Ex 4.2 class 12 maths ncert solutions | exercise 4.2 class 12 maths ncert solutions | class 12 maths chapter 4 exercise 4.2 solutions | maths class 12 chapter 4 ncert solutions | determinants maths class 12 | class 12 maths determinants exercise 4.2
Looking for Ex 4.2 Class 12 Maths NCERT Solutions? You’re in the right place! This section provides accurate and detailed answers to all the questions from Exercise 4.2 Class 12 Maths NCERT Solutions, based on Chapter 4 – Determinants. This exercise focuses on the properties of determinants, including how they can be used to simplify the calculation of a determinant. The Class 12 Maths Chapter 4 Exercise 4.2 Solutions are crafted to help students apply these properties effectively in various problems. Whether you’re studying for board exams or reinforcing your concepts, these Maths Class 12 Chapter 4 NCERT Solutions offer the clarity and practice you need. Explore the Class 12 Maths Determinants Exercise 4.2 to master the techniques of solving determinant-based questions with confidence and ease.

class 12 maths determinants exercise 4.2 || determinants maths class 12 || ex 4.2 class 12 maths ncert solutions || class 12 maths chapter 4 exercise 4.2 solutions || exercise 4.2 class 12 maths ncert solutions || maths class 12 chapter 4 ncert solutions
Exercise 4.2
\(\left|\begin{array}{lll}
x & a & x+a \\
y & b & y+b \\
x & c & c+d
\end{array}\right|=0\)
Applying Operations \( \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2} \) (i.e. Replacing \( 1^{\text {st }} \) column by addition of \( 1^{\text {st }} \) and \( 2^{\text {nd }} \) column)
\(\therefore \text { L.H.S. }=\left|\begin{array}{lll}
x+a & a & x+a \\
y+b & b & y+b \\
z+c & c & z+c
\end{array}\right|\)
\( \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{3} \) (i.e. Replacing \( 1^{\text {st }} \) column by subtraction of \( 1^{\text {st }} \) and \( 3^{\text {rd }} \) column)
\(\therefore \text {L.H.S. }=\left|\begin{array}{lll}
0 & a & x+a \\
0 & b & y+b \\
0 & c & z+c
\end{array}\right|\)
If any one of the rows or columns of a determinant is 0 then the value of that determinant is 0 .
\(\begin{array}{l}
\therefore \text { LHS }=0=\text { RHS } \\
\therefore\left|\begin{array}{lll}
x & a & x+a \\
y & b & y+b \\
z & c & z+c
\end{array}\right|=0
\end{array}\)
\(\left|\begin{array}{lll}
a-b & b-c & c-a \\
b-c & c-a & a-b \\
c-a & a-b & b-c
\end{array}\right|=0\)
\(\therefore \text { L.H.S. }=\left|\begin{array}{lll}
a-b & b-c & c-a \\
b-c & c-a & a-b \\
c-a & a-b & b-c
\end{array}\right|\)
\( \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{3} \) (i.e. Replacing \( 1^{\text {st }} \) column by addition of \( 1^{\text {st }} \) and \( 3^{\text {rd }} \) column)
\(\therefore \text { L.H.S. }=\left|\begin{array}{lll}
0 & b-c & c-a \\
0 & c-a & a-b \\
0 & a-b & b-c
\end{array}\right|\)
If any one of the rows or columns of a determinant is 0 then the value of that determinant is 0 .
\(\begin{array}{l}
\therefore \mathrm{LHS}=0=\mathrm{RHS} \\
\left|\begin{array}{lll}
a-b & b-c & c-a \\
b-c & c-a & a-b \\
c-a & a-b & b-c
\end{array}\right|=0
\end{array}\)
class 12 maths determinants exercise 4.2 || determinants maths class 12 || ex 4.2 class 12 maths ncert solutions || class 12 maths chapter 4 exercise 4.2 solutions || exercise 4.2 class 12 maths ncert solutions || maths class 12 chapter 4 ncert solutions
2 & 7 & 65 \\
3 & 8 & 75 \\
5 & 9 & 86
\end{array}\right|=0\)
2 & 7 & 65 \\
3 & 8 & 75 \\
5 & 9 & 86
\end{array}\right|\)
Applying Operation \( \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+9 \mathrm{C}_{2} \) (i.e. Replacing \( 1^{\text {st }} \) column by addition of \( 1^{\text {st }} \) column and 9 times second column)
\( \therefore \) L.H.S \( =\left|\begin{array}{lll}2+9 \times 7 & 7 & 65 \\ 3+9 \times 8 & 8 & 75 \\ 5+9 \times 9 & 9 & 86\end{array}\right| \)
\( \therefore \) L.H.S \( =\left|\begin{array}{lll}65 & 7 & 65 \\ 75 & 8 & 75 \\ 86 & 9 & 86\end{array}\right| \)
\( \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{3} \) (i.e. Replacing \( 1^{\text {st }} \) column by subtraction of \( 1^{\text {st }} \) and \( 3^{\text {rd }} \) column)
\( \therefore \) L.H.S \( =\left|\begin{array}{lll}0 & 7 & 65 \\ 0 & 8 & 75 \\ 0 & 9 & 86\end{array}\right| \)
If any one of the rows or columns of a determinant is 0 then the value of that determinant is 0.
