Ex 5.3 class 12 maths ncert solutions | class 12 maths exercise 5.3 | class 12 maths ncert solutions chapter 5 exercise 5.3 | exercise 5.3 class 12 maths ncert solutions | continuity and differentiability class 12 ncert solutions
Searching for Ex 5.3 Class 12 Maths NCERT Solutions? Your search ends here! This page features detailed and easy-to-understand solutions for Class 12 Maths Exercise 5.3, from Chapter 5 – Continuity and Differentiability. In this exercise, students dive deeper into advanced differentiation techniques such as the chain rule, product rule, and quotient rule. Our Class 12 Maths NCERT Solutions Chapter 5 Exercise 5.3 strictly follow the CBSE pattern and are crafted to help you grasp each concept clearly. These Exercise 5.3 Class 12 Maths NCERT Solutions are perfect for both board exam preparation and daily practice. Master continuity and differentiability with our expert explanations and strengthen your calculus foundation today!

class 12 maths exercise 5.3 || class 12 maths ncert solutions chapter 5 exercise 5.3 || ex 5.3 class 12 maths ncert solutions || exercise 5.3 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions
Exercise 5.3
\(2 x+3 y=\sin x\)
Differentiating both sides w.r.t. \(x \), we get,
\(=\frac{d}{d x}(2 x)+\frac{d}{d x}(3 y)=\frac{d}{d x}(\sin x)\)
\(=2+3 \frac{d y}{d x}=\cos x\)
\(=3 \frac{d y}{d x}=\cos x-2\)
\(=\frac{d y}{d x}=\frac{\cos x-2}{3}\)
\(2 x+3 y=\sin y\)
Differentiating both sides w.r.t. \(x \), we get,
\(=\frac{d}{d x}(2 x)+\frac{d}{d x}(3 y)=\frac{d}{d x}(\sin y)\)
\(=2+3 \frac{d y}{d x}=\cos y \frac{d y}{d x}\)
\(=2=(\cos y-3) \frac{d y}{d x}\)
\(=\frac{d y}{d x}=\frac{2}{(\cos y-3)}\)
\(a x+b y^{2}=\cos y\)
Differentiating both sides w.r.t. \(x \), we get,
\(\frac{d}{d x}\left(\mathrm{a} x+\mathrm{b} y^{2}\right)=\frac{d}{d x}(\cos y)\)
\(=\frac{d}{d x}(\mathrm{a} x)+\frac{d}{d x}\left(\mathrm{b}y^{2}\right)=\frac{d}{d x}(\cos y)\)
\(=\mathrm{a}+\mathrm{b} \frac{d}{d x}\left(\mathrm{y}^{2}\right)=\frac{d}{d x}(\cos y)\)
\(=\mathrm{a}+\mathrm{b} \times 2 y \frac{d y}{d x}=-\sin \mathrm{y} \frac{d y}{d x}\)
\(=(2 \mathrm{~b} y+\sin y) \frac{d y}{d x}=-\mathrm{a}\)
\(=\frac{d y}{d x}=\frac{-a}{(2 b y+\sin y)}\)
class 12 maths exercise 5.3 || class 12 maths ncert solutions chapter 5 exercise 5.3 || ex 5.3 class 12 maths ncert solutions || exercise 5.3 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions
\(x y+y^{2}=\tan x+y\)
Differentiating both sides w.r.t. \(x \), we get,
\(\frac{d}{d x}\left(x y+y^{2}\right)=\frac{d}{d x}(\tan x+y)\)
\(=\frac{d}{d x}(x y)+\frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x}(\tan x)+\frac{d y}{d x}\)
\(=\left[y \frac{d y}{d x}(x)+x \frac{d y}{d x}\right]+2 y \frac{d y}{d x}=\sec ^{2}+\frac{d y}{d x}\)
