Ex 11.2 Class 12 Maths Ncert Solutions

Ex 11.2 class 12 maths ncert solutions | class 12 maths exercise 11.2 | class 12 maths ncert solutions chapter 11 exercise 11.2 | exercise 11.2 class 12 maths ncert solutions | class 12 maths chapter 11 ncert solutions | class 12 chapter 11 maths ncert solutions | ncert solutions for class 12 maths ch 11​ | ncert solutions for class 12 maths chapter 11 | three dimensional geometry class 12 ncert solutions

Need help cracking 3D geometry problems with ease? The Class 12 Maths NCERT Solutions Chapter 11 Exercise 11.2 is a must-have guide to mastering equations of lines and the concept of skew and intersecting lines in space. Whether you’re looking up Class 12 Maths Exercise 11.2, Exercise 11.2 Class 12 Maths NCERT Solutions, or complete NCERT Solutions for Class 12 Maths Chapter 11, this resource provides accurate, step-by-step explanations aligned with the latest CBSE syllabus. Dive into the Three Dimensional Geometry Class 12 NCERT Solutions and boost your confidence with crystal-clear logic and scoring strategies.

ex 11.2 class 12 maths ncert solutions
class 12 chapter 11 maths ncert solutions || three dimensional geometry class 12 ncert solutions || ncert solutions for class 12 maths chapter 11 || ncert solutions for class 12 maths ch 11​ || class 12 maths chapter 11 ncert solutions || ex 11.2 class 12 maths ncert solutions || class 12 maths exercise 11.2 || class 12 maths ncert solutions chapter 11 exercise 11.2 || exercise 11.2 class 12 maths ncert solutions
Download the Math Ninja App Now

Exercise 11.2

1. Show that the three lines with direction cosines \( \frac{12}{13}, \frac{-3}{13}, \frac{-4}{13}, \frac{4}{13}, \frac{12}{13}, \frac{3}{13} ; \frac{3}{13}, \frac{-4}{13}, \frac{12}{13} \) are mutually perpendicular.
Answer
We know that
If \( l_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1} \) and \( \mathrm{l}_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2} \) are the direction cosines of two lines; and \( \theta \) is the acute angle between the two lines; then \( \cos \theta=\left|l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right| \)
If two lines are perpendicular, then the angle between the two is \( \theta=90^{\circ} \)
\( \Rightarrow \text {For perpendicular lines,}\left|l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right|=\cos 90^{\circ}=0 \), i.e.
\( \left|l_{1} l_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right|=0 \)
So, in order to check if the three lines are mutually perpendicular, we compute \( \left|l_{1} l_{2}+m_{1} m_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right| \) for all the pairs of the three lines.
Now let the direction cosines of \( L_{1}, L_{2} \) and \( L_{3} \) be \( l_{1}, m_{1}, n_{1} ; l_{2}, m_{2}, n_{2} \) and \( l_{3}, \mathrm{~m}_{3}, \mathrm{n}_{3} \).
First, consider
\(\Rightarrow\left|l_{1} l_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right|=\left|\left(\frac{12}{13} \times \frac{4}{13}\right)+\left(\frac{-3}{13} \times \frac{12}{13}\right)+\left(\frac{-4}{13} \times \frac{3}{13}\right)\right|\)
\(=\frac{48}{13}+\left(\frac{-36}{13}\right)+\left(\frac{-12}{13}\right)\)
\(\Rightarrow=\frac{48+(-48)}{13}=0\)
\(\Rightarrow \mathrm{L}_{1} \perp \mathrm{L}_{2}\ldots \) (i)
Next, consider
\(\Rightarrow\)
\(\left|l_{2} l_{3}+\mathrm{m}_{2} \mathrm{~m}_{3}+\mathrm{n}_{2} \mathrm{n}_{3}\right|=\left|\left(\frac{4}{13} \times \frac{3}{13}\right)+\left(\frac{12}{13} \times \frac{-4}{13}\right)+\left(\frac{3}{13} \times \frac{12}{13}\right)\right|\)
\(=\frac{12}{13}+\left(\frac{-48}{13}\right)+\frac{36}{13}\)
\(\Rightarrow=\frac{(-48)+48}{13}=0\)
\(\Rightarrow \mathrm{L}_{2} \perp \mathrm{L}_{3}\ldots \text { (ii) }\)
Now, consider
\(\Rightarrow\left|l_{3} l_{1}+\mathrm{m}_{3} \mathrm{~m}_{1}+\mathrm{n}_{3} \mathrm{n}_{1}\right|=\left|\left(\frac{3}{13} \times \frac{12}{13}\right)+\left(\frac{-4}{13} \times \frac{-3}{13}\right)+\left(\frac{12}{13} \times \frac{-4}{13}\right)\right|\)
\(=\frac{36}{13}+\frac{12}{13}+\left(\frac{-48}{13}\right)\)
\(\Rightarrow=\frac{48+(-48)}{13}=0\)
\(\Rightarrow L_{1} \perp L_{3} \ldots \text { (iii) }\)
\( \therefore \) By (i), (ii) and (iii), we have
\( \mathrm{L}_{1}, \mathrm{~L}_{2} \) and \( \mathrm{L}_{3} \) are mutually perpendicular.
2. Show that the line through the points \( (1,-1,2),(3,4,-2) \) is perpendicular to the line through the points \( (0,3,2) \) and \( (3,5,6) \).
Answer
We know that
Two lines with direction ratios \( a_{1}, b_{1}, c_{1} \) and \( \mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2} \) are perpendicular if the angle between them is \( \theta=90^{\circ} \), i.e. \( a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0 \)
Also, we know that the direction ratios of the line segment joining \( \left(\mathrm{x}_{1},\mathrm{y}_{1},\right.\left.\mathrm{z}_{1}\right) \) and \( \left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right) \) is taken as \( \mathrm{x}_{2}-\mathrm{x}_{1}, \mathrm{y}_{2}-\mathrm{y}_{1}, \mathrm{z}_{2}-\mathrm{z}_{1}\left(\right. \) or \( \mathrm{x}_{1}-\mathrm{x}_{2}, \mathrm{y}_{1}-\mathrm{y}_{2} \), \( \left.\mathrm{Z}_{1}-\mathrm{Z}_{2}\right) \).