\( \therefore \) LHS \( =0= \) RHS
\( \therefore\left|\begin{array}{lll}2 & 7 & 65 \\ 3 & 8 & 75 \\ 5 & 9 & 86\end{array}\right| \)
\(\left|\begin{array}{lll}
1 & b c & a(b+c) \\
1 & c a & b(c+a) \\
1 & a b & c(a+b)
\end{array}\right|=0\)
1 & b c & a b+a c \\
1 & c a & b c+a b \\
1 & a b & a c+b c
\end{array}\right|\left|\begin{array}{lll}
1 & b c & a(b+c) \\
1 & c a & b(c+a) \\
1 & a b & c(a+b)
\end{array}\right|=0\)
\( \mathrm{C}_{3} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{3} \) (i.e. replace \( 3^{\text {rd }} \) column by addition of \( 2^{\text {nd }} \) and \( 3^{\text {rd }} \) column)
\( \therefore \) L.H.S \( =\left|\begin{array}{lll}1 & b c & a b+b c+a c \\ 1 & c a & a b+b c+a c \\ 1 & a b & a b+b c+a c\end{array}\right| \)
Taking \( \mathrm{ab}+\mathrm{bc}+\mathrm{ac} \) outside determinant
\( \therefore \) L.H.S \( =\left|\begin{array}{lll}1 & b c & 1 \\ 1 & c a & 1 \\ 1 & a b & 1\end{array}\right| \)
\( \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{3} \) (i.e. replace \( 1^{\text {st }} \) column by subtraction of \( 1^{\text {st }} \) and \( 3^{\text {rd }} \) column)
\( \therefore \) L.H.S \( =\left|\begin{array}{lll}0 & b c & 1 \\ 0 & c a & 1 \\ 0 & a b & 1\end{array}\right| \)
If any one of the rows or columns of a determinant is 0 then the value of that determinant is 0 .
\( \therefore \) LHS \( =0= \) RHS
\( \therefore\left|\begin{array}{lll}1 & b c & a(b+c) \\ 1 & c a & b(c+a) \\ 1 & a b & c(a+b)\end{array}\right|=0 \)
\(\left|\begin{array}{lll}
b+c & q+r & y+z \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right|=2\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|\)
Here we can split the LHS determinant as
\(\therefore \text { LHS }=\left|\begin{array}{lll}
b & q & y \\
c & r & z \\
a & p & x
\end{array}\right|+\left|\begin{array}{lll}
c & r & z \\
a & p & x \\
b & q & y
\end{array}\right|=\mathrm{u}+\mathrm{v}\)
For the determinant, u perform the following transformation \( \mathrm{R}_{1} \leftrightarrow \mathrm{R}_{3} \) (i.e. interchange \( 1^{\text {st }} \) row with \( 3^{\text {rd }} \) row)
When two particular rows/columns of a determinant are interchanged the value becomes negative 1 times the original value.
