Ex 11.3 class 12 maths ncert solutions | class 12 maths exercise 11.3 | class 12 maths ncert solutions chapter 11 exercise 11.3 | exercise 11.3 class 12 maths ncert solutions | class 12 maths chapter 11 ncert solutions | class 12 chapter 11 maths ncert solutions | ncert solutions for class 12 maths ch 11 | ncert solutions for class 12 maths chapter 11 | three dimensional geometry class 12 ncert solutions
Want to conquer 3D geometry like a pro? The Class 12 Maths NCERT Solutions Chapter 11 Exercise 11.3 is your ultimate tool for understanding the angle between two lines, shortest distance between skew lines, and the conditions of parallelism and perpendicularity. Whether you’re exploring Class 12 Maths Exercise 11.3, Exercise 11.3 Class 12 Maths NCERT Solutions, or the full NCERT Solutions for Class 12 Maths Chapter 11, this guide provides detailed, step-by-step explanations to simplify even the most complex vector problems. With the Three Dimensional Geometry Class 12 NCERT Solutions, you’ll build the clarity and confidence needed to ace your exams effortlessly.

ncert solutions for class 12 maths chapter 11 || class 12 maths ncert solutions chapter 11 exercise 11.3 || three dimensional geometry class 12 ncert solutions || class 12 maths chapter 11 ncert solutions || ncert solutions for class 12 maths ch 11 || class 12 chapter 11 maths ncert solutions || ex 11.3 class 12 maths ncert solutions || exercise 11.3 class 12 maths ncert solutions || class 12 maths exercise 11.3
Exercise 11.3
1 A. In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
\(\mathrm{z}=2\)
\(\mathrm{z}=2\)
Answer
The eq. of the plane
\(\mathrm{z}=2\)
Direction ratio of the normal \( (0,0,1) \)
\(\therefore \sqrt{(0)^{2}+(0)^{2}+(1)^{2}}\)
\(=\sqrt{1}\)
\(\frac{0}{1} x+\frac{0}{1} y+\frac{1}{1} z=\frac{2}{1}\)
This is the form of
\( l x+m y+n z=\mathrm{d}(\therefore \mathrm{d}= \) Distance of the normal from the origin. \( ) \)
Direction cosines \( =0,0,1 \)
Distance \( (d)=2 \)
1 B. In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
\(x+y+z=1\)
\(x+y+z=1\)
Answer
The eq. of the plane
\(x+y+z=1\)
Direction ratio of the normal \( (1,1,1) \)
\(\therefore \sqrt{(1)^{2}+(1)^{2}+(1)^{2}}\)
\(=\sqrt{3}\)
\(\frac{1}{\sqrt{3}} x+\frac{1}{\sqrt{3}} y+\frac{1}{\sqrt{3}} z=\frac{1}{\sqrt{3}}\)
This is the form of
\( l x+m y+n z=d(\therefore \mathrm{d}= \) Distance of the normal from the origin. \( ) \)
Direction cosines \( =\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \)
Distance \( (d)=\frac{1}{\sqrt{3}} \)
ncert solutions for class 12 maths chapter 11 || class 12 maths ncert solutions chapter 11 exercise 11.3 || three dimensional geometry class 12 ncert solutions || class 12 maths chapter 11 ncert solutions || ncert solutions for class 12 maths ch 11 || class 12 chapter 11 maths ncert solutions || ex 11.3 class 12 maths ncert solutions || exercise 11.3 class 12 maths ncert solutions || class 12 maths exercise 11.3
1 C. In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
\(2 x+3 y-z=5\)
\(2 x+3 y-z=5\)
Answer
The eq. of the plane
\(2 x+3 y-z=5\)
Direction ratio of the normal \( (2,3,-1) \)
\( \therefore \sqrt{(2)^{2}+(3)^{2}+(-1)^{2}} \)
\( =\sqrt{14} \)
\( \frac{2}{\sqrt{14}} x+\frac{3}{\sqrt{14}} y+\frac{1}{\sqrt{14}} z=\frac{5}{\sqrt{14}} \)
This is the form of
\( l x+m y+n z=\mathrm{d}(\therefore \mathrm{d}= \) Distance of the normal from the origin. \( ) \)
Direction cosines \( =\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{-1}{\sqrt{14}} \)
Distance \( (d)=\frac{5}{\sqrt{14}} \)
1 D. In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
\(5 y+8=0\)
\(5 y+8=0\)
Answer
The eq. of the plane
\(0 x-5 y+0 z=8\)
Direction ratio of the normal \( (0,-5,0) \)
\(\therefore \sqrt{(0)^{2}+(-5)^{2}+(0)^{2}}\)
\(=\sqrt{25}\)
\(=5\)
\(\frac{0}{5} x-\frac{5}{5} y-\frac{0}{5} z=\frac{8}{5}\)
This is the form of
\( l x+m y+n z=\mathrm{d}(\therefore \mathrm{d}= \) Distance of the normal from the origin. \( ) \)
Direction cosine \( =0,-1,0 \)
Distance \( (\mathrm{d})=\frac{8}{5} \)
2. Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector \( 3 \hat{i}+5 \hat{j}-6 \hat{k} \).
