Class 12 Maths Exercise 3.1 Solutions

Class 12 maths exercise 3.1 solutions | ncert class 12 maths exercise 3.1 solutions | exercise 3.1 class 12​ maths | ncert solutions matrices class 12​ maths chapter 3 | class 12 math matrix ncert solutions

Looking for Class 12 Maths Exercise 3.1 Solutions? You’re in the right place! This section provides complete and easy-to-understand solutions to Exercise 3.1 Class 12 Maths, which is a part of NCERT Chapter 3 – Matrices. Whether you’re solving basic operations on matrices or learning about types of matrices, these NCERT Class 12 Maths Exercise 3.1 Solutions are designed to help you build a strong foundation. Aligned with the latest CBSE syllabus, these step-by-step Class 12 Math Matrix NCERT Solutions make learning simple and effective. Start practicing now to strengthen your grasp on matrix concepts and boost your exam preparation!

class 12 maths chapter 3 miscellaneous exercise solutions​
class 12 math matrix ncert solutions || class 12 maths exercise 3.1 solutions || ncert class 12 maths exercise 3.1 solutions || ncert solutions matrices class 12​ maths chapter 3 || exercise 3.1 class 12​ maths
Download the Math Ninja App Now

Exercise 3.1

1. In a matrix \( A= \)
\( \mathrm{A}^{\mathrm{n}}=\left[\begin{array}{cccc}2 & 5 & 19 & -7 \\ 35 & -2 & \frac{5}{2} & 12 \\ \sqrt{3} & 1 & -5 & 17\end{array}\right] \), write:
(i) The order of the matrix,
(ii) The number of elements,
(iii) Write the elements \( a_{13}, a_{21}, a_{33}, a_{24}, a_{23} \).
Answer
(i) In the given matrix, the number of rows is 3 and the number of columns is 4 .
Order of a matrix \( = \) No of rows \( \times \) No of columns
Therefore, the order of the matrix is \( 3 \times 4 \).
(ii) Since, the order of the matrix is \( 3 \times 4 \), there are \( 3 \times 4=12 \) elements in it.
(iii) \( \mathrm{a}_{13}=19, \mathrm{a}_{21}=35, \mathrm{a}_{33}=-5, \mathrm{a}_{24}=12, \mathrm{a}_{23}=\frac{5}{2} \).
2. If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?
Answer
It is known that if a matrix is of the order \( m \times n \), then it has \( m n \) elements.
Therefore, to find all the possible orders of a matrix having 24 elements, we had to find all the ordered pairs of natural numbers whose product is 24 .
The ordered pairs are:
\( (1,24),(24,1),(2,12),(12,2),(3,8),(8,3),(4 \), \( 6) \), and \( (6,4) \).
Therefore, the possible orders of a matrix having 24 elements are; \( 1 \times 24,24 \times 1,2 \times 12,12 \times 2,3 \times 8,8 \times 3,4 \times 6,6 \times 4 \)
\( (1,13) \) and \( (13,1) \) are the ordered pairs of natural numbers whose product is 13 .
Therefore, the possible orders of a matrix having 13 elements are \( 1 \times 13 \) and \( 13 \times 1 \).
3. If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?
Answer
It is known that if a matrix s of the order \( \mathrm{m} \times \mathrm{n} \), then it has mn elements. Therefore, to find all the possible orders of a matrix having 18 elements, we had to find all the ordered pairs of natural numbers whose product is 18 .
The ordered pairs are: \( (1,18),(18,1),(2,9),(9,2),(3,6) \) and \( (6,3) \).
Therefore, the possible orders of a matrix having 18 elements are;
\(
1 \times 18,18 \times 1,2 \times 9,9 \times 2,3 \times 6,6 \times 3\)
\( (1,5) \) and \( (5,1) \) are the ordered pairs of natural numbers whose product is 5 .