\( \therefore \) LHS \( =(-1)\left|\begin{array}{lll}a & p & x \\ c & r & z \\ b & q & y\end{array}\right|+\left|\begin{array}{lll}c & r & z \\ a & p & x \\ b & q & y\end{array}\right|=\mathrm{u}+\mathrm{v} \)
\( \mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2} \) (i.e. interchange \( 1^{\text {st }} \) row with \( 2^{\text {nd }} \) row)
\( \therefore \) LHS \( =(-1)^{2}\left|\begin{array}{lll}c & r & z \\ a & p & x \\ b & q & y\end{array}\right|\left|\begin{array}{lll}c & r & z \\ a & p & x \\ b & q & y\end{array}\right|=\mathrm{u}+\mathrm{v} \)
\( \therefore \) LHS \( =2\left|\begin{array}{lll}c & r & z \\ a & p & x \\ b & q & y\end{array}\right| \)
\( R_{1} \leftrightarrow R_{3} \) (i.e. interchange \( 1^{\text {st }} \) row with \( 3^{\text {rd }} \) row)
\( \therefore \) LHS \( =(-1)^{2}\left|\begin{array}{lll}b & q & y \\ a & p & x \\ c & r & z\end{array}\right| \)
\( \mathrm{R}_{1} \leftrightarrow \mathrm{R}_{2} \) (i.e. interchange \( 1^{\text {st }} \) row with \( 2^{\text {nd }} \) row)
\( \therefore \) LHS \( =(-1)^{2} \times 2\left|\begin{array}{lll}a & p & x \\ b & q & y \\ c & r & z\end{array}\right| \)
\( \therefore \) LHS \( = \) RHS
\(\therefore\left|\begin{array}{lll}
b+c & q+r & y+z \\
c+a & r+p & z+x \\
a+b & p+q & x+y
\end{array}\right|=2\left|\begin{array}{lll}
a & p & x \\
b & q & y \\
c & r & z
\end{array}\right|\)
class 12 maths determinants exercise 4.2 || determinants maths class 12 || ex 4.2 class 12 maths ncert solutions || class 12 maths chapter 4 exercise 4.2 solutions || exercise 4.2 class 12 maths ncert solutions || maths class 12 chapter 4 ncert solutions
\(\left|\begin{array}{ccc}
0 & a & -b \\
-a & 0 & -c \\
b & c & 0
\end{array}\right|=0\)
\(\left|\begin{array}{ccc}
0 & a & -b \\
-a & 0 & -c \\
b & c & 0
\end{array}\right|=0\)
\( R_{1} \rightarrow c R_{1} \) (i.e. replace \( 1^{\text {st }} \) row by multiplying it with \( c \) )
As we are multiplying we should also divide c so that the original given determinant is not changed
\( \therefore \) LHS \( =\frac{1}{c}\left|\begin{array}{ccc}0 & a c & -b c \\ -a & 0 & -c \\ b & c & 0\end{array}\right| \)
\( R_{1} \rightarrow R_{1}-b R_{2} \) (i.e. replace \( 1^{\text {st }} \) row by subtraction of \( 1^{\text {st }} \) row and \( b \) times \( 2^{\text {nd }} \) row)
\( \therefore \) LHS \( =\frac{1}{c}\left|\begin{array}{ccc}a b & a b & 0 \\ -a & 0 & -c \\ b & c & 0\end{array}\right| \)
Taking a outside the determinant from \( 1^{\text {st }} \) row
\( \therefore \) LHS \( =\frac{a}{c}\left|\begin{array}{ccc}b & c & 0 \\ -a & 0 & -c \\ b & c & 0\end{array}\right| \)
If any two rows or columns of a determinant are identical then the value of that determinant is 0 because we get a row or column with all elements 0 when we when we subtract those particular rows/columns here the transformation is \( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{3} \)
\(\begin{array}{l}
\therefore \mathrm{LHS}=0=\mathrm{RHS} \\
\therefore\left|\begin{array}{ccc}
0 & a & -b \\
-a & 0 & -c \\
b & c & 0
\end{array}\right|=0
\end{array}\)
\(\left|\begin{array}{ccc}
-a^{2} & a b & a c \\
b a & -b^{2} & b c \\
c a & c b & -c^{2}
\end{array}\right|=4 a^{2} b^{2} c^{2}\)
\(\therefore \text { LHS }=\text { abc }\left|\begin{array}{ccc}
-a & a & a \\
b & -b & b \\
c & c & -c
\end{array}\right|\)
Taking '\( a \)', '\( b \)' and '\( c \)' outside the determinant from \( 1^{\text {st }}, 2^{\text {nd }} \) and \( 3{ }^{\text {rd }} \) row respectively
\(\therefore \text { LHS }=\mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{c}^{2}\left|\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right|\)
\( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2} \) (i.e. Replacing \( 1^{\text {st }} \) row by addition of \( 1^{\text {st }} \) and \( 2^{\text {nd }} \) row)
