Ex 5.5 class 12 maths ncert solutions | class 12 maths exercise 5.5 | class 12 maths ncert solutions chapter 5 exercise 5.5 | exercise 5.5 class 12 maths ncert solutions | continuity and differentiability class 12 ncert solutions
Looking for Ex 5.5 Class 12 Maths NCERT Solutions? You’ve come to the right place! This section provides step-by-step solutions to all the questions from Exercise 5.5 Class 12 Maths, a crucial part of Chapter 5 – Continuity and Differentiability. These Class 12 Maths NCERT Solutions Chapter 5 Exercise 5.5 help you master concepts like derivatives of composite, implicit, and inverse trigonometric functions. Following the CBSE syllabus, these exercise 5.5 class 12 maths NCERT solutions are perfect for revision and exam preparation. Dive in and strengthen your understanding with these expert-curated solutions today!

exercise 5.5 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.5 || class 12 maths exercise 5.5 || continuity and differentiability class 12 ncert solutions || ex 5.5 class 12 maths ncert solutions
Exercise 5.5
1 . Differentiate the functions given in w.r.t. \(x\).
\(\cos x \cdot \cos 2 x \cdot \cos 3 x\)
\(\cos x \cdot \cos 2 x \cdot \cos 3 x\)
Answer
Given: \( \cos x \cdot \cos 2 x \cdot \cos 3 x \)
Let \( y=\cos x \cdot \cos 2 x \cdot \cos 3 x \)
Taking \( \log \) on both sides, we get
\(\log y=\log (\cos x \cdot \cos 2 x \cdot \cos 3 x)\)
\(\Rightarrow \log y=\log (\cos x)+\log (\cos 2 x)+\log (\cos 3 x)\)
Now, differentiate both sides with respect to \(x\)
\(\frac{d}{d x}(\log y)=\frac{d}{d x} \log (\cos x)+\frac{d}{d x} \log (\cos 2 x)+\frac{d}{d x}(\log \cos 3 x)\)
\(=\frac{1}{y} \frac{d y}{d x}=\frac{1}{\cos x} \cdot \frac{d}{d x}(\cos x)+\frac{1}{\cos 2 x} \cdot \frac{d}{d x}(\cos 2 x)+\frac{1}{\cos 3 x} \frac{d}{d x}(\cos 3 x)\)
\(=\frac{d y}{d x}=y\left[-\frac{\sin x}{\cos x}-\frac{\sin 2 x}{\cos 2 x} \cdot \frac{d}{d x}(2 x)-\frac{\sin 3 x}{\cos 3 x} \frac{d}{d x}(3 x)\right]\)
\(=\frac{d y}{d x}=-\cos x \cdot \cos 2 x \cdot \cos 3 x[\tan x+\tan 2 x(2)+\tan 3 x(3)]\)
\(=\frac{d y}{d x}=-\cos x \cdot \cos 2 x \cdot \cos 3 x[\tan x+2 \tan 2 x+3 \tan 3 x]\)
2 . Differentiate the functions given in w.r.t. \(x \).
\((\log x)^{\cos x}\)
\((\log x)^{\cos x}\)
Answer
Given: \( (\log x){ }^{\cos x} \)
Let \( x=(\log x)^{\cos x} \)
Taking \( \log \) on both sides, we get
\(\log y=\log (\log x)^{\cos x}\)
\(\Rightarrow \log y=\cos x \cdot \log (\log x)\)
Now, differentiate both sides with respect to \(x\)
\(\frac{d}{d x}(\log y)=\frac{d}{d x}[\cos x \cdot \log (\log x)]\)
\(=\frac{1}{y} \frac{d y}{d x}=\cos x \cdot \frac{d}{d x}(\log (\log x))+\log (\log x) \cdot \frac{d}{d x}(\cos x)\)
\(=\frac{d y}{d x}=y\left[\cos x \cdot \frac{1}{\log x} \cdot \frac{d}{d x}(\log x)+\log (\log x) \cdot(-\sin x)\right]\)
\(=\frac{d y}{d x}=(\log x)^{\cos x}\left[\cos x \cdot \frac{1}{\log x} \cdot \frac{1}{x}+\log (\log x) \cdot(-\sin x)\right]\)
\(=\frac{d y}{d x}=(\log x)^{\cos x}\left[\frac{\cos x}{x \cdot \log x}-(\sin x) \cdot \log (\log x)\right]\)
4 . Differentiate the functions given in w.r.t. \(x\).