Therefore, the possible orders of a matrix having 5 elements are \( 1 \times 5 \) and \( 5 \times 1 \).
4 A. Construct a \( 2 \times 2 \) matrix, \( \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \), whose elements are given by:
\( \mathrm{a}_{\mathrm{ij}}=\frac{(i+j)^{2}}{2} \)
Answer
In general, \( 2 \times 2 \) matrix is given by \( \mathrm{A}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] \)
\( \mathrm{a}_{\mathrm{ij}}=\frac{(i+j)^{2}}{2}, \mathrm{i}, \mathrm{j}=1,2 \)
Therefore,
\( a_{11}=\frac{(1+1)^{2}}{2}=\frac{4}{2} \)
\( a_{12}=\frac{(1+2)^{2}}{2}=\frac{9}{2} \)
\( \mathrm{a}_{21}=\frac{(2+1)^{2}}{2}=\frac{9}{2} \)
\( a_{22}=\frac{(2+2)^{2}}{2}=\frac{16}{2}=8 \)
Therefore, the required matrix is \( \mathrm{A}=\left[\begin{array}{cc}2 & \frac{9}{2} \\ \frac{9}{2} & 8\end{array}\right] \)
4 B. Construct a \( 2 \times 2 \) matrix, \( \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \), whose elements are given by:
\( \mathrm{a}_{\mathrm{ij}}=\frac{i}{j} \)
Answer
In general, a \( 2 \times 2 \) matrix is given by \( \mathrm{A}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] \)
\(
\mathrm{a}_{\mathrm{ij}}=\frac{i}{j}, \mathrm{i}, \mathrm{j}=1,2
\)
Therefore,
\( \mathrm{a}_{11}=\frac{1}{1}=1 \)
\( \mathrm{a}_{12}=\frac{1}{2} \)
\( \mathrm{a}_{21}=\frac{2}{1}=2 \)
\( \mathrm{a}_{22}=\frac{2}{2}=1\)
Therefore, the required matrix is \( \mathrm{A}=\left[\begin{array}{ll}1 & \frac{1}{2} \\ 2 & 1\end{array}\right] \).
4 C. Construct a \( 2 \times 2 \) matrix, \( \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \), whose elements are given by:
\( \mathrm{a}_{\mathrm{ij}}=\frac{(i+2 j)^{2}}{2} \)
Answer
In general, a \( 2 \times 2 \) matrix is given by \( \mathrm{A}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] \)
\(
a_{i j}=\frac{(i+2 j)^{2}}{2}, i, j=1,2
\)
Therefore,
\( a_{11}=\frac{(1+2)^{2}}{2}=\frac{9}{2} \)
\( \mathrm{a}_{12}=\frac{(1+4)^{2}}{2}=\frac{25}{2} \)
\( \mathrm{a}_{21}=\frac{(2+2)^{2}}{2}=\frac{16}{2}=8 \)
\(
a_{22}=\frac{(2+4)^{2}}{2}=\frac{36}{2}=18
\)
Therefore, the required matrix is \( \mathrm{A}=\left[\begin{array}{cc}\frac{9}{2} & \frac{25}{2} \\ 8 & 18\end{array}\right] \)
class 12 math matrix ncert solutions || class 12 maths exercise 3.1 solutions || ncert class 12 maths exercise 3.1 solutions || ncert solutions matrices class 12​ maths chapter 3 || exercise 3.1 class 12​ maths
Download the Math Ninja App Now
5 A. Construct a \( 3 \times 4 \) matrix, whose elements are given by:
\(
a_{i j}=\frac{1}{2}|-3 i+j|
\)
Answer
In general \( 3 \times 4 \) matrix is given by \( \mathrm{A}=\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right] \)
\( a_{i j}=\frac{1}{2}|-3 i+j|, i=1,2,3 \), and \( j=1,2,3,4 \)