\(\therefore \text { LHS }=a^{2} b^{2} c^{2}\left|\begin{array}{ccc}
0 & 0 & 2 \\
1 & -1 & 1 \\
1 & 1 & -1
\end{array}\right|\)
pending the determinant along 1st row
\(\begin{array}{l}
\therefore \text { LHS }=\mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{c}^{2} \times 2\left|\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right| \\
\therefore \text { LHS }=\mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{c}^{2} \times 2(1-(-1))=4 \mathrm{a}^{2} \mathrm{b}^{2}\mathrm{c}^{2}=\text { RHS } \\
\therefore\left|\begin{array}{ccc}
-a^{2} & a b & a c \\
b a & -b^{2} & b c \\
c a & c b & -c^{2}
\end{array}\right|=4 \mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{c}^{2}
\end{array}\)
\(\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right|=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})\)
\( R_{2} \rightarrow R_{2}-R_{3} \) (i.e. Replacing \( 2^{\text {nd }} \) row by subtraction of \( 2^{\text {nd }} \) and \( 3^{\text {rd }} \) row)
\(\therefore \text { LHS }=\left|\begin{array}{ccc}
0 & a-b & a^{2}-b^{2} \\
0 & b-c & b^{2}-c^{2} \\
1 & c & c^{2}
\end{array}\right|\)
Since we know \( \mathrm{a}_{2}-\mathrm{b}_{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b}) \)
Therefore, taking \( (\mathrm{a}-\mathrm{b}) \) and \( (\mathrm{b}-\mathrm{c}) \) outside the determinant from \( 1^{\text {st }} \) and \( 2^{\text {nd }} \) row respectively
\(\therefore \text { LHS }=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})\left|\begin{array}{ccc}
0 & 1 & a+b \\
0 & 1 & b+c \\
1 & c & c^{2}
\end{array}\right|\)
\( R_{1} \rightarrow R_{1}-R_{2} \) (i.e. Replacing \( 1^{\text {st }} \) row by subtraction of \( 1^{\text {st }} \) and \( 2^{\text {nd }} \) row)
\(\therefore \text { LHS }=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})\left|\begin{array}{ccc}
0 & 0 & a-c \\
0 & 1 & b+c \\
1 & c & c^{2}
\end{array}\right|\)
Expanding the determinant along 1st column
\(\begin{array}{l}
\therefore \mathrm{LHS}=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})\left|\begin{array}{ll}
0 & a-c \\
1 & b+c
\end{array}\right| \\
\therefore \mathrm{LHS}=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(0-(\mathrm{a}-\mathrm{c})) \\
\therefore \mathrm{LHS}=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})=\mathrm{RHS} \\
\therefore\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & b & b^{2} \\
1 & c & c^{2}
\end{array}\right|=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})
\end{array}\)
\(\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{3} & b^{3} & c^{3}
\end{array}\right|=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})(\mathrm{a}+\mathrm{b}+\mathrm{c})\)
\( \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3} \) (i.e. Replacing \( 2^{\text {nd }} \) column by subtraction of \( 2^{\text {nd }} \) and \( 3^{\text {rd }} \) column)
\(\therefore \mathrm{LHS}=\left|\begin{array}{ccc}
0 & 0 & 1 \\
a-b & b-c & c \\
a^{3}-b^{3} & b^{3}-c^{3} & c^{3}
\end{array}\right|\)
We have \( a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \) and
\( b^{3}-c^{3}=(b-c)\left(b^{2}+b c+c^{2}\right) \)
Therefore, taking \( (\mathrm{a}-\mathrm{b}) \) and \( (\mathrm{b}-\mathrm{c}) \) outside the determinant from \( 1^{\text {st }} \) and \( 2^{\text {nd }} \) column respectively
\(\therefore \mathrm{LHS}=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})\left|\begin{array}{ccc}
0 & 0 & 0 \\
1 & 1 & c \\
a^{2}+a b+b^{2} & b^{2}+b c+c^{2} & c^{3}
\end{array}\right|\)
\( \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{2} \) (i.e. Replacing \( 1^{\text {st }} \) column by subtraction of \( 1^{\text {st }} \) and \( 2^{\text {nd }} \) column)