Answer
Vector eq. of the plane with position vector \( \overrightarrow{r} \) is
\( \overrightarrow{\mathrm{r}} \hat{n}=\mathrm{d} \)
\( \hat{\mathrm{n}}=\frac{\overrightarrow{\mathrm{n}}}{|\overrightarrow{\mathrm{n}}|}=\frac{3 \hat{i}+5 \hat{j}-6 \hat{k}}{\sqrt{9+25+36}} \)
\( =\frac{3 \hat{i}+5 \hat{j}-6 \widehat{k}}{\sqrt{70}} \)
\( \overrightarrow{\mathrm{r}} \). \( \frac{3 \hat{\mathrm{i}}+5 \hat{j}-6 \widehat{\mathrm{k}}}{\sqrt{70}}=7 \)
\( \overrightarrow{\mathrm{r}} \cdot 3 \hat{i}+5 \hat{j}-6 \hat{k}=7 \sqrt{70} \)
3 A. Find the Cartesian equation of the following planes:
\( \overrightarrow{\mathrm{r}} .(\hat{i}+\hat{j}-\hat{k})=2 \)
\( \overrightarrow{\mathrm{r}} .(\hat{i}+\hat{j}-\hat{k})=2 \)
Answer
Let \( \overrightarrow{r} \) be the position vector of \( \mathrm{P}(x, y, z) \)
Hence, \( \overrightarrow{\mathrm{r}}=x \hat{\mathrm{i}}+y \hat{j}+z \hat{\mathrm{k}} \)
\( \therefore \overrightarrow{\mathrm{r}} \cdot(\hat{\mathrm{i}}+\hat{j}-\hat{\mathrm{k}})=2 \)
\( (x \hat{i}+y \hat{j}+z \hat{k}) \cdot(\hat{i}+\hat{j}-\hat{\mathrm{k}})=2 \)
So, Cartesian eq. is
\(x+y-z=2\)
3 B. Find the Cartesian equation of the following planes:
\( \overrightarrow{\mathrm{r}} .({2} \hat{i}+{3} \hat{j}-{4} \hat{k})=1 \)
\( \overrightarrow{\mathrm{r}} .({2} \hat{i}+{3} \hat{j}-{4} \hat{k})=1 \)
Answer
Let \( \overrightarrow{\mathrm{r}} \) be the position vector of \( \mathrm{P}(x, y, z) \)
Hence, \( \overrightarrow{\mathrm{r}}=x \hat{\mathrm{i}}+y \hat{j}+z \hat{\mathrm{k}} \)
\(\therefore \overrightarrow{\mathrm{r}} \cdot({2} \hat{i}+{3} \hat{j}-{4} \hat{k})=1\)
\((x \hat{i}+y \hat{j}+z \hat{\mathrm{k}}) \cdot(\widehat{2 \mathrm{i}}+\widehat{3 \mathrm{j}}-\widehat{4 \mathrm{k}})=1\)
So, Cartesian eq. is
\(2 x+3 y-4 z=1\)
3 C. Find the Cartesian equation of the following planes:
\(\overrightarrow{r} \cdot[(s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k}]=15\)
\(\overrightarrow{r} \cdot[(s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k}]=15\)
Answer
Let \( \overrightarrow{\mathrm{r}} \) be the position vector of \( \mathrm{P}(x, y, z) \)
Hence, \( \overrightarrow{\mathrm{r}}=x \hat{i}+y \hat{j}+z \hat{\mathrm{k}} \)
\(\therefore \overrightarrow{\mathrm{r}} .[(\mathrm{s}-2 \mathrm{t}) \hat{i}+(3-\mathrm{t}) \hat{j}+(2 \mathrm{~s}+\mathrm{t}) \hat{\mathrm{k}}]=15\)
\((x \hat{i}+y \hat{j}+z \hat{\mathrm{k}}) \cdot[(\mathrm{s}-2 \mathrm{t}) \hat{i}+(3-\mathrm{t}) \hat{j}+(2 \mathrm{~s}+\mathrm{t}) \hat{\mathrm{k}}]=15\)
So, Cartesian eq. is
\((s-2 t) \hat{i}+(3-t) \hat{j}+(2 s+t) \hat{k}=15\)
4 A. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
\(2 x+3 y+4 z-12=0\)
\(2 x+3 y+4 z-12=0\)
Answer
Let the coordinate of the foot of \( \perp \mathrm{P} \) from the origin to the given plane be P \( (x, y, z) \).