Therefore,
\(
\begin{array}{l}
\mathrm{a}_{11}=\frac{1}{2}|-3 \times 1+1|=\frac{1}{2}|-3+1|=\frac{1}{2}|-2|=\frac{2}{2}=1 \\
\mathrm{a}_{21}=\frac{1}{3}|-3 \times 2+1|=\frac{1}{2}|-6+1|=\frac{1}{2}|-5|=\frac{5}{2} \\
\mathrm{a}_{31}=\frac{1}{2}|-3 \times 3+1|=\frac{1}{2}|-9+1|=\frac{1}{2}|-8|=\frac{8}{2}=4 \\
\mathrm{a}_{12}=\frac{1}{2}|-3 \times 2+2|=\frac{1}{2}|-6+2|=\frac{1}{2}|-1|=\frac{1}{2} \\
\mathrm{a}_{22}=\frac{1}{2}|-3 \times 2+2|=\frac{1}{2}|-6+2|=\frac{1}{2}|-4|=\frac{4}{2}=2 \\
\mathrm{a}_{32}=\frac{1}{2}|-3 \times 3+2|=\frac{1}{2}|-9+2|=\frac{1}{2}|-7|=\frac{7}{2} \\
\mathrm{a}_{13}=\frac{1}{2}|-3 \times 1+3|=\frac{1}{2}|-3+3|=0 \\
\mathrm{a}_{23}=\frac{1}{2}|-3 \times 2+3|=\frac{1}{2}|-6+3|=\frac{1}{2}|-3|=\frac{3}{2}
\end{array}
\)
\(
\begin{array}{l}
a_{33}=\frac{1}{2}|-3 \times 3+3|=\frac{1}{2}|-9+3|=\frac{1}{2}|-6|=\frac{6}{2}=3 \\
a_{14}=\frac{1}{2}|-3 \times 1+4|=\frac{1}{2}|-3+4|=\frac{1}{2}|1|=\frac{1}{2} \\
a_{24}=\frac{1}{2}|-3 \times 1+4|=\frac{1}{2}|-6+4|=\frac{1}{2}|-2|=\frac{2}{2}=1 \\
a_{34}=\frac{1}{2}|-3 \times 3+4|=\frac{1}{2}|-9+4|=\frac{1}{2}|-5|=\frac{5}{2}
\end{array}
\)
Therefore, required matrix is \( A=\left[\begin{array}{cccc}1 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{5}{2} & 2 & \frac{3}{2} & 1 \\ 4 & \frac{7}{2} & 3 & \frac{5}{2}\end{array}\right] \)
5 B. Construct a \( 3 \times 4 \) matrix, whose elements are given by:
\(
\mathrm{a}_{\mathrm{ij}}=2 \mathrm{i}-\mathrm{j}
\)
Answer
In general \( 3 \times 4 \) matrix is given by \( A=\left[\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right] \)
\( a_{i j}=2 \mathrm{i}-\mathrm{j}, \mathrm{i}=1,2,3 \) and \( \mathrm{j}=1,2,3,4 \)
Therefore,
\(
\begin{array}{l}
a_{11}=2 \times 1-1=2-1=1 \\
a_{21}=2 \times 2-1=4-1=3 \\
a_{31}=2 \times 3-1=6-1=5 \\
a_{12}=2 \times 1-2=2-2=0 \\
a_{22}=2 \times 2-2=4-2=2 \\
a_{32}=2 \times 3-2=6-2=4
\end{array}
\)
\(
\begin{array}{l}
\mathrm{a}_{13}=2 \times 1-3=2-3=-1 \\
\mathrm{a}_{23}=2 \times 2-3=4-3=1 \\
\mathrm{a}_{33}=2 \times 3-3=6-3=3 \\
\mathrm{a}_{14}=2 \times 1-4=2-4=-2 \\
\mathrm{a}_{24}=2 \times 2-4=4-4=0 \\
\mathrm{a}_{34}=2 \times 3-4=6-4=2
\end{array}
\)
Therefore, required matrix is \( \mathrm{A}=\left[\begin{array}{cccc}1 & 0 & -1 & -2 \\ 3 & 2 & 1 & 0 \\ 5 & 4 & 3 & 2\end{array}\right] \)
6 A. Find the values of \( x, y \) and \(z\) from the following equations:
\(
\left[\begin{array}{ll}
4 & 3 \\
x & 5
\end{array}\right]=\left[\begin{array}{ll}
y & z \\
1 & 5
\end{array}\right]
\)
Answer
\(
\left[\begin{array}{ll}
4 & 3 \\
x & 5
\end{array}\right]=\left[\begin{array}{ll}
y & z \\
1 & 5
\end{array}\right]
\)
Since, the given matrices are equal, their corresponding elements are also equal.
