Ex 5.2 class 12 maths ncert solutions | class 12 maths exercise 5.2 | class 12 maths ncert solutions chapter 5 exercise 5.2 | exercise 5.2 class 12 maths ncert solutions | continuity and differentiability class 12 ncert solutions
Looking for Ex 5.2 Class 12 Maths NCERT Solutions? You’re in the right place! This section provides clear and comprehensive solutions for Class 12 Maths Exercise 5.2, part of Chapter 5 – Continuity and Differentiability. These step-by-step explanations align with the NCERT Class 12 Maths textbook and are ideal for students aiming to strengthen their understanding of derivatives and continuity. Whether you’re preparing for your board exams or need help with daily practice, our Class 12 Maths NCERT Solutions Chapter 5 Exercise 5.2 are designed to simplify complex concepts. Explore our Exercise 5.2 Class 12 Maths NCERT Solutions and boost your confidence in differentiation techniques today!

ex 5.2 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || exercise 5.2 class 12 maths ncert solutions || class 12 maths exercise 5.2 || class 12 maths ncert solutions chapter 5 exercise 5.2
Exercise 5.2
1. Differentiate the functions with respect to \( x . \sin \left(x^{2}+5\right) \)
Answer
Given: \( \sin \left(x^{2}+5\right) \)
Let \( y=\sin \left(x^{2}+5\right) \)
\(=\frac{d y}{d x}=\frac{d}{d x} \sin \left(x^{2}+5\right)\)
\(=\cos \left(x^{2}+5\right) \cdot \frac{d}{d x} \sin \left(x^{2}+5\right)\)
\(=\cos \left(x^{2}+5\right) \cdot\left[\frac{d}{d x}(x)^{2}+\frac{d}{d x}(5)\right]\)
\(=\cos \left(x^{2}+5\right) \cdot(2 x+0)\)
\(=\cos \left(x^{2}+5\right) \cdot(2 x)\)
\(=2 x \cdot \cos \left(x^{2}+5\right)\)
ex 5.2 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || exercise 5.2 class 12 maths ncert solutions || class 12 maths exercise 5.2 || class 12 maths ncert solutions chapter 5 exercise 5.2
2. Differentiate the functions with respect to \( x \cdot \cos (\sin x) \)
Answer
Given: \( \cos (\sin x) \)
Let \( y=\cos (\sin x) \)
\(=\frac{d y}{d x}=\frac{d}{d x}(\cos (\sin x))\)
\(=-\sin (\sin x) \cdot \frac{d}{d x}(\sin x)\)
\(=-\sin (\sin x) \cdot \cos x\)
\(=-\cos x \cdot \sin (\sin x)\)
3. Differentiate the functions with respect to \( x . \sin (\mathrm{a}x+\mathrm{b}) \)
Answer
Given: \( \sin (a x+b) \)
Let \( y=\sin (\mathrm{a}x+\mathrm{b}) \)
\(=\frac{d y}{d x}=\frac{d}{d x}(\sin (\mathrm{a}x+\mathrm{b}))\)
\(=\cos (\mathrm{a}x+\mathrm{b}) \cdot \frac{d}{d x}(\mathrm{a}x+\mathrm{b})\)
\(=\cos (\mathrm{a}x+\mathrm{b}) \cdot\left(\frac{d}{d x}\left(\mathrm{a}x+\frac{d}{d x}(b)\right)\right.\)
\(=\cos (\mathrm{a}x+\mathrm{b}) \cdot(\mathrm{a}+0)\)
\(=\cos (\mathrm{a}x+\mathrm{b}) \cdot(\mathrm{a})\)
\(=\mathrm{a} \cdot \cos (\mathrm{a}x+\mathrm{b})\)