\(\therefore \text { LHS }=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})\left|\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & c \\
\left(a^{2}-c^{2}+b[a-c]\right) & b^{2}+b c+c^{2} & c^{3}
\end{array}\right|\)
As \( \left(a^{2}-c^{2}\right)=(a+c)(a-c) \) therefore taking \( (a-c) \) outside the determinant from \( 1^{\text {st }} \) column we get
\(\therefore \text { LHS }=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{a}-\mathrm{c})\left|\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & c \\
(a+c)+b & b^{2}+b c+c^{2} & c^{3}
\end{array}\right|\)
Expanding the determinant along 1st row
\(\therefore \operatorname{LHS}=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{a}-\mathrm{c})(-(\mathrm{a}+\mathrm{b}+\mathrm{c}))\)
Adjusting the minus sign with \( (\mathrm{a}-\mathrm{c}) \)
\(\begin{array}{l}
\therefore \text { LHS }=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})(\mathrm{a}+\mathrm{b}+\mathrm{c})=\text { RHS } \\
\therefore\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a^{3} & b^{3} & c^{3}
\end{array}\right|=(\mathrm{a}-\mathrm{b})(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})(\mathrm{a}+\mathrm{b}+\mathrm{c})
\end{array}\)
\(\left|\begin{array}{lll}
x & x^{2} & y z \\
y & y^{2} & z x \\
z & z^{2} & x y
\end{array}\right|=(x-y)(y-\mathrm{z})(x-\mathrm{z})(xy+yz+zx)\)
\( \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{3} \) (i.e. Replacing \( 2^{\text {nd }} \) row by subtraction of \( 2^{\text {nd }} \) and \( 3^{\text {rd }} \) row)
\(\therefore \text { LHS }=\left|\begin{array}{ccc}
x-y & x^{2}-y^{2} & y z-z x \\
y-z & y^{2}-z^{2} & z x-x y \\
z & z^{2} & x y
\end{array}\right|\)
We know \( x^{2}-y^{2}=(x+y)(x-y) \) and
\( y^{2}-z^{2}=(y+z)(y-z) \)
Therefore, taking \( (x-y) \) and \( (y-z) \) outside the determinant from \( 1^{\text {st }} \) and \( 2^{\text {nd }} \) row respectively
\( \therefore \) LHS \( =(x-y)(y-z)=\left|\begin{array}{ccc}1 & x+y & -z \\ 1 & y+z & -x \\ z & z^{2} & x y\end{array}\right| \)
\( R_{1} \rightarrow R_{1}-R_{2} \) (i.e. Replacing \( 1^{\text {st }} \) row by subtraction of \( 1^{\text {st }} \) and \( 2^{\text {nd }} \) row)
\( \therefore \) LHS \( =(x-y)(y-z)=\left|\begin{array}{ccc}0 & x-z & x-z \\ 1 & y+z & -x \\ z & z^{2} & x y\end{array}\right| \)
Taking \( (x-z) \) outside determinant from \( 1^{\text {st }} \) row
\( \therefore \) LHS \( =(x-y)(y-z)(x-z)\left|\begin{array}{ccc}0 & 1 & 1 \\ 1 & y+z & -x \\ z & z^{2} & x y\end{array}\right| \)
\( \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3} \) (i.e. Replacing \( 2^{\text {nd }} \) column by subtraction of \( 2^{\text {nd }} \) and \( 3^{\text {rd }} \) column)
\( \therefore \) LHS \( =(x-y)(y-z)(x-z)\left|\begin{array}{ccc}0 & 0 & 1 \\ 1 & y+z+x & -x \\ z & z^{2}-x y & x y\end{array}\right| \)
Expanding the determinant along \( 1^{\text {st }} \) row
\( \therefore \) LHS \( =(x-y)(y-z)(x-z)\left|\begin{array}{cc}1 & x+y+z \\ z & z^{2}-x y\end{array}\right| \)
\( \therefore \) LHS \( =(x-y)(y-z)(x-z)\left(z^{2}-xy-xz-yz-z^{2}\right) \)
Cancelling \( z^{2} \) and adjusting the negative sign wHith \( (x-z) \)
\( \therefore \) LHS \( =(x-y)(y-z)(z-x)(xy+yz+ zx)= \) RHS
\(\therefore\left|\begin{array}{lll}
x & x^{2} & y z \\
y & y^{2} & z x \\
z & z^{2} & x y
\end{array}\right|=(x-y)(y-z)(x-z)(xy+yz+zx)\)
\(\left|\begin{array}{ccc}
x+4 & 2 x & 2 x \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right|=(5 x+4)(4-x)^{2}\)
\( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \) (i.e. replace \(1^{\text {st }}\) row by addition of \( 1^{\text {st }}, 2^{\text {nd }} \) and \( 3^{\text {rd }} \) row)
\(\therefore \text { LHS }=\left|\begin{array}{ccc}
5 x+4 & 5 x+4 & 5 x+4 \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right|\)