Comparing the corresponding element, we have:
\( x=1, y=4 \) and \( z=3 \)
6 B. Find the values of \( x, y\) and \(z\) from the following equations:
\(
\left[\begin{array}{cc}
x+y & 2 \\
5+z & x y
\end{array}\right]=\left[\begin{array}{ll}
6 & 2 \\
5 & 8
\end{array}\right]
\)
Answer
Since, the given matrices are equal, their corresponding elements are also equal.
Comparing the corresponding element, we have:
\( \left[\begin{array}{cc}x+y & 2 \\ 5+z & x y\end{array}\right]= {\left[\begin{array}{ll}
6 & 2 \\
5 & 8
\end{array}\right]}\)
\(x+y=6, x y=8,5+z=5\)
Now, \( 5+z=5 \)
\(
\Rightarrow z=0\)
\(x+y=6 \Rightarrow x=6-y \text { Also, } x y=8 \Rightarrow(6-y) y=8 \Rightarrow 6 y-y^{2}=8\)
\(\Rightarrow y^{2}-6 y+8=0\)
\(\Rightarrow y^{2}-4 y-2 y+8=0\)
\(\Rightarrow y(y-4)-2(y-4)=0 \Rightarrow(y-2)(y-4)=0\)
Hence, \(y=2 \text { or } y=4 \text { when } y =2 x=6-2=4 \text { when } x=4 x=6-4=2
\)
6 C. Find the values of \( x, y \) and \(z\) from the following equations:
\(
\left[\begin{array}{c}
x+y+z \\
x+z \\
y+z
\end{array}\right]=\left[\begin{array}{l}
9 \\
5 \\
7
\end{array}\right]
\)
Answer
\(\left[\begin{array}{c}
x+y+z \\
x+z \\
y+z
\end{array}\right]=\left[\begin{array}{l}
9 \\
5 \\
7
\end{array}\right]
\)
Since, the given matrices are equal, their corresponding elements are also equal.
Comparing the corresponding element, we have:
\(
x+y+z=9 \ldots(1)\)
\(
x+z=5 \ldots(2)\)
\(y+z=7 \ldots (3)\)
Putting the value of equation 2 in equation 1,
\(y+5=9\)
\(\Rightarrow y=4
\)
Then, putting the value of \( y \) in equation 3, we get,
\(4+z=7\)
\(\Rightarrow z=3
\)
Therefore, \( x+z=5 \)
\(
\Rightarrow x=2
\)
Therefore, \( x=2, y=4 \) and \( z=3 \).
7. Find the value of \( \mathrm{a}, \mathrm{b}, \mathrm{c} \) and d from the equation:
\(
\left[\begin{array}{cc}
a-b & 2 a+c \\
2 a-b & 3 c+d
\end{array}\right]=\left[\begin{array}{cc}
-1 & 5 \\
0 & 13
\end{array}\right]
\)
Answer
\(
\left[\begin{array}{cc}
a-b & 2 a+c \\
2 a-b & 3 c+d
\end{array}\right]=\left[\begin{array}{cc}
-1 & 5 \\
0 & 13
\end{array}\right]
\)
Since, the given matrices are equal, their corresponding elements are also equal.