\( \Rightarrow \) The direction ratios of the line through the points \( (1,-1,2) \) and \( (3,4,- \) 2 ) is:
\(a_{1}=3-1=2, b_{1}=4-(-1)=4+1=5, c_{1}=-2-2=-4\)
and the direction ratios of the line through the points \( (0,3,2) \) and \( (3,5,6) \) is:
\(a_{2}=3-0=3, b_{2}=5-3=2, c_{2}=6-2=4\)
Now, consider
\(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=2 \times 3+5 \times 2+(-4) \times 4=6+10+(-16)=16+(-16)\)
\(=0\)
\( \Rightarrow \)The line through the points \( (1,-1,2),(3,4,-2) \) is perpendicular to the line through the points \( (0,3,2) \) and \( (3,5,6) \).
3. Show that the line through the points \( (4,7,8),(2,3,4) \) is parallel to the line through the points \( (-1,-2,1),(1,2,5) \).
Answer
We know that
Two lines with direction ratios \( a_{1}, b_{1}, c_{1} \) and \( a_{2}, b_{2}, c_{2} \) are parallel if the angle between them is \( \theta=0^{\circ} \), i. e.
\(\Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}\)
Also, we know that the direction ratios of the line segment joining ( \( \mathrm{x}_{1}, \mathrm{y}_{1} \),\( \mathrm{z}_{1} \) ) and ( \( \left.\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right) \) is taken as \( \mathrm{x}_{2}-\mathrm{x}_{1}, \mathrm{y}_{2}-\mathrm{y}_{1}, \mathrm{z}_{2}-\mathrm{z}_{1}\left(\right. \) or \( \mathrm{x}_{1}-\mathrm{x}_{2}, \mathrm{y}_{1}-\mathrm{y}_{2} \), \( \mathrm{z}_{1}-\mathrm{z}_{2} \) ).
\( \Rightarrow \) The direction ratios of the line through the points \( (4,7,8) \) and \( (2,3,4) \) is:
\(a_{1}=2-4=-2, b_{1}=3-7=-4, c_{1}=4-8=-4\)
And the direction ratios of the line through the points \( (-1,-2,1) \) and (1, 2,5 ) is:
\(a_{2}=1-(-1)=1+1=2, b_{2}=2-(-2)=2+2=4, c_{2}=5-1=4\)
Consider \( \frac{a_{1}}{a_{2}}=\frac{-2}{2}=-1, \frac{b_{1}}{b_{2}}=\frac{-4}{4}=-1 \frac{c_{1}}{c_{2}}=\frac{-4}{4}=-1 \)
\(\Rightarrow \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}=-1\)
\( \therefore \) The line through the points \( (4,7,8),(2,3,4) \) is parallel to the line through the points \( (-1,-2,1),(1,2,5) \).
4. Find the equation of the line which passes through the point \( (1,2,3) \) and is parallel to the vector \( 3 \hat{i}+2 \hat{j}-2 \hat{k} \).
Answer
We know that
Vector equation of a line that passes through a given point whose position vector is \( \vec{a} \) and parallel to a given vector \( \vec{b} \) is \( \vec{r}=\vec{a}+\lambda \vec{b} \).
So, here the position vector of the point \( (1,2,3) \) is given by \( \vec{a}=\hat{i}+2 \hat{j}- \) \( 3 \hat{k} \) and the parallel vector is \( 3 \hat{i}+2 \hat{j}-2 \hat{k} \).
\( \therefore \) The vector equation of the required line is:
\( \vec{r}=\hat{i}+2 \hat{j}-3 \hat{k}+\lambda(3 \hat{i}+2 \hat{j}-2 \hat{k}) \), where \( \lambda \) is a real number.
class 12 chapter 11 maths ncert solutions || three dimensional geometry class 12 ncert solutions || ncert solutions for class 12 maths chapter 11 || ncert solutions for class 12 maths ch 11​ || class 12 maths chapter 11 ncert solutions || ex 11.2 class 12 maths ncert solutions || class 12 maths exercise 11.2 || class 12 maths ncert solutions chapter 11 exercise 11.2 || exercise 11.2 class 12 maths ncert solutions
Download the Math Ninja App Now
5. Find the equation of the line in vector and in Cartesian form that passes through the point with position vector \( 2 \hat{i}-\hat{j}+4 \hat{k} \) and is in the direction \( \hat{i}+2 \hat{j}-\hat{k} \)
Answer
We know that
Vector equation of a line that passes through a given point whose position vector is \( \vec{a} \) and parallel to a given vector \( \vec{b} \) is \( \vec{r}=\vec{a}+\lambda \vec{b} \).