\(2 x+3 y+4 z=12\)
Direction ratio \( (2,3,4) \)
\(\begin{array}{l}
\therefore \sqrt{(2)^{2}+(3)^{2}+(4)^{2}} \\
=\sqrt{4+9+16} \\
=\sqrt{29} \\
\frac{2}{\sqrt{29}} x+\frac{3}{\sqrt{29}} y+\frac{4}{\sqrt{29}} z=\frac{12}{\sqrt{29}}
\end{array}\)
This is the form of
\( l x+m y+n z=\mathrm{d}(\therefore \mathrm{d}= \) Distance of the normal from the origin.
Direction cosines \( =\frac{2}{\sqrt{29}}, \frac{3}{\sqrt{29}}, \frac{4}{\sqrt{29}} \)
Coordinate of the foot \( (l d, m d, n d)=\frac{24}{29}, \frac{36}{9}, \frac{48}{29} \)
4 B. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
\(3 y+4 z-6=0\)
\(3 y+4 z-6=0\)
Answer
Let the coordinate of the foot of \( \perp \mathrm{P} \) from the origin to the given plane be \( \mathrm{P}(x, y, z) \).
\(0 x+3 y+4 z=6\)
Direction ratio \( (0,3,4) \)
\(\therefore \sqrt{(0)^{2}+(3)^{2}+(4)^{2}}\)
\(=\sqrt{0+9+16}\)
\(=\sqrt{25}=5\)
\(\frac{0}{5} x+\frac{3}{5} y+\frac{4}{5} z=\frac{6}{5}\)
This is the form of
\( l x+m y+n z=\mathrm{d}(\therefore \mathrm{d}= \) Distance of the normal from the origin.
Direction cosines \( =\frac{0}{5}, \frac{3}{5}, \frac{4}{5} \)
Coordinate of the foot \( (l d, m d, n d)=0, \frac{18}{25}, \frac{24}{25} \)
4 C. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
\(x+y+z=1\)
\(x+y+z=1\)
Answer
Let the coordinate of the foot of \( \perp \mathrm{P} \) from the origin to the given plane be \( \mathrm{P}(x, y, z) \).
\(x+y+z=1\)
Direction ratio \( (0,3,4) \)
\( \therefore \sqrt{(1)^{2}+(1)^{2}+(1)^{2}} \)
\( =\sqrt{1+1+1} \)
\( =\sqrt{3} \)
\( \frac{1}{\sqrt{3}} x+\frac{1}{\sqrt{3}} y+\frac{1}{\sqrt{3}} z=\frac{1}{\sqrt{3}} \)
This is the form of
\( l x+m y+n z=\mathrm{d}(\therefore \mathrm{d}= \) Distance of the normal from the origin. \( ) \)
Direction cosines \( =\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \)
Coordinate of the foot \( (l d, m d, n d)=\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \)
ncert solutions for class 12 maths chapter 11 || class 12 maths ncert solutions chapter 11 exercise 11.3 || three dimensional geometry class 12 ncert solutions || class 12 maths chapter 11 ncert solutions || ncert solutions for class 12 maths ch 11 || class 12 chapter 11 maths ncert solutions || ex 11.3 class 12 maths ncert solutions || exercise 11.3 class 12 maths ncert solutions || class 12 maths exercise 11.3
4 D. In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
\(x-5 y+z=1\)
\(x-5 y+z=1\)
Answer
Let the coordinate of the foot of \( \perp \mathrm{P} \) from the origin to the given plane be \( \mathrm{P}(x, y, z) \).