\(=y .1+x \frac{d y}{d x}+2 y \frac{d y}{d x}=\sec ^{2} x+\frac{d y}{d x}\)
\(=(x+2 y-1) \frac{d y}{d x}=\sec 2-y\)
\(=\frac{d y}{d x}=\frac{\sec ^{2} x-y}{(x+2 y-1)}\)
\(x^{2}+x y+y^{2}=100\)
Differentiating both sides w.r.t. \(x\), we get,
\(\frac{d}{d x}\left(x^{2}+x y+y^{2}\right)=\frac{d}{d x}(100)\)
\(=\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(x y)+\frac{d}{d x}\left(y^{2}\right)=0\)
\(=2 x+\left[y \frac{d}{d x}(x)+x \frac{d y}{d x}\right]+2 y \frac{d y}{d x}=0\)
\(=2 x+y \cdot 1+x \frac{d y}{d x}+2 y \frac{d y}{d x}=0\)
\(=2 x+y+(x+2 y) \frac{d y}{d x}=0\)
\(=\frac{d y}{d x}=-\frac{2 x+y}{x+2 y}\)
\(x^{3}+x^{2} y+x y^{2}+y^{3}=81\)
Differentiating both sides w.r.t. \(x\), we get,
\(\frac{d}{d x}\left(x^{3}+x^{2} y+x y^{2}+y^{3}\right)=\frac{d}{d x}(81)\)
\(=\frac{d}{d x}\left(x^{3}\right)+\frac{d}{d x}\left(x^{2} y\right)+\frac{d}{d x}\left(x y^{2}\right)+\frac{d}{d x}\left(y^{3}\right)=0\)
\(=3 x^{2}+\left[y \frac{d}{d x}\left(x^{2}\right)+x^{2} \frac{d}{d x}\right]+\left[y^{2} \frac{d}{d x}(x)+x \frac{d}{d x}\left(y^{2}\right)\right]+3 y^{2} \frac{d y}{d x}=0\)
\(=3 x^{2}+\left[y .2 x+x^{2} \frac{d y}{d x}\right]+\left[y^{2} \cdot 1+x .2 y \cdot \frac{d y}{d x}\right]+3 y^{2} \frac{d y}{d x}=0\)
\(=\left(x^{2}+2 x y+3 y^{2}\right) \frac{d y}{d x}+\left(3 x^{2}+2 x y+y^{2}\right)=0\)
\(=\frac{d y}{d x}=\frac{-\left(3 x^{2}+2 x y+y^{2}\right)}{\left(x^{2}+2 x y+3 y^{2}\right)}\)
\(\sin 2 y+\cos x y=\pi\)
Differentiating both sides w.r.t. \(x\), we get,
\(\frac{d}{d x}(\sin 2 y+\cos x y)=\frac{d}{d x}(\pi)\)
\(=2 \sin y \cos y \frac{d y}{d x}-\sin x y\left[y \frac{d}{d x}(x)+x \frac{d y}{d x}\right]\)
\(=2 \sin y \cos y \frac{d y}{d x}-\sin x y\left[y .1+x \frac{d y}{d x}\right]=0\)
\(=2 \sin y \cos y \frac{d y}{d x}-\mathrm{y} \sin x y-x \sin x y \frac{d y}{d x}=0\)
\(=(2 \sin y \cos y-x \sin x y) \frac{d y}{d x}=\mathrm{y} \sin x y\)
\(=(\sin 2 y-x \sin x y) \frac{d y}{d x}=y \sin x y\)
\(=\frac{d y}{d x}=\frac{y \sin x y}{(\sin 2 y-x \sin x y)}\)
\(\sin 2 x+\cos 2 y=1\)
Differentiating both sides w.r.t. \( x \), we get,
\(\frac{d}{d x}(\sin 2 x+\cos 2 y)=\frac{d}{d x} \ldots(1)\)
\(=\frac{d}{d x}(\sin 2 x)+\frac{d}{d x}(\cos 2 x)=0\)
\(=2 \sin x \cdot \frac{d}{d x}(\sin x)+2 \cos y \cdot \frac{d}{d x}(\cos y)=0\)
\(=2 \sin x \cos x+2 \cos y(-\sin y) \cdot \frac{d y}{d x}=0\)
\(=\sin 2 x-\sin 2 y \frac{d y}{d x}=0\)
\(=\frac{d y}{d x}=\frac{\sin 2 x}{\sin 2 y}\)
class 12 maths exercise 5.3 || class 12 maths ncert solutions chapter 5 exercise 5.3 || ex 5.3 class 12 maths ncert solutions || exercise 5.3 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions
\(y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)\)
then, \( \mathrm{A}=\tan ^{-1} x \)