Here, \( \vec{a}=2 \hat{i}-\hat{j}+4 \hat{k} \) and \( \vec{b}=\hat{i}+2 \hat{j}-\hat{k} \)
\( \Rightarrow \) The vector equation of the required line is:
\(\Rightarrow \overrightarrow{\mathrm{r}}=2 \hat{i}-\hat{j}+4 \hat{\mathrm{k}}+\lambda(\hat{i}+2 \hat{j}-\hat{\mathrm{k}})\)
Also, we know that
The Cartesian equation of a line through a point \( \left(x_{1}, y_{1}, z_{1}\right) \) and having direction cosines \( l, \mathrm{~m}, \mathrm{n} \) is \( \frac{x-x_{1}}{\mathrm{l}}=\frac{y-y_{1}}{\mathrm{~m}}=\frac{z-z_{1}}{\mathrm{n}} \)
Also, we know that if the direction ratios of the line are \( a, b \), \( c \), then
\(\Rightarrow l=\frac{a}{\sqrt{a^{2}+b^{2}=c^{2}}}, \mathrm{~m}=\frac{b}{\sqrt{a^{2}+b^{2}=c^{2}}}, \mathrm{n}=\frac{c}{\sqrt{a^{2}+b^{2}=c^{2}}}\)
\( \Rightarrow \) The Cartesian equation of a line through a point \( \left(x_{1}, y_{1}, z_{1}\right) \) and having direction ratios \( \mathrm{a}, \mathrm{b}, \mathrm{c} \) is \( \frac{x-x_{1}}{\mathrm{a}}=\frac{y-y_{1}}{\mathrm{~b}}=\frac{z-z_{1}}{\mathrm{c}} \)
Here, \( x_{1}=2, y_{1}=-1, z_{1}=4 \) and \( \mathrm{a}=1, \mathrm{~b}=2, \mathrm{c}=-1 \)
\( \Rightarrow \) The Cartesian equation of the required line is:
\(\frac{x-2}{1}=\frac{y-(-1)}{2}=\frac{z-4}{-1} \Rightarrow \frac{x-2}{1}=\frac{y+1}{2}=\frac{z-4}{-1}\)
6. Find the cartesian equation of the line which passes through the point \( (-2,4,-5) \) and parallel to the line given by \( \frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6} \)
Answer
We know that
The Cartesian equation of a line through a point \( \left(x_{1}, y_{1}, z_{1}\right) \) and having direction ratios a, b, c is \( \frac{x-x_{1}}{\mathrm{a}}=\frac{y-y_{1}}{\mathrm{~b}}=\frac{z-z_{1}}{\mathrm{c}} \)
Here, the point \( \left(x_{1}, y_{1}, z_{1}\right) \) is \( (-2,4,-5) \) and the direction ratios are: \( \mathrm{a}=3, \mathrm{~b}=5, \mathrm{c}=6 \)
\( \Rightarrow \) The Cartesian equation of the required line is:
\(\Rightarrow \frac{x-(-2)}{3}=\frac{y-4}{5}=\frac{z-(-5)}{6} \Rightarrow \frac{x+2}{3}=\frac{y-4}{5}=\frac{z+5}{6}\)
7. The Cartesian equation of a line is \( \frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2} \). Write its vector form.
Answer
We know that
The Cartesian equation of a line through a point \( \left(x_{1}, y_{1}, z_{1}\right) \) and having direction cosines \( l, \mathrm{~m}, \mathrm{n} \) is \( \frac{x-x_{1}}{\mathrm{l}}=\frac{y-y_{1}}{\mathrm{~m}}=\frac{z-z_{1}}{\mathrm{n}} \)
Comparing this standard form with the given equation, we get \( x_{1}=5, y_{1}=-4, z_{1}=6 \) and \( l=3, \mathrm{~m}=7, \mathrm{n}=2 \)
\( \Rightarrow \) The point through which the line passes has the position vector \( \vec{a}= \) \( 5 \hat{i}-4 \hat{j}+6 \hat{k} \) and the vector parallel to the line is given by \( \vec{b}=3 \hat{i}-7 \hat{j}+ \) \( 2 \hat{\mathrm{k}} \)
Now, \( \because \) Vector equation of a line that passes through a given point whose position vector is \( \vec{a} \) and parallel to a given vector \( \vec{b} \) is \( \vec{r}=\vec{a}+\lambda \vec{b}\).
\( \therefore \) The vector equation of the required line is:
\(\vec{r}=(5 \hat{i}-4 \hat{j}+6 \hat{k})+\lambda(3 \hat{i}+7 \hat{j}+2 \hat{k})\)
8. Find the vector and the cartesian equations of the lines that passes through the origin and \( (5,-2,3) \).
Answer
We know that
The vector equation of as line which passes through two points whose position vectors are \( \vec{a} \) and \( \vec{b} \) is \( \vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a}) \).
Here, the position vectors of the two points \( (0,0,0) \) and \( (5,-2,3) \) are \( \vec{a}= \) \( 0 \hat{i}-0 \hat{j}+0 \hat{k} \) and \( \vec{b}=5 \hat{i}-2 \hat{j}+3 \hat{k} \) respectively.
So, the vector equation of the required line is:
\(\overrightarrow{\mathrm{r}}=0 \hat{i}-0 \hat{j}+0 \hat{\mathrm{k}}+\lambda[(5 \hat{i}-2 \hat{j}+3 \hat{\mathrm{k}})(0 \hat{i}-0 \hat{j}+0 \hat{\mathrm{k}})]\)
\(\Rightarrow \overrightarrow{\mathrm{r}}=\lambda(5 \hat{i}-2 \hat{j}+3 \hat{\mathrm{k}})\)
Now, we know that
Cartesian equation of a line that passes through two points \( \left(x_{1}, y_{1}, z_{1}\right) \) and \( \left(x_{2}, y_{2}, z_{2}\right) \) is
\(\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}\)
So, the Cartesian equation of the line that passes through the origin \( (0,0 \), \( 0) \) and \( (5,-2,3) \) is
\(\frac{x-0}{5-0}=\frac{y-0}{-2-0}=\frac{z-0}{3-0} \Rightarrow \frac{x}{5}=\frac{y}{-2}=\frac{z}{3}\)
9. Find the vector and the cartesian equations of the line that passes through the points \( (3,-2,-5),(3,-2,6) \).
Answer
We know that
The vector equation of as line which passes through two points whose position vectors are \( \vec{a} \) and \( \vec{b} \) is \( \vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a}) \).
Here, the position vectors of the two points \( (3,-2,-5) \) and \( (3,-2,6) \) are \( \vec{a}=3 \hat{i}-2 \hat{j}+5 \hat{k} \) and \( \vec{b}=3 \hat{i}-2 \hat{j}+6 \hat{k} \), respectively.