\(x-5 y+0 z=1\)
Direction ratio \( (0,-5,0) \)
\(\therefore \sqrt{(0)^{2}+(-5)^{2}+(0)^{2}}\)
\(=\sqrt{0+25+0}\)
\(=\sqrt{25}\)
\(=5\)
\(\frac{0}{5} x+\frac{5}{5} y+\frac{0}{5} z=\frac{8}{5}\)
This is the form of
\( l x+m y+n z=\mathrm{d}(\therefore \mathrm{d}= \) Distance of the normal from the origin. \( ) \)
Direction cosines \( =0,-1,0 \)
Coordinate of the foot \( (l d, m d, n d)=0,-\frac{8}{5}, 0 \)
5 A. Find the vector and cartesian equations of the planes that passes through the point \( (1,0,-2) \) and the normal to the plane is \( \hat{i}+\hat{j}-\hat{k} \).
Answer
Let the position vector of the point
\(\overrightarrow{a}=(1 \hat{i}+0 \hat{j}-2 \hat{k})\)
Normal \( \overrightarrow{\mathrm{N}} \perp \) to the plane
\(\overrightarrow{N}=\hat{i}+\hat{j}-\hat{k}\)
Vector eq. of the plane,
\((\overrightarrow{r}-\overrightarrow{a}) \cdot \overrightarrow{N}=0\)
\((\overrightarrow{r}-(\hat{i}-2 \hat{k})) \cdot \hat{i}+\hat{j}-\hat{k}=0\)
\(\text { As, } \overrightarrow{\mathrm{r}}=x \hat{i}+y \hat{j}+z \hat{\mathrm{k}}\)
\(\therefore(x \hat{i}+y \hat{j}+z \hat{\mathrm{k}}-\hat{i}+2 \hat{\mathrm{k}}) \cdot \hat{i}+\hat{j}-\hat{\mathrm{k}}=0\)
\(x-1+y-z-2=0\)
\(x+y-z-3=0\)
Required Cartesian eq. of the plane
\(x+y-z=3\)
5 B. Find the vector and cartesian equations of the planes that passes through the point \( (1,4,6) \) and the normal vector to the plane is \( \hat{i}-2 \hat{j}+\hat{k} \).
Answer
Let the position vector of the point
\(\overrightarrow{a}=(1 \hat{i}+4 \hat{j}+6 \hat{k})\)
Normal \( \overrightarrow{\mathrm{N}} \perp \) to the plane
\(\overrightarrow{N}=\hat{i}-2 \hat{j}+\hat{k}\)
Vector eq. of the plane,
\((\overrightarrow{r}-\overrightarrow{a}) \cdot \overrightarrow{N}=0\)
\((\overrightarrow{r}-(1 \hat{i}+4 \hat{j}+6 \hat{k})) \cdot \hat{i}-2 \hat{j}+\hat{k}=0\)
As, \( \overrightarrow{\mathrm{r}}=x \hat{\mathrm{i}}+y \hat{j}+z \hat{\mathrm{k}} \)
\(\begin{array}{l}
\therefore(x \hat{i}+y \hat{j}+z \hat{\mathrm{k}}-\hat{i}-4 \hat{j}+6 \hat{\mathrm{k}}) \cdot \hat{i}-2 \hat{j}+\hat{\mathrm{k}}=0 \\
{[(x-1) \hat{i}+(y-4) \hat{j}+(z-6) \hat{\mathrm{k}}] \cdot \hat{i}-2 \hat{j}+\hat{\mathrm{k}}=0} \\
x-1-2 y+8+z-6=0 \\
x-2 y+z+1=0
\end{array}\)
Required Cartesian eq. of the plane
\(x-2 y+z=-1\)
ncert solutions for class 12 maths chapter 11 || class 12 maths ncert solutions chapter 11 exercise 11.3 || three dimensional geometry class 12 ncert solutions || class 12 maths chapter 11 ncert solutions || ncert solutions for class 12 maths ch 11 || class 12 chapter 11 maths ncert solutions || ex 11.3 class 12 maths ncert solutions || exercise 11.3 class 12 maths ncert solutions || class 12 maths exercise 11.3
6 A. Find the equations of the planes that passes through three points.
\((1,1,-1),(6,4,-5),(-4,-2,3)\)
\((1,1,-1),(6,4,-5),(-4,-2,3)\)
Answer
The given points are \( (1,1,-1),(6,4,-5),(-4,-2,3) \).
Let,
\(\begin{array}{l}
=\left|\begin{array}{lrr}
1 & 1 & -1 \\
6 & 4 & -5 \\
-4 & -2 & 3
\end{array}\right| \\
=1(12-10)-1(18-20)-1(-12+16) \\
=2+2-4=0
\end{array}\)
Since, the value of determinant is 0 .
Therefore, these points are collinear as there will be infinite planes passing through the given 3 points.