\(=\frac{d A}{d x}=\frac{1}{1+x^{2}}\)
\(y=\sin ^{-1}\left(\frac{2 \tan A}{1+\tan ^{2} A}\right)\)
also, we know \( \left[\sin 2 A=\frac{2 \tan A}{1+\tan ^{2} A}\right] \)
And \( =y=\sin ^{-1}(\sin 2 \mathrm{~A}) \)
\( =y=2 \mathrm{~A} \)
\( =\frac{d y}{d x}=2 \frac{d A}{d x} \quad \)[by chain rule]
\(=\frac{d y}{d x}=\frac{2}{1+x^{2}}\)
\(y=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right),-\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}\)
\(y=\tan ^{-1}\left(\frac{3 x-x^{3}}{1-3 x^{2}}\right)\)
Assumption: Let \( x=\tan \theta \), putting it in \(y \), we get,
\( y=\tan ^{-1}\left(\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}\right) \)
we know by the formula that, \( \tan 3 x=\frac{3 \tan x-\tan ^{3} x}{1-3 \tan ^{2} x} \)
Putting this in \( y \), we get, \( y=\tan ^{-1}(\tan 3 \theta) \)
\(y=3\left(\tan ^{-1} x\right)\)
Differentiating both sides, we get, \( \frac{d y}{d x}=\frac{3}{1+x^{2}} \)
\(y=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right), 0 < x < 1\)
\(y=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)\)
\( =\cos y=\frac{1-x^{2}}{1+x^{2}} \)
\( =\frac{1-\tan ^{2} \frac{y}{2}}{1+\tan ^{2} \frac{y}{2}}=\frac{1-x^{2}}{1+x^{2}} \)
On comparing both sides, we get,
\(\tan \frac{y}{2}=x\)
Now, differentiating both sides, we get,
\(\operatorname{Sec}^{2}\left(\frac{y}{2}\right) \cdot \frac{d}{d x}\left(\frac{y}{2}\right)=\frac{d}{d x}(x)\)
\(=\sec ^{2} \frac{y}{2} \times \frac{1}{2} \frac{d y}{d x}=1\)
\(=\frac{d y}{d x}=\frac{2}{\sec ^{2} \frac{y}{2}}\)
\(=\frac{d y}{d x}=\frac{2}{1+\tan ^{2} \frac{y}{2}}\)
\(=\frac{d y}{d x}=\frac{2}{1+x^{2}}\)
\(=\sin y=\frac{1-x^{2}}{1+x^{2}}\)
\(=\left(1+x^{2}\right) \sin y=1-x^{2}\)
\(=(1+\sin y) x^{2}=1-\sin y\)
\(=x^{2}=\frac{1-\sin y}{1+\sin y}\)
Now, we can change the numerator and the denominator,
\(1=\sin^2 \frac{y}{2}+\cos^2 \frac{y}{2}\)
We know that we can write, and
\( \operatorname{Sin} y=2 \sin \frac{y}{2} . \operatorname{Cos} \frac{y}{2} \)
Therefore, by applying the formula: \( (a+b)^{2}=a^{2}+b^{2}+2 a b \) and \( (a-b)^{2} \) \( =a^{2}+b^{2}-2 a b \), we get,
\( =x^{2}=\frac{\left(\cos \frac{y}{2}-\sin \frac{y}{2}\right)^{2}}{\left(\cos \frac{y}{2}+\sin \frac{y}{2}\right)^{2}} \)
\( =x=\frac{\cos \frac{y}{2}-\sin \frac{y}{2}}{\cos \frac{y}{2}+\sin \frac{y}{2}} \)
Dividing the numerator and denominator by \( \cos (\frac{y}{2}) \), we get, \( =x \frac{1-\tan \frac{y}{2}}{1+\tan \frac{y}{2}} \)
Now, we know that:
\( \tan (\mathrm{A}-\mathrm{B})=\frac{\tan A-\tan B}{1+\tan A \cdot \tan B} \)
\( =x \tan \left(\frac{\pi}{4}-\frac{y}{2}\right) \)
Now, differentiating both sides, we get,
\(\frac{d}{d x}(x)=\frac{d}{d x}\left(\tan \left(\frac{\pi}{4}-\frac{y}{2}\right)\right)\)