So, the vector equation of the required line is:
\(\Rightarrow \overrightarrow{\mathrm{r}}=3 \hat{i}-2 \hat{j}+5 \hat{\mathrm{k}}+\lambda[(3 \hat{i}-2 \hat{j}+6 \hat{k})(3 \hat{i}-2 \hat{j}+5 \hat{k})]\)
\(\Rightarrow \overrightarrow{\mathrm{r}}=3 \hat{i}-2 \hat{j}+5 \hat{k}+\lambda(3 \hat{i}-2 \hat{j}+6 \hat{k}-3 \hat{i}-2 \hat{j}+5 \hat{k})\)
\(\Rightarrow \overrightarrow{\mathrm{r}}=3 \hat{i}-2 \hat{j}+5 \hat{\mathrm{k}}+\lambda(11 \hat{\mathrm{k}})\)
Now, we also know that
Cartesian equation of a line that passes through two points \( \left(x_{1}, y_{1}, z_{1}\right) \) and \( \left(x_{2}, y_{2}, z_{2}\right) \) is
\(\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}\)
So, the Cartesian equation of the line that passes through the origin ( \( 3,- \) \( 2,-5) \) and \( (3,-2,6) \) is
\(\frac{x-3}{3-3}=\frac{y-(-2)}{(-2)-(-2)}=\frac{z-(-5)}{6-(-5)}\)
\(\Rightarrow \frac{x-3}{0}=\frac{y+2}{0}=\frac{z+5}{0}\)
10. Find the angle between the following pairs of lines:
(i) \( \vec{r}=2 \hat{i}-5 \hat{j}+\hat{k}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{k}) \) and
\(\vec{r}=7 \hat{i}-6 \hat{j}+\mu(\hat{i}+2 \hat{j}+2 \hat{k})\)
(ii) \( \vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k}) \) and
\(\vec{r}=7 \hat{i}-6 \hat{j}-56 \hat{k}+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k})\)
Answer
We know that
If \( \theta \) is the acute angle between \( \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{1}}+\lambda \overrightarrow{\mathrm{b}_{1}} \) and \( \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{2}}+\mu \overrightarrow{\mathrm{b}_{2}} \) then
\( \cos \theta=\left|\frac{\overrightarrow{b_{1}}, \overrightarrow{b_{2}}}{ \mid\overrightarrow{b_{1}} \mid, \mid \overrightarrow{b_{2}\mid}}\right| \ldots \) (i)
\( \overrightarrow{\mathrm{r}}=2 \hat{i}-5 \hat{j}+\hat{\mathrm{k}}+\lambda(3 \hat{i}+2 \hat{j}+6 \hat{\mathrm{k}}) \ \text{and}\) \( \overrightarrow{\mathrm{r}}=7 \hat{i}-6 \hat{j}+\mu(\hat{i}+2 \hat{j}+2 \hat{\mathrm{k}}) \)
Here \( \overrightarrow{b_{1}}=3 \hat{i}+2 \hat{j}+6 \hat{k} \) and \( \overrightarrow{b_{2}}=\hat{i}+2 \hat{j}+2 \hat{k} \)
So, from (i), we have
\(\cos \theta=\left|\frac{(3 \hat{i}+2 \hat{j}+6 \widehat{k}),(\hat{i}+2 \hat{j}+2 \widehat{k})}{|3 \hat{i}+2 \hat{j}+6 \widehat{k}|,|\hat{i}+2 \hat{j}+2 \widehat{k}|}\right| \ldots(ii)\)
\(\Rightarrow \because|a \hat{i}+b \hat{j}+c \hat{k}|=\sqrt{a^{2}+b^{2}=c^{2}}\)
\(\Rightarrow \therefore|3 \hat{i}+2 \hat{j}+6 \hat{k}|=\sqrt{3^{2}+2^{2}+6^{2}}=\sqrt{9+4+36}=\sqrt{49}=7\)
And \( |\hat{i}+2 \hat{j}+2 \hat{k}|=\sqrt{1^{2}+2^{2}+2^{2}}=\sqrt{1+4+4}=\sqrt{9}=3 \)
Now\( \because\left(a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}\right) \cdot\left(a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}\right)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} \)
\(\Rightarrow \therefore(3 \hat{i}+2 \hat{j}+6 \hat{k}) \cdot(\hat{i}+2 \hat{j}+2 \hat{k}) \)
\(= 3 \times 1+2 \times 2+6 \times 2\)
\( =3+4+12=19\)
\( \Rightarrow \) By (ii), we have
\( \Rightarrow \cos \theta=\frac{19}{7 \times 3}=\frac{19}{21} \)
\( \Rightarrow \theta=\cos ^{-1}\left(\frac{19}{21}\right) \)
(ii)\( \vec{r}=3 \hat{i}+\hat{j}-2 \hat{k}+\lambda(\hat{i}-\hat{j}-2 \hat{k}) \ \text{and}\) \( \vec{r}=2 \hat{i}-\hat{j}-56 \hat{k}+\mu(3 \hat{i}-5 \hat{j}-4 \hat{k}) \)
Here \( \overrightarrow{b_{1}}=\hat{i}-\hat{j}-2 \hat{k} \) and \( \overrightarrow{b_{2}}=3 \hat{i}-5 \hat{j}-4 \hat{k} \)
So, from (i), we have
\(\cos \theta=\left|\frac{(\hat{i}-\hat{j}-2 \widehat{\mathrm{k}}),(3 \hat{i}-5 \hat{j}-4 \widehat{\mathrm{k}})}{|\hat{i}-\hat{j}-2 \widehat{\mathrm{k}}|,|3 \hat{i}-5 \hat{j}-4 \widehat{\mathrm{k}}|}\right| \ldots(iii)\)
\(\Rightarrow \because|\mathrm{a} \hat{i}+\mathrm{b} \hat{j}+\mathrm{c}\hat{k}|=\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}}\)
\(\Rightarrow \therefore|\hat{i}-\hat{j}-2 \hat{\mathrm{k}}|=\sqrt{1^{2}+(-1)^{2}+2^{2}}=\sqrt{1+1+4}=\sqrt{6}=\sqrt{3} \times \sqrt{2}\)
And \( |3 \hat{i}-5 \hat{j}-4 \hat{k}|=\sqrt{3^{2}+(-5)^{2}+(-4)^{2}}=\sqrt{9+25+16} \)