6 B. Find the equations of the planes that passes through three points.
\((1,1,0),(1,2,1),(-2,2,-1)\)
\((1,1,0),(1,2,1),(-2,2,-1)\)
Answer
The given points are \( (1,1,0),(1,2,1),(-2,2,-1) \)
Let,
\(\begin{array}{l}
=\left|\begin{array}{lrr}
1 & 1 & 0 \\
1 & 2 & 1 \\
-2 & 2 & -1
\end{array}\right| \\
=1(-2-2)-1(-1+2) \\
=-4-1 \\
=-5 \neq 0
\end{array}\)
There passes a unique plane from the given 3 points.
Equation of the plane passes through the points, \( \left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \) and \( \left(x_{3}, y_{3}, z_{3}\right) \), i.e.,
\(\begin{array}{l}
=\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}
\end{array}\right| \\
=\left|\begin{array}{ccc}
x-1 & y-1 & z \\
x_{2}-1 & y_{2}-1 & z_{2} \\
x_{3}-1 & y_{3}-1 & z_{3}
\end{array}\right|
\end{array}\)
\(=\left|\begin{array}{ccc}
x-1 & y-1 & z \\
1-1 & 2-1 & 1 \\
-2-1 & 2-1 & -1
\end{array}\right|\)
\(\begin{array}{l}
=\left|\begin{array}{ccc}
x-1 & y-1 & z \\
0 & 1 & 1 \\
-3 & 1 & -1
\end{array}\right| \\
\Rightarrow(x-1)(-2)-(y-1)(3)+3 z=0 \\
\Rightarrow-2 x+2-3 y+3+3 z=0 \\
\Rightarrow 2 x+3 y-3 z=5
\end{array}\)
This is the required eq. of the plane.
7. Find the intercepts cut off by the plane \( 2 x+y-z=5 \).
Answer
We know that, the eq. of the plane in intercept form
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
where \( \mathrm{a}, \mathrm{b}, \mathrm{c} \) is the intercepts cut-off by the plane at \( \mathrm{x}, \mathrm{y} \) and z axes respectively.
\(\Rightarrow 2 x+y-z=5\ldots(i)\)
Dividing both side of (i)eq. by 5 , we get
\(\Rightarrow \frac{2}{5} x+\frac{y}{5}-\frac{z}{5}=\frac{5}{5}\)
\(\Rightarrow \frac{2}{5} x+\frac{y}{5}-\frac{z}{5}=1\)
\(\Rightarrow \frac{x}{\frac{5}{2}}+\frac{y}{5}+\frac{z}{-5}=1\)
Here, \( \mathrm{a}=\frac{5}{2}, \mathrm{~b}=5 \) and \( \mathrm{c}=-5 \)
Thus, the intercepts cut-off by the plane are \( \frac{5}{2},5 \) and -5 .
8. Find the equation of the plane with intercept 3 on the \( y \)-axis and parallel to \( ZOX\) plane.
Answer
We know that the eq. of the plane \(ZOX\) is
\(y=0\)
Eq. of plane parallel to it is of the form, \( y=\mathrm{a} \)
Hence, the required eq. of the plane is
\(y=3\)
9. Find the equation of the plane through the intersection of the planes \( 3 x-y+2 z-4=0 \) and \( x+y+z-2=0 \) and the point \( (2,2,1) \).
Answer
Eq. of the plane passes through the intersection of the plane is given by
\((3 x-y+2 z-4)+\lambda(x+y+z-2)=0\)
\( \because \) Plane passes through the points \( (2,2,1) \)
\((3 \times 2-2+2 \times 1-4)+\lambda(2+2+1-2)=0\)
\(2+3 \lambda=0\)
\(3 \lambda=-2\)
\(\lambda=\frac{-2}{3} \ldots\text { (i) }\)
Hence, the required eq. of the plane
\((3 x-y+2 z-4)-\frac{2}{3}(x+y+z-2)=0\)
\(\frac{9 x-3 y+6 z-12-2 x-2 y-2 z+4}{3}=0\)
\(7 x-5 y+4 z-8=0\)
This is the required eq. of the plane.
ncert solutions for class 12 maths chapter 11 || class 12 maths ncert solutions chapter 11 exercise 11.3 || three dimensional geometry class 12 ncert solutions || class 12 maths chapter 11 ncert solutions || ncert solutions for class 12 maths ch 11 || class 12 chapter 11 maths ncert solutions || ex 11.3 class 12 maths ncert solutions || exercise 11.3 class 12 maths ncert solutions || class 12 maths exercise 11.3
10. Find the vector equation of the plane passing through the intersection of the planes\( \overrightarrow{\mathrm{r}} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=7, \overrightarrow{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9 \) and through the point \( (2,1,3) \).