\(x^{x}-2^{\sin x}\)
\(x^{x}-2^{\sin x}\)
Answer
Given: \( x^{x}-2^{\sin x} \)
Let \( y=x^{x}-2^{\sin x} \)
Let \( y=\mathrm{u}-\mathrm{v} \)
\(\Rightarrow \mathrm{u}=x^x \text { and } \mathrm{v}=2^{\sin } x\)
For, \( \mathrm{u}=x^{x} \)
Taking \( \log \) on both sides, we get
\(\log \mathrm{u}=\log x^{x}\)
\(\Rightarrow \log \mathrm{u}=x \cdot \log (x)\)
Now, differentiate both sides with respect to \(x \)
\(=\frac{d}{d x}(\log u)=\frac{d}{d x}[x \cdot \log (x)]\)
\(=\frac{1}{u} \frac{d u}{d x}=x \cdot \frac{d}{d x}(\log x)+\log x \cdot \frac{d}{d x}(x)\)
\(=\frac{d u}{d x}=u\left[x \cdot \frac{1}{x}+\log x \cdot(1)\right]\)
\(=\frac{d u}{d x}=x^{x}(1+\log x)\)
For, \( \mathrm{v}=2 \sin x \)
Taking \( \log \) on both sides, we get
\(\log \mathrm{v}=\log 2^{\sin x}\)
\(\Rightarrow \log \mathrm{v}=\sin x \cdot \log (2)\)
Now, differentiate both sides with respect to \(x\)
\(=\frac{d}{d x}(\log v)=\frac{d}{d x}[\sin x \cdot \log (2)]\)
\(=\frac{1}{v} \frac{d v}{d x}=\log 2 \cdot \frac{d}{d x}(\sin x)\)
\(=\frac{d v}{d x}=v[\log 2 \cdot(\cos x)]\)
\(=\frac{d v}{d x}=2^{\sin x} \cdot \cos x \log 2\)
Because, \( x=\mathrm{u}-\mathrm{v} \)
\(=\frac{d y}{d x}=\frac{d u}{d x}-\frac{d v}{d x}\)
\(\frac{ d y }{ d x }=x^{x}(1+\log x)-2 \sin x \cdot \cos x \cdot \log 2\)
exercise 5.5 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.5 || class 12 maths exercise 5.5 || continuity and differentiability class 12 ncert solutions || ex 5.5 class 12 maths ncert solutions
5 . Differentiate the functions given in w.r.t. \(x\).
\((x+3)^{2} \cdot(x+4)^{3} \cdot(x+5)^{4}\)
\((x+3)^{2} \cdot(x+4)^{3} \cdot(x+5)^{4}\)
Answer
Given: \( (x+3)^{2} \cdot(x+4)^{3} \cdot(x+5)^{4} \)
Let \( y=(x+3)^{2} \cdot(x+4)^{3} \cdot(x+5)^{4} \)
Taking \( \log \) on both sides, we get
\(\log y=\log \left((x+3)^{2} \cdot(x+4)^{3} \cdot(x+5)^{4}\right)\)
\(\Rightarrow \log y=\log (x+3)^{2}+\log (x+4)^{3}+\log (x+5)^{4}\)
\(\Rightarrow \log y=2 \cdot \log (x+3)+3 \cdot \log (x+4)+4 \cdot \log (x+5)^{4}\)
Now, differentiate both sides with respect to \( x \)
\(=\frac{d}{d x}(\log y)=\frac{d}{d x}(2 \cdot \log (x+3))+\frac{d}{d x}(3 \cdot \log (x+4))+\frac{d}{d x}(4 \cdot \log (x+\)
5))
\(=\frac{1}{y} \frac{d y}{d x}=2 \cdot \frac{1}{x+3} \cdot \frac{d}{d x}(x+3)+3 \cdot \frac{1}{x+4} \cdot \frac{d}{d x}(x+4)+4 \cdot \frac{1}{x+5} \cdot \frac{d}{d x}(x+5)\)
\(=\frac{d y}{d x}=y\left[\frac{2}{x+3}+\frac{3}{x+4}+\frac{4}{x+5}\right]\)
\(=\frac{d y}{d x}=(x+3)^{2}(x+4)^{3}(x+5)^{4}\left[\frac{2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)}{(x+3)(x+4)(x+5)}\right]\)
\(=\frac{d y}{d x}=(x+3)^{1}(x+4)^{2}(x+5)^{3}\left[2\left(x^{2}+9 x+20\right)+3\left(x^{2}+8 x+\right.\right.\)
\(\left.15)+4\left(x^{2}+7 x+12\right)\right]\)
\(=(x+3)(x+4)^{2}(x+5)^{3}\left(9 x^{2}+70 x+133\right)\)
6 . Differentiate the functions given in w.r.t. \( x \).
