2 \sin ^{-1} \sin y=\frac{\pi}{2}\)
\(=\sin ^{-1}(1-\sin y)-2 y=\frac{\pi}{2} \pi\)
\(=\sin ^{-1}(1-\sin y)=\frac{\pi}{2}+2 y\)
\(=1-\sin y=\sin \left(\frac{\pi}{2}+2 y\right)\)
\(\Rightarrow 1-\sin y=\cos 2 y \text { as } \sin \left(\frac{\pi}{2}+x\right)=\cos x\)
\(\Rightarrow 1-\cos 2 y=\sin y\)
\(\Rightarrow 2 \sin 2 y=\sin y\)
\(\Rightarrow \sin y(2 \sin y-1)=0\)
\(\Rightarrow \sin y=0 \text { or } \frac{ 1 }{ 2 }\)
\(\therefore x=0 \text { or } \frac{ 1 }{ 2 }\)
Now, if we put then we will see that,
L.H.S. \( =\sin ^{-1}\left(\frac{1}{2}\right)=-2 \sin ^{-1} \frac{1}{2} \)
\(=-\sin ^{-1} \frac{1}{2}\)
\( =-\frac{\pi}{6} \neq \frac{\pi}{2} \neq \) R.H.S
Hence, \( x=\frac{1}{2} \) is not the solution of the given equation.
Thus, \( x=0 \)
\( \tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1} \frac{x-y}{x+y} \) is equal to
A. \( \frac{\pi}{2} \)
B. \( \frac{\pi}{3} \)
C. \( \frac{\pi}{4} \)
D. \( \frac{-3 \pi}{4} \)
\tan ^{-1} \frac{x}{y}-\tan ^{-1} \frac{x-y}{x+y}\)
\(=\tan ^{-1}\left[\frac{\frac{x}{y}-\frac{x-y}{x+y}}{1-\frac{x}{y} \cdot \frac{x-y}{x+y}}\right]\)
\(=\tan ^{-1}\left[\frac{\frac{x(x+y)-y(x-y)}{y(x+y)}}{\frac{y(x+y)+x(x-y)}{y(x+y)}}\right]\)
\(=\tan ^{-1}\left(\frac{x^{2}+x y-x y+y^{2}}{x y+y^{2}+x^{2}-x y}\right)\)
\(=\tan ^{-1}\left(\frac{x^{2}+y^{2}}{x^{2}+y^{2}}\right)=\tan ^{-1} 1=\frac{\pi}{4}
\)