Comparing the corresponding element, we have:
\(
\mathrm{a}-\mathrm{b}=-1 \ldots(1)\)
\(2 \mathrm{a}-\mathrm{b}=0 \ldots(2)\)
\(2 \mathrm{a}+\mathrm{c}=5 \ldots(3)\)
\(
3 c+d=13 \ldots (4)\)
From equation (2), we get:
\(
\mathrm{b}=2 \mathrm{a}
\)
Then, from eq. (1), we get,
\(
a-2 a=-1\)
\(\Rightarrow a=1\)
\(\Rightarrow b=2
\)
Now, from eq. (3), we get:
\(
2 \times 1+c=5\)
\(\Rightarrow c=3
\)
From (4), we get,
\(
3 \times 3+d=13\)
\(\Rightarrow 9+\mathrm{d}=13\)
\(\Rightarrow \mathrm{d}=4
\)
Therefore, \( a=1, b=2, \mathrm{c}=3 \) and \( \mathrm{d}=4 \).
8. \( \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{m} \times \mathrm{n} \) is a square matrix, if
A. \( \mathrm{m} < \mathrm{n} \) B. \( \mathrm{m} > \mathrm{n} \) C. \( \mathrm{m}=\mathrm{n} \) D. None of these
Answer
We know that if a given matrix is said to be square matrix if the number of rows is equal to the number of columns.
Therefore, \( \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{m} \times \mathrm{n} \) is a square matrix, if \( \mathrm{m}=\mathrm{n} \).
class 12 math matrix ncert solutions || class 12 maths exercise 3.1 solutions || ncert class 12 maths exercise 3.1 solutions || ncert solutions matrices class 12​ maths chapter 3 || exercise 3.1 class 12​ maths
Download the Math Ninja App Now
9. Which of the given values of \( x \) and \( y \) make the following pair of matrices equal?
\(
\left[\begin{array}{cc}
3 x+7 & 5 \\
y+1 & 2-3 x
\end{array}\right]=\left[\begin{array}{cc}
0 & y-2 \\
8 & 4
\end{array}\right]
\)
A. \( x=\frac{-1}{3}, y=7 \)
B. Not possible to find
C. \( y=7, x=\frac{-2}{3} \)
D. \( x=\frac{-1}{3}, y=\frac{-2}{3} \)
Answer
Now, \( \left[\begin{array}{cc}3 x+7 & 5 \\ y+1 & 2-3 x\end{array}\right]=\left[\begin{array}{cc}0 & y-2 \\ 8 & 4\end{array}\right] \)
Since, the given matrices are equal, their corresponding elements are also equal.
Comparing the corresponding element, we have:
\(
3 x+7=0\)
\(x=-\frac{7}{3}\)
\(5=y-2\)
\(\Rightarrow y=7\)
\(y+1=8
\)
\(
\Rightarrow y=7
\)
And \( 2-3 x=4 \)
\(
x=-\frac{2}{3}
\)
Thus, on comparing the corresponding elements of the two matrices, we get different values of \( x \), which is not possible.
Therefore, it is not possible to find the values of \(x\) and \(y\) for which the given matrices are equal.
10. The number of all possible matrices of order \( 3 \times 3 \) with each entry 0 or 1 is:
A. 27 B. 18 C. 81 D. 512
Answer
The given matrix of the order \( 3 \times 3 \) has 9 elements with each entry 0 or 1 .
Now, each of the 9 elements can be filled in two possible ways.
Hence, the required number of possible matrices is \( 2^{9}=512 \).
class 12 math matrix ncert solutions || class 12 maths exercise 3.1 solutions || ncert class 12 maths exercise 3.1 solutions || ncert solutions matrices class 12​ maths chapter 3 || exercise 3.1 class 12​ maths
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top