Taking \( 5 x+4 \) outside the determinant from \( 1^{\text {st }} \) row
\(\therefore \text { LHS }=(5 x+4)\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 x & x+4 & 2 x \\
2 x & 2 x & x+4
\end{array}\right|\)
\( \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1} \) (i.e. replace \( 2^{\text {nd }} \) column by subtraction of \( 2^{\text {nd }} \) and \( 1^{\text {st }} \) column)
\( \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1} \) (i.e. replace \( 3^{\text {rd }} \) column by subtraction of \( 3^{\text {rd }} \) and \( 1^{\text {st }} \) column)
\(\therefore \text { LHS }=(5 x+4)\left|\begin{array}{ccc}
1 & 0 & 0 \\
2 x & 4-x & 0 \\
2 x & 0 & 4-x
\end{array}\right|\)
Expanding the determinant along 1st row
\(\therefore \text { LHS }=(5 x+4)\left|\begin{array}{cc}
4-x & 0 \\
0 & 4-x
\end{array}\right|\)
\( \therefore \) LHS \( =(5 x-4)(4-x)^{2}= \) RHS
\( \therefore\left|\begin{array}{ccc}x+4 & 2 x & 2 x \\ 2 x & x+4 & 2 x \\ 2 x & 2 x & x+4\end{array}\right|=(5 x+4)(4-x)^{2} \)
\(\left|\begin{array}{ccc}
y+k & y & y \\
y & y+k & y \\
y & y & y+k
\end{array}\right|=\mathrm{k}^{2}(3 \mathrm{y}+\mathrm{k})\)
\(\therefore \text { LHS }=\left|\begin{array}{ccc}
3 y+k & 3 y+k & 3 y+k \\
y & y+k & y \\
y & y & y+k
\end{array}\right|\)
Taking \( 3 \mathrm{y}+\mathrm{k} \) outside the determinant from \( 1^{\text {st }} \) row
\(\therefore \text { LHS }=(3 \mathrm{y}+\mathrm{k})\left|\begin{array}{ccc}
1 & 1 & 1 \\
y & y+k & y \\
y & y & y+k
\end{array}\right|\)
\( \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1} \) (i.e. replace \( 2^{\text {nd }} \) column by subtraction of \( 2^{\text {nd }} \) and \( 1^{\text {st }} \) column)
\( \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1} \) (i.e. replace \( 3^{\text {rd }} \) column by subtraction of \( 3^{\text {rd }} \) and \( 1^{\text {st }} \) column)
\(\therefore \text { LHS }=(3 \mathrm{y}+\mathrm{k})\left|\begin{array}{lll}
1 & 0 & 0 \\
y & k & 0 \\
y & 0 & k
\end{array}\right|\)
Expanding the determinant along \( 1^{\text {st }} \) row
\(\therefore \text { LHS }=(3 \mathrm{y}+\mathrm{k})\left|\begin{array}{cc}
k & 0 \\
0 & k
\end{array}\right|\)
\(\begin{array}{l}
\therefore \text { LHS }=(3 \mathrm{y}+\mathrm{k}) \mathrm{k}^{2}=\text { RHS } \\
\therefore\left|\begin{array}{ccc}
y+k & y & y \\
y & y+k & y \\
y & y & y+k
\end{array}\right|=\mathrm{k}^{2}(3 \mathrm{y}+\mathrm{k})
\end{array}\)
\(\left|\begin{array}{ccc}
a-b-c & 2 a & 2 a \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|=(\mathrm{a}+\mathrm{b}+\mathrm{c})^{3}\)
\(\therefore \text { LHS }=\left|\begin{array}{ccc}
a+b+c & a+b+c & a+b+c \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|\)
Taking \( \mathrm{a}+\mathrm{b}+\mathrm{c} \) outside the determinant from \( 1^{\text {st }} \) row
\(\therefore \text { LHS }=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|\)
\( \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1} \) (i.e. replace \( 2^{\text {nd }} \) column by subtraction of \( 2^{\text {nd }} \) and \( 1^{\text {st }} \) column)
\( C_{3} \rightarrow C_{3}-C_{1} \) (i.e. replace \( 3^{\text {rd }} \) column by subtraction of \( 3^{\text {rd }} \) and \( 1^{\text {st }} \) column)
\(\therefore \text { LHS }=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{ccc}
1 & 0 & 0 \\
2 b & -b-c-a & 0 \\
2 c & 0 & -c-a-b
\end{array}\right|\)
Expanding the determinant along \( 1^{\text {st }} \) row
\(\begin{array}{l}
\therefore \text { LHS }=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{cc}
-(a+b+c) & 0 \\
0 & -(a+b+c)
\end{array}\right| \\
\therefore \text { LHS }=(\mathrm{a}+\mathrm{b}+\mathrm{c})^{3}=\text { RHS } \\
\therefore\left|\begin{array}{ccc}
a-b-c & 2 a & 2 a \\
2 b & b-c-a & 2 b \\