Answer
Let the vector eq. of the plane passing through the intersection of the planes
\( \overrightarrow{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=7 \), and \(\overrightarrow{r} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{k})=9 \)
Here, \( \overrightarrow{r} .(2 \hat{i}+2 \hat{j}-3 \hat{k})-7=0 \)
\( \overrightarrow{r} .(2 \hat{i}+5 \hat{j}+3 \hat{k})-9=0 \)
\( \therefore[\overrightarrow{\mathrm{r}} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{\mathrm{k}})-7]+\lambda[\overrightarrow{\mathrm{r}} \cdot(2 \hat{i}+5 \hat{j}+3 \hat{\mathrm{k}})-9]=0 \)
\( \overrightarrow{\mathrm{r}} \cdot[(2 \hat{i}+2 \hat{j}-3 \hat{\mathrm{k}})+(2 \lambda \hat{i}+5 \lambda \hat{j}+3 \lambda \hat{\mathrm{k}})]-7-9 \lambda=0 \)
\( \overrightarrow{\mathrm{r}} \cdot[(2+2 \lambda) \hat{i}+(2+5 \lambda) \hat{j}+(-3+3 \lambda) \hat{\mathrm{k}}]-7-9 \lambda=0 \)
\( \because \) Plane passes through points \( (2,1,3) \)
\((2 \hat{i}+\hat{j}+3 \hat{k}) \cdot[(2+2 \lambda) \hat{i}+(2+5 \lambda) \hat{j}+(-3+3 \lambda) \hat{k}]-7-9 \lambda=0\)
\(4+4 \lambda+2+5 \lambda-9+9 \lambda-7-9 \lambda=0\)
\(9 \lambda=10\)
\(\lambda=\frac{10}{9}\)
\(\overrightarrow{\mathrm{r}} \cdot \left[\left(2+\frac{20}{9}\right) \hat{i}+\left(2+\frac{50}{9}\right) \hat{j}+\left(-3+\frac{30}{9}\right) \hat{\mathrm{k}}\right]-7-9 \frac{10}{9}=0\)
\(\overrightarrow{\mathrm{r}} .\left[\left(2+\frac{20}{9}\right) \hat{i}+\left(2+\frac{50}{9}\right) \hat{j}+\left(-3+\frac{30}{9}\right) \hat{k}\right]-17=0\)
\(\overrightarrow{\mathrm{r}} \cdot\left[\left(2+\frac{20}{9}\right) \hat{i}+\left(2+\frac{50}{9}\right) \hat{j}+\left(-3+\frac{30}{9}\right) \hat{\mathrm{k}}\right]=17\)
\(\overrightarrow{\mathrm{r}} \cdot\left[\frac{38}{9} \hat{i}+\frac{68}{9} \hat{j}+\frac{3}{9} \hat{k}\right]=17\)
\(\overrightarrow{\mathrm{r}} \cdot[38 \hat{i}+68 \hat{j}+3 \hat{k}]=153\)
This is the required vector eq. of the plane.
11. Find the equation of the plane through the line of intersection of the planes \( x+y+z=1 \) and \( 2 x+3 y+4 z=5 \) which is perpendicular to the plane \( x-y+z=0 \).
Answer
Let the eq. of the plane that passes through the two-given plane \( x+y+z \) \( =1 \) and \( 2 x+3 y+4 z=5 \) is
\((x+y+z-1)+\lambda(2 x+3 y+4 z-5)=0\)
\((2 \lambda+1) x+(3 \lambda+1) y+(4 \lambda+1) z-1-5 \lambda=0\) (i)
Direction ratio of the plane \( (2 \lambda+1,3 \lambda+1,4 \lambda+1) \)
and Direction ratio of another plane \( (1,-1,1) \)
\( \because \) Both are \( \perp \) hence
\((2 \lambda+1 \times 1)+(3 \lambda+1 \times(-1))+(4 \lambda+1 \times 1)=0\)
\(2 \lambda+1-3 \lambda-1+4 \lambda+1=0\)
\(\lambda=\frac{-1}{3}\)
Put the value of \( \lambda \) in (i)eq., we get
\(\left(2 \frac{(-1)}{3}+1\right) x+\left(3 \frac{(-1)}{3}+1\right) y+\left(4 \frac{(-1)}{3}+1\right) z\)
\(\frac{1}{3} x-\frac{1}{3} z+\frac{2}{3}=0\)
\(x-z+2=0\)
This is the required eq. of the plane.