\(=\sqrt{50}=\sqrt{3} \times \sqrt{2}\)
\(\text { Now } \because\left(a_{i} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}\right) \cdot\left(a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}\right)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\)
\( \Rightarrow \therefore(\hat{i}-\hat{j}-2 \hat{k}) \cdot(3 \hat{i}-5 \hat{j}-4 \hat{k})=1 \times 3+(-1) \times(-5)+(-2) \times(-4)\)
\(=3+5+8=16\)
\(\Rightarrow \cos \theta=\frac{16}{\sqrt{3} \times \sqrt{2} \times 5 \sqrt{2}}=\frac{16}{5 \times 2 \sqrt{3}}=\frac{8}{5 \sqrt{3}}\)
\(\Rightarrow \theta=\cos ^{-1}\left(\frac{8}{5 \sqrt{3}}\right)\)
11. Find the angle between the following pair of lines:
(i) \( \frac{x-2}{2}=\frac{y-1}{5}-\frac{z+3}{-3} \) and \( \frac{x+2}{-1}=\frac{y-4}{8}-\frac{z-5}{4} \)
(ii) \( \frac{x}{2}=\frac{y}{2}=\frac{z}{1} \) and \( \frac{x-5}{4}=\frac{y-2}{1}-\frac{z-3}{8} \)
Answer
We know that
If \( \frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{\mathrm{~m}_{1}}=\frac{z-z_{1}}{\mathrm{n}_{1}} \) and \( \frac{x-x_{1}}{l_{2}}=\frac{y-y_{1}}{\mathrm{~m}_{2}}=\frac{z-z_{1}}{\mathrm{n}_{2}} \) are the equations of two lines, then the acute angle between the two lines is given by
\(\cos \theta=\left|l_{1} l_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}\right|\ldots\) (i)
(i) \( \frac{x-2}{2}=\frac{y-1}{5}-\frac{z+3}{-3} \) and \( \frac{x+2}{-1}=\frac{y-4}{8}-\frac{z-5}{4} \)
Here, \( a_{1}=2, b_{1}=5, c_{1}=-3 \) and \( a_{2}=-1, b_{2}=8, c_{2}=4 \)
Now, \( \because l=\frac{\mathrm{a}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}}}, \mathrm{~m}=\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}}}, \mathrm{n}=\frac{\mathrm{c}}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}}} \ldots \) (ii)
Here, \( \sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}=c_{1}{ }^{2}}=\sqrt{2^{2}+5^{2}=(-3)^{2}}=\sqrt{4+25+9}=\sqrt{38} \)
And \( \sqrt{\mathrm{a}_{2}{ }^{2}+\mathrm{b}_{2}{ }^{2}=\mathrm{c}_{2}{ }^{2}}=\sqrt{(-1)^{2}+8^{2}=4^{2}}=\sqrt{1+64+16}=\sqrt{81}=9 \)
So, from (ii), we have
\( \Rightarrow \)
\( l_{1}=\frac{a_{1}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}=c_{1}{ }^{2}}}=\frac{2}{3} m_{1}=\frac{b_{1}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}=c_{1}{ }^{2}}}=\frac{2}{3}, n_{1}=\frac{c_{1}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}=c_{1}{ }^{2}}}=\frac{1}{3} \)
and \( l_{2}=\frac{\mathrm{a}_{2}}{\sqrt{\mathrm{a}_{2}{ }^{2}+\mathrm{b}_{2}{ }^{2} \mathrm{c}_{2}{ }^{2}}}=\frac{4}{9}, \mathrm{~m}_{2}=\frac{\mathrm{b}_{2}}{\sqrt{\mathrm{a}_{2}{ }^{2}+\mathrm{b}_{2}{ }^{2}=\mathrm{c}_{2}{ }^{2}}}=\frac{1}{9}, \mathrm{n}_{2}=\frac{\mathrm{c}_{2}}{\sqrt{\mathrm{a}_{2}{ }^{2}+\mathrm{b}_{2}{ }^{2}=\mathrm{c}_{2}{ }^{2}}}=\frac{8}{9} \)
\( \therefore \) From (i), we have
\( \Rightarrow \cos \theta=\left|\left(\frac{2}{3} \times \frac{4}{9}\right)+\left(\frac{2}{3} \times \frac{1}{9}\right)+\left(\frac{1}{3} \times \frac{8}{9}\right)\right|=\left|\frac{8+2+8}{27}\right|=\frac{18}{27}=\frac{2}{3} \)
\( \Rightarrow \theta=\cos ^{-1}\left(\frac{2}{3}\right) \)
12. Find the values of \( p \) so that the lines
\( \frac{1-x}{3}=\frac{7 y-14}{2 p}=\frac{z-3}{2} \) and \( \frac{7-7 x}{3 p}=\frac{y-5}{1}=\frac{6-z}{5} \) are at right angles.
Answer
For any two lines to be at right angles, the angle between them should be \( \theta=90^{\circ} \).
\( \Rightarrow a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0 \), where \( a_{1}, b_{1}, c_{1} \) and \( a_{2}, b_{2}, c_{2} \) are the direction ratios of two lines.
The standard form of a pair of Cartesian lines is:
\( \frac{x-x_{1}}{\mathrm{a}_{1}}=\frac{y-y_{1}}{\mathrm{~b}_{1}}=\frac{z-z_{1}}{\mathrm{c}_{1}} \) and \( \frac{x-x_{1}}{\mathrm{a}_{2}}=\frac{y-y_{1}}{\mathrm{~b}_{2}}=\frac{z-z_{1}}{\mathrm{c}_{2}} \ldots\) (i)
Now, first we rewrite the given equations according to the standard form,
i.e. \( \frac{(-x-1)}{3}=\frac{7(y-2)}{2 \mathrm{p}}=\frac{z-3}{2} \) and \( \frac{-7(x-1)}{3 \mathrm{p}}=\frac{y-5}{1}=\frac{-(z-6)}{5} \) i.e.