4. Differentiate the functions with respect to \(x \).
\( \operatorname{Sec}(\tan (\sqrt{x})) \)
\( \operatorname{Sec}(\tan (\sqrt{x})) \)
Answer
Given: \( \sec (\tan (\sqrt{x})) \)
Let \( y=\sec (\tan (\sqrt{x})) \)
\( =\frac{d y}{d x}=\frac{d}{d x}(\sec (\tan (\sqrt{x}))) \)
\( =\sec (\tan (\sqrt{x})) \cdot \tan (\tan (\sqrt{x}))\left(\frac{d}{d x}(\tan \sqrt{x})\right) \)
\( =\sec (\tan (\sqrt{x})) \cdot \tan (\tan (\sqrt{x})) \cdot \operatorname{Sec}^{2}(\sqrt{x}) \cdot \frac{d}{d x}(\sqrt{x}) \)
\( \left.=\sec (\tan (\sqrt{x})) \cdot \tan (\tan (\sqrt{x})) \cdot \sec ^{2}(\sqrt{x})\right) \cdot \frac{1}{2(\sqrt{x})} \)
\( =\frac{1}{2(\sqrt{x})}\left(\sec (\tan (\sqrt{x})) \cdot \tan (\tan (\sqrt{x})) \cdot \sec ^{2}(\sqrt{x})\right) \)
ex 5.2 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || exercise 5.2 class 12 maths ncert solutions || class 12 maths exercise 5.2 || class 12 maths ncert solutions chapter 5 exercise 5.2
5. Differentiate the functions with respect to \(x \).
\(\frac{\sin (a x+b)}{\cos (c x+d)}\)
\(\frac{\sin (a x+b)}{\cos (c x+d)}\)
Answer
Given: \( \frac{\sin (a x+b)}{\cos (c x+d)} \)
Let \( y=\frac{\sin (a x+b)}{\cos (c x+d)} \)
\(=\frac{d y}{d x}=\frac{d}{d x}\left(\frac{\sin (a x+b)}{\cos (c x+d 0}\right)\)
We know that \( \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v d(u)-u d(v)}{v^{2}} \)
\(=\frac{[\cos (c x+d) \cdot d(\sin (a x+b))-\sin (\mathrm{ax}+\mathrm{b}) \cdot \mathrm{d}(\cos (c x+d))]}{[\cos (c x+d)]^{2}}\)
\(=\frac{[\cos (c x+d) \cdot(\cos (a x+b)) \cdot d(a x+b)-\sin (a x+b) \cdot(-\sin (c x+d) d(c x+d)]}{\left[\cos (c x+d]^{2}\right.}\)
\(=\frac{[\cos (c x+d) \cdot(\cos (a x+b)) \cdot(a)-\sin (a x+b) \cdot(-\sin (c x+d)(c)]}{[\cos (c x+d)]^{2}}\)
\(=\frac{[a \cos (c x+d) \cos (a x+b)]}{[\cos (c x+d)]^{2}}+\frac{[c \sin (c x+d) \sin (a x+b)}{[\cos (c x+d)]^{2}}\)
\(=\frac{[a \cos (a x+b)]}{[\cos (c x+d)]}+\frac{[c \sin (c x+d) \sin (a x+b)]}{[\cos (c x+d)] \cos (c x+d)]}\)
\(=\mathrm{a} \cos (\mathrm{a}x+\mathrm{b}) \sec (c x+d)+\mathrm{c} \mathrm{sin}(\mathrm{a}x+\mathrm{b}) \tan (\mathrm{c} x+\mathrm{d}) \sec (\mathrm{c} x+\mathrm{d})\)