12. Find the angle between the planes whose vector equations are \( \overrightarrow{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5, \overrightarrow{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=5 \)
Answer
The eq. of the given planes are
\( \overrightarrow{r} \cdot(2 \hat{i}+2 \hat{j}-3 \hat{k})=5 \), and \( \overrightarrow{r} \cdot(3 \hat{i}-3 \hat{j}+5 \hat{k})=5 \)
If \( n_{1} \) and \( n_{2} \) are normal to the planes, \( \overrightarrow{r_{1}} \cdot \overrightarrow{n_{1}}=d_{2} \) and \( \overrightarrow{r_{2}} \cdot \overrightarrow{n_{2}}=d_{2} \)
Angle between two planes
\(\cos \theta=\left|\frac{\overrightarrow{\mathrm{n}_{1}} \cdot \overrightarrow{\mathrm{n}_{2}}}{\left|\overrightarrow{\mathrm{n}_{1}} \cdot \overrightarrow{\mathrm{n}_{2}}\right|}\right|\)
\(=\left|\frac{6-6-15}{\sqrt{4+4+9} \sqrt{9+9+25}}\right|\)
\(=\left|\frac{-15}{\sqrt{17} \sqrt{43}}\right|\)
\(\theta=\cos ^{-1}\left(\frac{-15}{\sqrt{17} \sqrt{43}}\right)\)
\(=\cos ^{-1}\left(\frac{15}{\sqrt{731}}\right)\)
13 A. In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.
\(7 x+5 y+6 z+30=0 \text { and } 3 x-y-10 z+4=0\)
\(7 x+5 y+6 z+30=0 \text { and } 3 x-y-10 z+4=0\)
Answer
The eq. of the given planes are
\(7 x+5 y+6 z+30=0 \text { and } 3 x-y-10 z+4=0\)
Two planes are \( \perp \) if the direction ratio of the normal to the plane is
\(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\)
\(21-5-60\)
\(-44 \neq 0\)
\( \therefore \) Both the planes are not \( \perp \) to each other.
Two planes are \(||\) to each other if the direction ratio of the normal to the plane is
\(\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}=\frac{\mathrm{c}_{1}}{\mathrm{c}_{2}}\)
\(\frac{7}{3} \neq \frac{5}{-1} \neq \frac{6}{-10}\)
\( \therefore \) Both the planes are not \( \| \) to each other.
The angle between them is given by
\(\begin{array}{l}
\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right| \\
=\left|\frac{-44}{\sqrt{49+25+36} \sqrt{9+1+100}}\right| \\
=\left|\frac{-44}{\sqrt{110} \sqrt{110}}\right|=\frac{-44}{110} \\
\theta=\cos ^{-1} \frac{2}{5}
\end{array}\)
13 B. In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.
\(2 x+y+3 z-2=0 \text { and } x-2 y+5=0\)
\(2 x+y+3 z-2=0 \text { and } x-2 y+5=0\)
Answer
The eq. of the given planes is are
\(2 x+y+3 z-2=0 \text { and } x-2 y+5=0\)
Two planes are \( \perp \) if the direction ratio of the normal to the plane is
\(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\)
\(2 \times 1+1 \times(-2)+3 \times 0\)
\(=0\)
Thus, the given planes are \( \perp \) to each other.
13 C. In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.
\(2 x-2 y+4 z+5=0 \text { and } 3 x-3 y+6 z-1=0\)
\(2 x-2 y+4 z+5=0 \text { and } 3 x-3 y+6 z-1=0\)
Answer
The eq. of the given planes are
\(2 x-2 y+4 z+5=0 \text { and } x-2 y+5=0\)
Two planes are \( \perp \) if the direction ratio of the normal to the plane is
\(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\)
\(6+6+24\)
\(36 \neq 0\)
\( \therefore \) Both the planes are not \( \perp \) to each other.
Two planes are \(\|\) to each other if the direction ratio of the normal to the plane is
\(\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}\)
\(\frac{2}{3}=\frac{-2}{-3}=\frac{4}{6}\)
\(\frac{2}{3}=\frac{2}{3}=\frac{2}{3}\)
Thus, the given planes are \( \| \) to each other.