\( \frac{x-1}{-3}=\frac{y-2}{2 \mathrm{p} / 7}=\frac{z-3}{2} \) and \( \frac{x-1}{-\frac{3 \mathrm{p}}{7} }=\frac{y-5}{1}=\frac{z-6}{-5} \ldots\) (ii)
Now, comparing (i) and (ii), we get
\( a_{1}=-3, b_{1}=\frac{2 p}{7}, c_{1}=2 \) and \( a_{2}=\frac{-3 p}{7}, b_{2}=1, c_{2}=-5 \)
Now, as both the lines are at right angles,
\(\text { so } a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\)
\(\Rightarrow(-3) \times\left(\frac{-3 p}{7}\right)+\left(\frac{2 p}{7}\right) \times 1+2 \times(-5)=0\)
\(\Rightarrow \frac{9 p}{7}+\frac{2 p}{7}-10=0\)
\(\Rightarrow \frac{9 p+2 p}{7}=10\)
\(\Rightarrow \frac{11 p}{7}=10\)
\(\Rightarrow 11 p=70\)
\(\Rightarrow p=\frac{70}{11}\)
13. Show that the lines \( \frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} \) and \( \frac{x}{1}=\frac{y}{2}=\frac{z}{3} \) are perpendicular to each other.
Answer
We know that
Two lines with direction ratios \( a_{1}, b_{1}, c_{1} \) and \( a_{2}, b_{2}, c_{2} \) are perpendicular if the angle between them is \( \theta=90^{\circ} \), i.e. \( a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0 \)
Also, here the direction ratios are:
\(\mathrm{a}_{1}=7, \mathrm{~b}_{1}=-5, \mathrm{c}_{1}=1 \text { and } \mathrm{a}_{2}=1, \mathrm{~b}_{2}=2, \mathrm{c}_{2}=3\)
Now, Consider
\(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=7 \times 1+(-5) \times 2+1 \times 3=7-10+3=-3+3=0\)
\( \therefore \) The two lines are perpendicular to each other.
class 12 chapter 11 maths ncert solutions || three dimensional geometry class 12 ncert solutions || ncert solutions for class 12 maths chapter 11 || ncert solutions for class 12 maths ch 11​ || class 12 maths chapter 11 ncert solutions || ex 11.2 class 12 maths ncert solutions || class 12 maths exercise 11.2 || class 12 maths ncert solutions chapter 11 exercise 11.2 || exercise 11.2 class 12 maths ncert solutions
Download the Math Ninja App Now
14. Find the shortest distance between the lines.
\(\overrightarrow{\mathrm{r}}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \text { and }\)
\(\overrightarrow{r}=2 \hat{i}-\hat{j}-\hat{k}+\mu(2 \hat{i}+\hat{j}+2 \hat{k})\)
Answer
We know that
\(\text{Shortest distance between two lines} \overrightarrow{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}} \) \( \text{and} \ \overrightarrow{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}} \) is
\(\mathrm{d}=\left|\frac{\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{1}}-\overrightarrow{a_{2}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right|\ldots\) (i)
Here, \( \overrightarrow{a_{1}}=\hat{i}+2 \hat{j}-\hat{k}, \overrightarrow{b_{1}}=\hat{i}-\hat{j}+\hat{k} \) and
\(\overrightarrow{a_{2}}=2 \hat{i}-\hat{j}-\hat{k}, \overrightarrow{b_{2}}=2 \hat{i}+\hat{j}+2 \hat{k}\)
Now, \( \because\left(x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{\mathrm{k}}\right)-\left(x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{\mathrm{k}}\right)=\left(x_{1}-x_{2}\right) \hat{i}\)
\(+\left(y_{1}-y_{2}\right) \hat{j}+\left(z_{1}-z_{2}\right) \hat{\mathrm{k}}\)
\(\therefore \overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}=(2 \hat{i}-\hat{j}-\hat{\mathrm{k}})-(\hat{i}+2 \hat{j}-\hat{\mathrm{k}})=\hat{i}-3 \hat{j}-2 \hat{\mathrm{k}} \ldots \text { (ii) }\)
Now, \( \overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=(\hat{i}-\hat{j}+\hat{\mathrm{k}}) \times(2 \hat{i}+\hat{j}+2 \hat{\mathrm{k}}) \)
\(\begin{array}{l}
\Rightarrow=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{\mathrm{k}} \\
1 & -1 & 1 \\
2 & 1 & 2
\end{array}\right|=-3 \hat{i}+3 \hat{\mathrm{k}} \end{array}\)
\(\Rightarrow \overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=-3 \hat{i}+3 \hat{\mathrm{k}} \ldots\) (iii)
\(\Rightarrow\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|=\sqrt{(-3)^{2}+3^{2}}=\sqrt{9+9}=\sqrt{18}=3 \sqrt{2}\ldots\) (iv)
Now, \( \because\left(a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{\mathrm{k}}\right)-\left(a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{\mathrm{k}}\right)=\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2} \)
\(\therefore\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)=(-3 \hat{i}+3 \hat{\mathrm{k}}) \cdot(\hat{i}-3 \hat{j}-2 \hat{\mathrm{k}})\)
\(\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)=-3-6=-9\ldots\) (v)
Now, using (i), we have
The shortest distance between the two lines, \( d=\left|\frac{-9}{3 \sqrt{2}}\right|=\frac{-9}{3 \sqrt{2}} \)
[From (iv) and (v)]
\(\Rightarrow=\frac{3}{\sqrt{2}}\)
Rationalizing the fraction by multiplying the numerator and denominator by \( \sqrt{2} \),
\(\Rightarrow \mathrm{d}=\frac{3}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{3 \sqrt{2}}{2}\)