6. Differentiate the functions with respect to \(x \).
\( \cos x^{3} \cdot \sin ^{2}\left(x^{5}\right) \)
\( \cos x^{3} \cdot \sin ^{2}\left(x^{5}\right) \)
Answer
Given: \( \cos x^{3} \cdot \sin ^{2}\left(x^{5}\right) \)
Let \( y=\cos x^{3} \cdot \sin ^{2}\left(x^{5}\right) \)
\(=\frac{d y}{d x}=\frac{d}{d x}\left(\cos x^{3} \cdot \sin ^{2}\left(x^{5}\right)\right)\)
We know that, \( \frac{d y}{d x}(\mathrm{u} . \mathrm{v})=\mathrm{u} . \mathrm{d}(\mathrm{v})+\mathrm{v} . \mathrm{d}(\mathrm{u}) \)
\(=\cos x^{3} \cdot \frac{d}{d x} \sin ^{2}\left(x^{5}\right)+\sin ^{2}\left(x^{5}\right) \cdot \frac{d}{d x}\left(\cos x^{3}\right)\)
\(=\cos x^{3} \cdot 2 \sin \left(x^{5}\right) \cdot\left(\frac{d}{d x} \sin \left(x^{5}\right)\right)+\sin 2\left(x^{5}\right) \cdot\left(-\sin x^{3}\right) \cdot\left(\frac{d}{d x} x^{3}\right)\)
\(=\cos x^{3} \cdot 2 \sin \left(x^{5}\right) \cdot \cos \left(x^{5}\right)\left(\frac{d}{d x} x^{5}\right)+\sin 2\left(x^{5}\right) \cdot\left(-\sin x^{3}\right) \cdot\left(3 x^{2}\right)\)
\(=\cos x^{3} \cdot 2 \sin \left(x^{5}\right) \cdot \cos \left(x^{5}\right)\left(5 x^{4}\right)+\sin 2\left(x^{5}\right) \cdot\left(-\sin x^{3}\right) \cdot\left(3 x^{2}\right)\)
\(=10 x^{4} \cdot \cos x^{3} \cdot \sin \left(x^{5}\right) \cdot \cos \left(x^{5}\right)-\left(3 x^{2}\right) \cdot \sin 2\left(x^{5}\right) \cdot\left(\sin x^{3}\right)\)
7. Differentiate the functions with respect to \( x \).
\( 2 \sqrt{\cot \left(x^{2}\right)} \)
\( 2 \sqrt{\cot \left(x^{2}\right)} \)
Answer
Let \( y=2 \sqrt{\cos \left(x^{3}\right)} \)
Apply derivative both the sides with respect to \( x \).\(\frac{d y}{d x}-2 \cdot \frac{1}{2}\left\{\cot \left(x^{2}\right)\right\}^{\frac{-1}{2}} \cdot \frac{d}{d x} \cot \left(x^{2}\right)\)
\(=\frac{1}{\sqrt{\cot \left(x^{2}\right)}} \cdot\left(-\cos \theta c\left(x^{2}\right)\right) \frac{d}{d x} x^{2}\)
\(=\frac{1}{\sqrt{\cot \left(x^{2}\right)}}\left(-\cos \theta c\left(x^{2}\right)\right\}(2 x)\)
\(=\frac{-2 x \operatorname{cosec}\left(x^{2}\right)}{\sqrt{\cot \left(x^{2}\right)}} \)
8. Differentiate the functions with respect to \( x \).
\(\cos (\sqrt{x})\)
\(\cos (\sqrt{x})\)
Answer
Given: \( \cos \sqrt{x} \)
Let \( y=\cos \sqrt{x} \)
\(=\frac{d y}{d x}=\frac{d}{d x}(\cos \sqrt{x})\)
\(=-\sin (\sqrt{x}) \cdot\left(\frac{d}{d x} \sqrt{x}\right)\)
\(=-\sin (\sqrt{x}) \cdot \frac{1}{2} \cdot\left(x^{-\frac{1}{2}}\right)\)
\(=-\sin (\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}}\)
\(=-\frac{\sin (\sqrt{x})}{2 \sqrt{x}}\)
9. Prove that the function f given by \( \mathrm{f}(x)=|x-1|, x \in \mathrm{R} \) is not differentiable at \( x=1 \).
Answer
Given: \( \mathrm{f}(x)=|x-1|, x \in \mathrm{R} \)
because a function f is differentiable at a point \( x=\mathrm{c} \) in its domain if both its limits as:
\( \lim _{h \rightarrow 0^{-}} \frac{[f(c+h)-f(c)]}{h} \) and \( \lim _{h \rightarrow 0^{+}} \frac{[f(c+h)-f(c)]}{h} \) are finite and equal.