2 c & 2 c & c-a-b
\end{array}\right|=(\mathrm{a}+\mathrm{b}+\mathrm{c})^{3}
\end{array}\)
\(\left|\begin{array}{ccc}
x+y+2 z & x & y \\
z & y+z+2 x & y \\
z & x & z+x+2 y
\end{array}\right|=2(x+y+z)^{3}\)
\(\therefore \text { LHS }=\left|\begin{array}{ccc}
2 x+2 y+2 z & x & y \\
2 z+2 y+2 z & y+z+2 x & y \\
2 x+2 y+2 z & x & z+x+2 y
\end{array}\right|\)
Taking \( 2(x+y+z\) outside the determinant from \( 1^{\text {st }} \) column
\(\therefore \text { LHS }=2(x+y+z)\left|\begin{array}{ccc}
1 & x & y \\
1 & y+z+2 x & y \\
1 & x & z+x+2 y
\end{array}\right|\)
\( R_{2} \rightarrow R_{2}-R_{1} \) (i.e. replace \( 2^{\text {nd }} \) row by subtraction of \( 2^{\text {nd }} \) and \( 1^{\text {st }} \) row)
\( R_{3} \rightarrow R_{3}-R_{1} \) (i.e. replace \( 3^{\text {rd }} \) row by subtraction of \( 3^{\text {rd }} \) and \( 1^{\text {st }} \) row)
\(\therefore \text { LHS }=2(x+y+z)\left|\begin{array}{ccc}
1 & x & y \\
0 & x+y+z & 0 \\
0 & 0 & x+y+z
\end{array}\right|\)
Expanding the determinant along \( 1^{\text {st }} \) column
\(\begin{array}{l}
\therefore \text { LHS }=2(x+y+z)\left|\begin{array}{cc}
x+y+z & 0 \\
0 & x+y+z
\end{array}\right| \\
\therefore \text { LHS }=2(x+y+z)^{3}=\mathrm{RHS} \\
\therefore\left|\begin{array}{ccc}
x+y+2 z & x & y \\
z & y+z+2 x & y \\
z & x & z+x+2 y
\end{array}\right|=2(x+y+z)^{3}
\end{array}\)
class 12 maths determinants exercise 4.2 || determinants maths class 12 || ex 4.2 class 12 maths ncert solutions || class 12 maths chapter 4 exercise 4.2 solutions || exercise 4.2 class 12 maths ncert solutions || maths class 12 chapter 4 ncert solutions
\(\left|\begin{array}{ccc}
1 & x & x^{2} \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right|=\left(1-x^{3}\right)^{2}\)
\(\therefore \text { LHS }=\left|\begin{array}{ccc}
1-x^{3} & 0 & 0 \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right|\)
Taking (\( 1-x^{3} \)) outside the determinant from \( 1^{\text {st }} \) row
\(\therefore \text { LHS }=\left(1-x^{3}\right)\left|\begin{array}{ccc}
1 & 0 & 0 \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right|\)
Expanding the determinant along \( 1^{\text {st }} \) row
\(\begin{array}{l}
\therefore \text { LHS }=\left(1-x^{3}\right)\left|\begin{array}{cc}
1 & x \\
x^{2} & 1
\end{array}\right| \\
\therefore \text { LHS }=\left(1-x^{3}\right)^{2}=\mathrm{RHS} \\
\therefore\left|\begin{array}{ccc}
1 & x & x^{2} \\
x^{2} & 1 & x \\
x & x^{2} & 1
\end{array}\right|=\left(1-x^{3}\right)^{2}
\end{array}\)
\(\left|\begin{array}{ccc}
1+a^{2}-b^{2} & 2 a b & -2 b \\
2 a b & 1-a^{2}+b^{2} & 2 a \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3}\)
\( R_{2} \rightarrow R_{2}+a R_{3} \) (i.e. replace \( 2^{\text {nd }} \) row by subtraction of \( 2^{\text {nd }} \) row and a times \( 3^{\text {rd }} \) row)
\( \therefore \) LHS \( =\left|\begin{array}{ccc}1+a^{2}+b^{2} & 0 & -b\left(1+a^{2}+b^{2}\right) \\ 0 & 1+a^{2}+b^{2} & a\left(1+a^{2}+b^{2}\right) \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right| \)
Taking both \( \left(1+a^{2}+b^{2}\right) \) outside the determinant from \( 1^{\text {st }} \) and \( 2^{\text {nd }} \) row
\(\therefore \text { LHS }=(1+\mathrm{a}^{2}+\mathrm{b}^ {2})^{2}\left|\begin{array}{ccc}
1 & 0 & -b \\
0 & 1 & a \\
2 b & -2 a & 1-a^{2}-b^{2}
\end{array}\right|\)
Expanding the determinant along \( 1^{\text {st }} \) row
\( \therefore \) LHS \( =\left(1+\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{2}\left[\left|\begin{array}{cc}1 & a \\ -2 a & 1-a^{2}-b^{2}\end{array}\right|-b\left| \begin{array}{cc}0 & 1 \\ 2 b & -2 a\end{array} \right\rvert\,\right] \)
\( \therefore \text { LHS }=\left(1+\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{2}\left[1+\mathrm{a}^{2}-\mathrm{b}^{2}-\left(-2 \mathrm{~b}^{2}\right)\right]\)