15. Find the shortest distance between the lines \( \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \) and \( \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1} \)
Answer
We know that
Shortest distance between the lines:
\( \frac{x-x_{1}}{\mathrm{a}_{1}}=\frac{y-y_{1}}{\mathrm{~b}_{1}}=\frac{z-z_{1}}{\mathrm{c}_{1}} \) and \( \frac{x-x_{2}}{\mathrm{a}_{2}}=\frac{y-y_{2}}{\mathrm{~b}_{2}}=\frac{z-z_{2}}{\mathrm{c}_{2}} \) is
\( \mathrm{d}=\frac{\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|}{\sqrt{\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}+\left(c_{1} a_{2}-c_{2} a_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}} \ldots\) (i)
The standard form of a pair of Cartesian lines is:
\( \frac{x-x_{1}}{\mathrm{a}_{1}}=\frac{y-y_{1}}{\mathrm{~b}_{1}}=\frac{z-z_{1}}{\mathrm{c}_{1}} \) and \( \frac{x-x_{2}}{\mathrm{a}_{2}}=\frac{y-y_{2}}{\mathrm{~b}_{2}}=\frac{z-z_{2}}{\mathrm{c}_{2}} \)
And the given equations are: \( \frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} \) and \( \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1} \)
Comparing the given equations with the standard form, we get
\(x_{1}=-1, y_{1}=-1, z_{1}=-1 ; x_{2}=3, y_{2}=5, z_{2}=7\)
\(a_{1}=7, b_{1}=-6, c_{1}=1 ; a_{2}=1, b_{2}=-2, c_{2}=1\)
Now, consider
\(\begin{array}{l}
\Rightarrow\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
\mathrm{a}_{1} & \mathrm{~b}_{1} & \mathrm{c}_{1} \\
\mathrm{a}_{2} & \mathrm{~b}_{2} & \mathrm{c}_{2}
\end{array}\right| \\
\Rightarrow=\left|\begin{array}{ccc}
3-(-1) & 5-(-1) & 7-(-1) \\
7 & -6 & 1 \\
1 & -2 & 1
\end{array}\right|=\left|\begin{array}{ccc}
3+1 & 5+1 & 7+1 \\
7 & -6 & 1 \\
1 & -2 & 1
\end{array}\right| \\
\Rightarrow=\left|\begin{array}{ccc}
4 & 6 & 8 \\
7 & -6 & 1 \\
1 & -2 & 1
\end{array}\right| \\
\Rightarrow=4(-6+2)-6(7-1)+8(-14+6) \\
\Rightarrow=4(-4)-6 \times 6+8(-8) \\
\Rightarrow=-16-36-64=-116
\end{array}\)
Next, consider
\(\Rightarrow \sqrt{\left(\mathrm{b}_{1} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}\right)^{2}+\left(\mathrm{c}_{1} \mathrm{a}_{2}-\mathrm{c}_{2} \mathrm{a}_{1}\right)^{2}+\left(\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{a}_{2} \mathrm{~b}_{1}\right)^{2}}\)
\(\Rightarrow=\sqrt{((-6 \times 1)-(-2 \times 1))^{2}+((1 \times 1)-(1 \times 7))^{2}+((7 \times-2)-(1 \times-6))^{2}}\)
\(\Rightarrow=\sqrt{(-6+2)^{2}+(1-7)^{2}+(-14+6)^{2}}=\sqrt{(-4)^{2}+(-6)^{2}+(-8)^{2}}\)
\(\Rightarrow=\sqrt{16+36+64}=\sqrt{116}\)
\( \Rightarrow \) From (i), we have
\(\Rightarrow \mathrm{d}=\left|\frac{-116}{\sqrt{116}}\right|=\frac{116}{\sqrt{116}}=\frac{-116}{\sqrt{116}}=2 \sqrt{29}\)
16. Find the shortest distance between the lines whose vector equations are
\(\begin{array}{l}
\overrightarrow{\mathrm{r}}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(\hat{i}-3 \hat{j}+2 \hat{k}) \text { and } \\
\overrightarrow{r}=4 \hat{i}+5 \hat{j}-6 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})
\end{array}\)
Answer
We know that
\( \text{Shortest distance between two lines}\overrightarrow{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}} \) \( \text{and }\overrightarrow{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}} \) is
\(\mathrm{d}=\left|\frac{\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{1}}-\overrightarrow{a_{2}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right|\ldots\) (i)
Here, \( \overrightarrow{a_{1}}=\hat{i}+2 \hat{j}+3 \hat{k}, \overrightarrow{b_{1}}=\hat{i}-3 \hat{j}+2 \hat{k} \) and
\(\overrightarrow{\mathrm{a}_{2}}=4 \hat{i}+5 \hat{j}+6 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}_{2}}=2 \hat{i}+3 \hat{j}+\hat{k}\)
Now, \( \because\left(x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{\mathrm{k}}\right)-\left(x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{\mathrm{k}}\right)=\left(x_{1}-x_{2}\right) \hat{i}\)
\(+\left(y_{1}-y_{2}\right) \hat{j}+\left(z_{1}-z_{2}\right) \hat{\mathrm{k}}\)
\(\therefore \overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}=(4 \hat{i}+5 \hat{j}+6 \hat{\mathrm{k}})-(\hat{i}+2 \hat{j}+3 \hat{\mathrm{k}})=3 \hat{i}+3 \hat{j}+3 \hat{\mathrm{k}}\ldots\) (ii)
Now, \( \overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=(\hat{i}-3 \hat{j}+2 \hat{\mathrm{k}}) \times(2 \hat{i}+3 \hat{j}+\hat{\mathrm{k}}) \)
\( \Rightarrow=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 2 \\ 2 & 3 & 1\end{array}\right|=-9 \hat{i}+3 \hat{j}+9 \hat{k} \)
\(\Rightarrow \overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=-9 \hat{i}+3 \hat{j}+9 \hat{\mathrm{k}}\ldots\) (iii)
\(\Rightarrow\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|=\sqrt{(-9)^{2}+3^{2}+9^{2}}=\sqrt{81+9+81}\)\(=\sqrt{171}=3 \sqrt{19}\ldots\) (iv)