\(=1=\sec ^{2}\left(\frac{\pi}{2}-\frac{y}{2}\right) \times \frac{d}{d x}\left(\frac{\pi}{4}-\frac{y}{2}\right)\)
\(=1=\left[1+\tan ^{2}\left(\frac{\pi}{4}-\frac{y}{2}\right)\right] \cdot\left(-\frac{1}{2} \frac{d y}{d x}\right)\)
\(=1=\left[1+x^{2}\right] \cdot\left(-\frac{1}{2} \frac{d y}{d x}\right)\)
\(=\frac{d y}{d x}=\frac{-2}{1+x^{2}}\)
\(\mathrm{y}=\cos ^{-1}\left(\frac{2 x}{1+x^{2}}\right),-1 < x < 1\)
\(=\cos y=\frac{2 x}{1+x^{2}}\)
Differentiating both sides w.r.t. \(x \), we get,
\(-\operatorname{Sin} y \frac{d y}{d x}=\frac{\left(1+x^{2}\right) \cdot \frac{d}{d x}(2 x)-2 x \cdot \frac{d}{d x}\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{2}}\)
\(=\sqrt{1-\cos ^{2} y} \frac{d y}{d x}=\frac{\left(1+x^{2}\right) \times 2-2 x \cdot 2 x}{\left(1+x^{2}\right)^{2}}\)
\(=\sqrt{1-\left(\frac{2 x}{1+x^{2}}\right)^{2}} \frac{d y}{d x}=\left[\frac{\left(1-x^{2}\right)}{\left(1+x^{2}\right)}\right]\)
\(=\sqrt{\frac{\left(1-x^{2}\right)^{2}-4 x^{2}}{\left(1+x^{2}\right)^{2}}} \frac{d y}{d x}=\frac{-2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}\)
\(=\sqrt{\frac{\left(1-x^{2}\right)^{2}}{\left(1+x^{2}\right)^{2}} \frac{d y}{d x}}=\frac{-2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}\)
\(=\frac{1-x^{2}}{1+x^{2}} \frac{d y}{d x}=\frac{-2\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{2}}\)
\(=\frac{d y}{d x}=\frac{-2}{1+x^{2}}\)
\(y=\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right),-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\)
\(=\sin y=2 x \sqrt{1-x^{2}}\)
Differentiating both sides w.r.t. \(x \), we get,
\(\operatorname{Cos} y \frac{d y}{d x}=2\left[x \frac{d}{d x}\left(\sqrt{1-x^{2}}\right)+\sqrt{1-x^{2}} \frac{d y}{d x}\right]\)
\(=\sqrt{1-\sin^{2} y} \frac{d y}{d x}=2\left[\frac{x}{2} \cdot \frac{-2 x}{\sqrt{1-x^{2}}}+\sqrt{1+x^{2}}\right]\)
\(=\sqrt{1-\left(2 x \sqrt{1-x^{2}}\right)^{2}} \frac{d y}{d x}=2\left[\frac{-x^{2}+1-x^{2}}{\sqrt{1-x^{2}}}\right]\)
\(=\sqrt{1-4 x^{2}\left(1-x^{2}\right)} \frac{d y}{d x}=2\left[\frac{1-2 x^{2}}{\sqrt{1-x^{2}}}\right]\)
\(=(1-2 x^2) \frac{d y}{d x}=2\left[\frac{1-2 x^{2}}{\sqrt{1-x^{2}}}\right]\)
\(=\frac{d y}{d x}=\frac{2}{\sqrt{1-x^{2}}}\)
\(y=\sec ^{-1}\left(\frac{1}{2 x^{2}+1}\right), 0 < x < \frac{1}{\sqrt{2}}\)
\(=\sec y=\frac{1}{2 x^{2}+1}\)
\(=\cos y=2 x^{2}+1\)
\(=2 x^{2}=1+\cos y\)
\(=2 x^{2}=2 \cos^2 \frac{y}{2}\)
\(=x=\cos \frac{y}{2}\)
Differentiating w.r.t. \( x \), we get,
\(\frac{d}{d x}(x)=\frac{d}{d x}\left(\cos \frac{y}{2}\right)\)
\(=1=-\sin \frac{y}{2} \cdot \frac{d}{d x}\left(\frac{y}{2}\right)\)
\(=\frac{-1}{\sin \frac{y}{2}}=\frac{1}{2} \frac{d y}{d x}\)
\(=\frac{d y}{d x}=\frac{-2}{\sin \frac{y}{2}}=\frac{-2}{\sqrt{1-\cos ^{2} \frac{y}{2}}}\)
\(=\frac{d y}{d x}=\frac{-2}{\sqrt{1-x^{2}}}\)