Now, to check the differentiability of the given function at \( x=1 \),
Let we consider the left hand limit of function f at \( x=1 \)
\(=\lim _{h \rightarrow 0^{-}} \frac{[f(1+h)-f(1)]}{h}\)
\(=\lim _{h \rightarrow 0^{-}}[|1+h-1|-|1-1|]\)
\(=\lim _{h \rightarrow 0^{-}} \frac{[|h|-0]}{h}\)
\(=\lim _{h \rightarrow 0^{-}} \frac{[-h]}{h} \text { because, }\{\mathrm{h} < 0 \Rightarrow|\mathrm{h}|=-\mathrm{h}\}\)
\(=-1\)
Now, let we consider the right hand limit of function f at \( x=1 \)
\(=\lim _{h \rightarrow 0^{+}}[f(1+h)-f(1)]\)
\(=\lim _{h \rightarrow 0^{+}}[|1+h-1|-|1-1|]\)
\(=\lim _{h \rightarrow 0^{+}}[|h|-0]\)
\(=\lim _{h \rightarrow 0^{+}} \frac{[h]}{h} \text { because, }\{\mathrm{h} > 0 \Rightarrow \mid \mathrm{h}=\mathrm{h}\}\)
\(=1\)
Because, left hand limit is not equal to right hand limit of function f at \( x=1 \), so f is not differentiable at \( x=1 \).
10. Prove that the greatest integer function defined by \( \mathrm{f}(x)=[x], 0 < x \) \( < 3 \) is not differentiable at \( x=1 \) and \( x=2 \).
Answer
Given: \( \mathrm{f}(x)=[x], 0 < x < 3 \)
because a function f is differentiable at a point \( x=\mathrm{c} \) in its domain if both its limits as:
\( \lim _{h \rightarrow 0^{-}} \frac{[f(c+h)-f(c)]}{h} \) and \( \lim _{h \rightarrow 0^{+}} \frac{[f(c+h)-f(c)]}{h} \) are finite and equal.
Now, to check the differentiability of the given function at \( x=1 \),
Let we consider the left-hand limit of function f at \( x=1 \)
\(=\lim _{h \rightarrow 0^{-}} \frac{[f(1+h)-f(1)]}{h}\)
\(=\lim _{h \rightarrow 0^{-}} \frac{[|1+h|-|1|]}{h}\)
\(=\lim _{h \rightarrow 0^{-}} \frac{[1+h-1-1]}{h}\)
\(=\lim _{h \rightarrow 0^{-}} \frac{[h-1]}{h} \text { because, }\{\mathrm{h} < 0= > |\mathrm{h}|=-\mathrm{h}\}\)
\(=-\frac{1}{0}=\infty\)
Let we consider the right hand limit of function f at \( x=1 \)
\(=\lim _{h \rightarrow 0^{+}} \frac{[f(1+h)-f(1)]}{h}\)
\(=\lim _{h \rightarrow 0^{+}} \frac{[1+h]-[1]}{h}\)
\(=\lim _{h \rightarrow 0^{+}} \frac{[1-1]}{h}\)
\(=\lim _{h \rightarrow 0^{+}} \frac{[0]}{h}\)
\(=0\)
Because, left hand limit is not equal to right hand limit of function f at \( x=1 \), so f is not differentiable at \( x=1 \).
Let we consider the left hand limit of function f at \( x=2 \)
\(=\lim _{h \rightarrow 0^{-}} \frac{[f(2+h)-f(2)]}{h}\)
\(=\lim _{h \rightarrow 0^{-}} \frac{[2+h]-[2]}{h}\)
\(=\lim _{h \rightarrow 0^{-}} \frac{[2+h-1-2]}{h}\)
\(=\lim _{h \rightarrow 0^{-}} \frac{[h+1-2]}{h}\)
\(=-\frac{1}{0}=\infty\)
Now, let we consider the right hand limit of function f at \( x=2 \)
\(=\lim _{h \rightarrow 0^{+}} \frac{[f(2+h)-f(2)]}{h}\)
\(=\lim _{h \rightarrow 0^{+}} \frac{[2+h]-[2]}{h}\)
\(=\lim _{h \rightarrow 0^{+}} \frac{[2-2]}{h}\)
\(=\lim _{h \rightarrow 0^{+}} \frac{[0]}{h}\)
\(=0\)
Because, left hand limit is not equal to right hand limit of function f at \( x=2 \), so f is not differentiable at \( x=2 \).