Now, \( \because\left(a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}\right)-\left(a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}\right)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} \)
\(\therefore\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)=(-9 \hat{i}+3 \hat{j}+9 \hat{\mathrm{k}}) \cdot(3 \hat{i}+3 \hat{j}+3 \hat{\mathrm{k}})\)
\(=-27+9+27=9\ldots\) (v)
Now, using (i), we have
\( \text{The shortest distance between the two lines,}\)
\( \mathrm{d}=\left|\frac{9}{3 \sqrt{19}}\right|=\frac{9}{3 \sqrt{19}}=\frac{3}{\sqrt{19}} \)
17. Find the shortest distance between the lines whose vector equations are
\(\overrightarrow{r}=(1+t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k} \text { and }\)
\(\overrightarrow{r}=(s+1) \hat{i}+(2 s-1) \hat{j}+(2 s-1) \hat{k}\)
Answer
Firstly, consider
\(=\overrightarrow{\mathrm{r}}=(1+\mathrm{t}) \hat{i}+(\mathrm{t}-2) \hat{j}+(3-2 \mathrm{t}) \hat{\mathrm{k}}\)
\(\Rightarrow \overrightarrow{\mathrm{r}}=\hat{i}-\mathrm{t} \hat{i}+\mathrm{t} \hat{j}+2 \hat{j}+3 \hat{\mathrm{k}}-2 \mathrm{t} \hat{k}\)
\(\Rightarrow \overrightarrow{\mathrm{r}}=\hat{i}-2 \hat{j}+3 \hat{\mathrm{k}}+\mathrm{t}(-\hat{i}+\hat{j}-2 \hat{k})\)
\(=\overrightarrow{\mathrm{r}}=(\mathrm{s}+1) \hat{i}+(2 s-1) \hat{j}+(2 s-1) \hat{k}\)
\(\Rightarrow \overrightarrow{\mathrm{r}}=\mathrm{s} \hat{i}+\hat{i}+2 \mathrm{~s} \hat{j}-\hat{j}-2 \mathrm{~s} \hat{\mathrm{k}}-\hat{\mathrm{k}}\)
\(\Rightarrow \overrightarrow{\mathrm{r}}=\hat{i}-\hat{j}-\hat{\mathrm{k}}+\mathrm{s}(\hat{i}+2 \hat{j}-2 \hat{k})\)
So, we need to find the shortest distance between \( \overrightarrow{\mathrm{r}}=\hat{i}-2 \hat{j}+3 \hat{k}+\mathrm{t}(-\hat{i}+\hat{j}-2 \hat{\mathrm{k}}) \) \(\text{and} \overrightarrow{\mathrm{r}}=\hat{i}-\hat{j}-\hat{\mathrm{k}}+\mathrm{s}(\hat{i}+2 \hat{j}-2 \hat{\mathrm{k}}) \).
Now, we know that
Shortest distance between two lines \( \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{1}}+\lambda \overrightarrow{\mathrm{b}_{1}} \) and \( \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{2}}+\mu \overrightarrow{\mathrm{b}_{2}} \) is
\(\left|\frac{\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{1}}-\overrightarrow{a_{2}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right|\ldots\) (i)
Here, \( \overrightarrow{a_{1}}=\hat{i}-2 \hat{j}+3 \hat{k}, \overrightarrow{b_{1}}=-\hat{i}+\hat{j}-2 \hat{k} \) and
\(\overrightarrow{a_{2}}=\hat{i}-\hat{j}-\hat{k}, \overrightarrow{b_{2}}=\hat{i}+2 \hat{j}-2 \hat{k}\)
Now, \( \because\left(x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{\mathrm{k}}\right)-\left(x_{2} \hat{i}+y_{2} \hat{j}+z_{2} \hat{\mathrm{k}}\right)=\left(x_{1}-x_{2}\right) \hat{i} \)
\( +\left(y_{1}-y_{2}\right) \hat{j}+\left(z_{1}-z_{2}\right) \hat{k} \)
\(\therefore \overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}=(\hat{i}-\hat{j}-\hat{\mathrm{k}})-(\hat{i}-2 \hat{j}+3 \hat{\mathrm{k}})=\hat{j}-4 \hat{\mathrm{k}}\ldots\) (ii)
Now, \( \overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=(-\hat{i}+\hat{j}-2 \hat{k}) \times(\hat{i}+2 \hat{j}-2 \hat{k}) \)
\(\begin{array}{l}
\Rightarrow\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{\mathrm{k}} \\
-1 & 1 & -2 \\
1 & 2 & -2
\end{array}\right|=2 \hat{i}-4 \hat{j}-3 \hat{\mathrm{k}} \\
\Rightarrow \overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=2 \hat{i}-4 \hat{j}-3 \hat{\mathrm{k}\ldots (\text{iii})}\end{array}\)
\(\Rightarrow\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|=\sqrt{2^{2}+(-4)^{2}+(-3)^{2}}=\sqrt{4+16+9}=\sqrt{29} \ldots\) (iv)
Now, \( \because\left(a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}\right)-\left(a_{2} \hat{i}+b_{2} \hat{j}+c_{2} \hat{k}\right)=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2} \)
\(\therefore\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right) \cdot\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)=(2 \hat{i}-4 \hat{j}-3 \hat{\mathrm{k}}) \cdot(\hat{j}-4 \hat{\mathrm{k}})=-4+12=8\ldots(v)\)
Now, using (i), we have
The shortest distance between the two lines, \( \mathrm{d}=\left|\frac{8}{\sqrt{29}}\right|=\frac{8}{\sqrt{29}} \)
class 12 chapter 11 maths ncert solutions || three dimensional geometry class 12 ncert solutions || ncert solutions for class 12 maths chapter 11 || ncert solutions for class 12 maths ch 11​ || class 12 maths chapter 11 ncert solutions || ex 11.2 class 12 maths ncert solutions || class 12 maths exercise 11.2 || class 12 maths ncert solutions chapter 11 exercise 11.2 || exercise 11.2 class 12 maths ncert solutions
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top