13 D. In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.
\(2 x-y+3 z-1=0 \text { and } 2 x-y+3 z+3=0\)
\(2 x-y+3 z-1=0 \text { and } 2 x-y+3 z+3=0\)
Answer
The eq. of the given planes are
\(2 x-y+3 z-1=0 \text { and } 2 x-y+3 z+3=0\)
Two planes are \( \perp \) if the direction ratio of the normal to the plane is
\(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\)
\(2 \times 2+(-1) \times(-1)+3 \times 3\)
\(14 \neq 0\)
\( \therefore \) Both the planes are not \( \perp \) to each other.
Two planes are \( \| \) to each other if the direction ratio of the normal to the plane is
\(\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}\)
\(\frac{2}{2}=\frac{-1}{-1}=\frac{3}{5}\)
\(\frac{1}{1}=\frac{1}{1}=\frac{1}{1}\)
Thus, the given planes are \( \| \) to each other.
13 E. In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.
\(4 x+8 y+z-8=0 \text { and } y+z-4=0\)
\(4 x+8 y+z-8=0 \text { and } y+z-4=0\)
Answer
The eq. of the given planes are
\(4 x+8 y+z-8=0 \text { and } y+z-4=0\)
Two planes are \( \perp \) if the direction ratio of the normal to the plane is
\(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\)
\(0+8+1\)
\(9 \neq 0\)
\( \therefore \) Both the planes are not \( \perp \) to each other.
Two planes are \(\|\) to each other if the direction ratio of the normal to the plane is
\(\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}\)
\(\frac{4}{0} \neq \frac{8}{1} \neq \frac{1}{1}\)
\( \therefore \) Both the planes are not \( \| \) to each other.
The angle between them is given by
\(\begin{array}{l}
\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right| \\
=\left|\frac{4 \times 0+8 \times 1+1 \times 1}{\sqrt{16+64+1} \sqrt{0+1+1}}\right|
\end{array}\)
\(\begin{array}{l}
=\frac{9}{9 \sqrt{2}} \\
\theta=\cos ^{-1} \frac{9}{9 \sqrt{2}} \\
=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=45^{\circ}
\end{array}\)
14 A . In the following cases, find the distance of each of the given points from the corresponding given plane.
Point Plane
\((0,0,0) 3 x-4 y+12 z=3\)
Point Plane
\((0,0,0) 3 x-4 y+12 z=3\)
Answer
Distance of point \( \mathrm{P}\left(x_{1}, y_{1}, z_{1}\right) \) from the plane \( \mathrm{Ax}+\mathrm{By}+\mathrm{Cz}-\mathrm{D}=0 \) is
\(\mathrm{d}=\left|\frac{\mathrm{Ax}_{1}+\mathrm{By}_{1}+\mathrm{Cz}_{1}-\mathrm{D}}{\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}}}\right|\)
Given point is \( (0,0,0) \) and the plane is \( 3 x-4 y+12 z=3 \)
\(d=\left|\frac{0+0+0+3}{\sqrt{9+16+144}}\right|\)
\(=\left|\frac{3}{\sqrt{169}}\right|=\frac{3}{13}\)
14 B. In the following cases, find the distance of each of the given points from the corresponding given plane.
Point Plane
\((3,-2,1) 2 x-y+2 z+3=0\)
Point Plane
\((3,-2,1) 2 x-y+2 z+3=0\)
Answer
Given point is \( (3,-2,1) \) and the plane is \( 2 x-y+2 z+3=0 \)
\(d=\left|\frac{6+2+2+3}{\sqrt{4+1+4}}\right|\)
\(=\left|\frac{13}{\sqrt{9}}\right|=\frac{13}{3}\)
14 C. In the following cases, find the distance of each of the given points from the corresponding given plane.
Point Plane
\((2,3,-5) x+2 y-2 z=9\)
Point Plane
\((2,3,-5) x+2 y-2 z=9\)
Answer
Given point is \( (2,3,-5) \) and the plane is \( x+2 y-2 z=9 \)
\(d=\left|\frac{2+6+10-9}{\sqrt{1+4+4}}\right|\)
\(=\left|\frac{9}{\sqrt{9}}\right|\)
\(=\frac{9}{3}=3\)
14 D. In the following cases, find the distance of each of the given points from the corresponding given plane.
Point Plane
\((-6,0,0) 2 x-3 y+6 z-2=0\)
Point Plane
\((-6,0,0) 2 x-3 y+6 z-2=0\)
Answer
Given point is \( (-6,0,0) \) and the plane is \( 2 x-3 y+6 z-2=0 \)
\(d=\left|\frac{-12-0+0-2}{\sqrt{4+9+36}}\right|\)
\(=\left|\frac{14}{\sqrt{49}}\right|\)
\(=\frac{14}{7}=2\)