\(\therefore \text { LHS }=\left(1+\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{2}\left(1+\mathrm{a}^{2}+\mathrm{b}^{2}\right)\)
\(\therefore \text { LHS }=\left(1+\mathrm{a}^{2}+\mathrm{b}^{2}\right)^{3}=\mathrm{RHS} \)
\( \therefore\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right| \)
\(\left|\begin{array}{ccc}
a^{2}+1 & a b & a c \\
a b & b^{2}+1 & b c \\
c a & c b & c^{2}+1
\end{array}\right|=1+\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\)
\( \therefore \) LHS \( =\mathrm{abc}\left|\begin{array}{ccc}a+\frac{1}{a} & b & c \\ a & b+\frac{1}{b} & c \\ a & b & c+\frac{1}{c}\end{array}\right| \)
\( R_{2} \rightarrow R_{2}-R_{1} \) (i.e. replace \( 2^{\text {nd }} \) row by subtraction of \( 2^{\text {nd }} \) and \( 1^{\text {st }} \) row)
\( R_{3} \rightarrow R_{3}-R_{1} \) (i.e. replace \( 3^{\text {rd }} \) row by subtraction of \( 3^{\text {rd }} \) and \( 1^{\text {st }} \) row)
\( \therefore \) LHS \( = \) abc \( \left|\begin{array}{ccc}a+\frac{1}{a} & b & c \\ -\frac{1}{a} & \frac{1}{b} & 0 \\ -\frac{1}{a} & 0 & \frac{1}{c}\end{array}\right| \)
\( \mathrm{C}_{1} \rightarrow \mathrm{aC}_{1} \) (i.e. replace \( 1^{\text {st }} \) column by 'a' times \( 1^{\text {st }} \) column)
\( \mathrm{C}_{2} \rightarrow \mathrm{bC}_{2} \) (i.e. replace \( 2^{\text {nd }} \) column by 'b' times \( 2^{\text {nd }} \) column)
\( \rightarrow \mathrm{cC}_{3} \) (i.e. replace \( 3{ }^{\text {rd }} \) column by ' c ' times \( 3{ }^{\text {rd }} \) column)
As we are multiplying by \( \mathrm{a}, \mathrm{b} \) and c we should also divide by \( \mathrm{a}, \mathrm{b} \) and \( c \) to keep the original determinant value unchanged.
\(\therefore \text { LHS }=\frac{a b c}{a b c}\left|\begin{array}{ccc}
a^{2}+1 & b^{2} & c^{2} \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right|\)
\( \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3} \) (i.e. replace \( 1^{\text {st }} \) column by addition of \( 1^{\text {st }}, 2^{\text {nd }} \) and \( 3^{\text {rd }} \) column)
\( \therefore \) LHS \( =\left|\begin{array}{ccc}1+a^{2}+b^{2}+c^{2} & b^{2} & c^{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right| \)
Expanding determinant along 1st column
\(\begin{array}{l}
\therefore \text { LHS }=\left(1+\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right| \\
\therefore \text { LHS }=\left(1+\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)=\text { RHS } \\
\therefore\left|\begin{array}{ccc}
a^{2}+1 & a b & a c \\
a b & b^{2}+1 & b c \\
c a & c b & c^{2}+1
\end{array}\right|=\left(1+\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}\right)
\end{array}\)
A. \( k|A| \) B. \( \mathrm{k}^{2}|\mathrm{A}| \) C. \( \mathrm{k}^{3}|A| \) D. \( 3 \mathrm{k}|\mathrm{A}| \)
\(\begin{array}{l}
\mathrm{A}=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \\
\therefore|\mathrm{A}|=\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|
\end{array}\)
\(\begin{array}{l}
\therefore \mathrm{KA}=\left[\begin{array}{lll}
k a & k b & k c \\
k d & k e & k f \\
k g & k h & k i
\end{array}\right] \\
\therefore|\mathrm{KA}|=\left|\begin{array}{lll}
k a & k b & k c \\
k d & k e & k f \\
k g & k h & k i
\end{array}\right|
\end{array}\)
Taking out k from the determinant from \( 1^{\text {st }}, 2^{\text {nd }} \) and \( 3^{\text {rd }} \) row
\(\begin{array}{l}
\therefore|\mathrm{kA}|=\mathrm{k}^{3}\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right| \\
\therefore|\mathrm{kA}|=\mathrm{k}^{3}|\mathrm{~A}|
\end{array}\)
Therefore, answer is option (C) \( \mathrm{k}^{3}|\mathrm{~A}| \)
A. Determinant is a square matrix.
B. Determinant is a number associated to a matrix.
C. Determinant is a number associated to a square matrix.
D. None of these