\(\left(x+\frac{1}{x}\right)^{x}+x^{\left(1+\frac{1}{x}\right)}\)
\(\left(x+\frac{1}{x}\right)^{x}+x^{\left(1+\frac{1}{x}\right)}\)
Answer
Given: \( \left(x+\frac{1}{x}\right)^{x}+x^{\left(1+\frac{1}{x}\right)} \)
Let \( x=\left(x+\frac{1}{x}\right)^{x}+x^{\left(1+\frac{1}{x}\right)} \)
Also, Let \( x=\mathrm{u}+\mathrm{v} \)
\( =\mathrm{u}\left(x+\frac{1}{x}\right)^{x} \) and \( \mathrm{v}=x^{\left(1+\frac{1}{x}\right)} \)
for, \( \mathrm{u}=\left(x+\frac{1}{x}\right)^{x} \)
Taking \( \log \) on both sides, we get
\(\log \mathrm{u}=\log \left(x+\frac{1}{x}\right)^{x}\)
\(=\log \mathrm{u}=x \cdot \log \left(x+\frac{1}{x}\right)\)
Now, differentiate both sides with respect to \(x\)
\(\frac{d}{d x}(\log u)=\frac{d}{d x}\left[x \cdot \log \left(x+\frac{1}{x}\right)\right]\)
\(=\frac{1}{u}-\frac{d u}{d x}=x \cdot \frac{d}{d x}\left(\log \left(x+\frac{1}{x}\right)\right)+\log \left(x+\frac{1}{x}\right) \cdot \frac{d}{d x}(x)\)
\(=\frac{d u}{d x}=u\left[x \cdot \frac{1}{\left(x+\frac{1}{x}\right)} \cdot \frac{d}{d x}\left(x+\frac{1}{x}\right)+\log \left(x+\frac{1}{x}\right)\right]\)
\(=\frac{d u}{d x}=u\left[x \cdot \frac{1}{\left(x+\frac{1}{x}\right)} \cdot\left(\frac{d x}{d x}+\frac{d}{d x}\left(\frac{1}{x}\right)\right)+\log \left(x+\frac{1}{x}\right)\right]\)
\(=\frac{d u}{d x}=u\left[\frac{x}{\left(x+\frac{1}{x}\right)} \cdot\left(1-\frac{1}{x^{2}}\right)+\log \left(x+\frac{1}{x}\right)\right]\)
\(=\frac{d u}{d x}=u\left[\frac{x}{\left(x+\frac{1}{x}\right)} \cdot\left(\frac{x^{2}-1}{x^{2}}\right)+\log \left(x+\frac{1}{x}\right)\right]\)
\(=\frac{d u}{d x}=\left(x+\frac{1}{x}\right)^{x}\left[\left(\frac{x^{2}-1}{x^{2}+1}\right)+\log \left(x+\frac{1}{x}\right)\right]\)
for, \( \mathrm{v}=x^{\left(1+\frac{1}{x}\right)} \)
Taking \( \log \) on both sides, we get
\(\log \mathrm{v}=\log x^{\left(1+\frac{1}{x}\right)}\)
\(=\log \mathrm{v}=\left(1+\frac{1}{x}\right) \cdot \log x\)
Now, differentiate both sides with respect to \(x\)
\(=\frac{d}{d x}(\log v)=\frac{d}{d x}\left[\left(1+\frac{1}{x}\right) \cdot \log x\right]\)
\(=\frac{1}{v} \frac{d v}{d x}=\log x \cdot \frac{d}{d x}\left(1+\frac{1}{x}\right)+\left(1+\frac{1}{x}\right) \cdot \frac{d}{d x}(\log x)\)
\(=\frac{d v}{d x}=v\left[\log x \cdot\left(0-\frac{1}{x^{2}}\right)+\left(1+\frac{1}{x}\right) \cdot \frac{1}{x}\right]\)
\(=\frac{d v}{d x}=x^{\left(1+\frac{1}{x}\right)}\left[-\frac{\log x}{x^{2}}+\left(\frac{1}{x}+\frac{1}{x^{2}}\right)\right]\)
\(=\frac{d v}{d x}=x^{\left(1+\frac{1}{x}\right)}\left[\frac{-\log x+x+1}{x^{2}}\right]\)
\(=\frac{d v}{d x}=x^{\left(1+\frac{1}{x}\right)}\left[\frac{x+1-\log x}{x^{2}}\right]\)
Because, \( y=u+v \)
\(=\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}\)
\(=\frac{d y}{d x}=\left(x+\frac{1}{x}\right)^{x}\left[\left(\frac{x^{2}-1}{x^{2}+1}\right)+\log \left(x+\frac{1}{x}\right)\right]+x^{\left(1+\frac{1}{x}\right)}\left[\frac{x+1-\log x}{x^{2}}\right]\)
7 . Differentiate the functions given in w.r.t. \( x \).
\((\log x)^{x}+x^{\log x}\)
\((\log x)^{x}+x^{\log x}\)
Answer
Given: \( (\log x)^{x}+x^{\log x} \)
Let \( y=(\log x)^x+x^{\log x} \)
Let \( y=\mathrm{u}+\mathrm{v} \)
\( \Rightarrow \mathrm{u}=(\log x)^{x} \) and \( \mathrm{v}=x^{\log x} \)
For, \( \mathrm{u}=(\log x)^{x} \)
Taking \( \log \) on both sides, we get
\(\log \mathrm{u}=\log (\log x)^{x}\)
\(\Rightarrow \log \mathrm{u}=x \cdot \log (\log (x))\)
Now, differentiate both sides with respect to \(x\)
\(\frac{d}{d x}(\log u)=\frac{d}{d x}[x \cdot \log (\log x)]\)
\(\left.=\frac{1}{u}-\frac{d u}{d x}=x \cdot \frac{d}{d x} \log (\log x)\right)+\log (\log x) \cdot \frac{d}{d x}(x)\)
\(=\frac{d u}{d x}=u\left[x \cdot \frac{1}{\log x} \frac{d}{d x}(\log x)+\log (\log x) \cdot(1)\right]\)
\(=\frac{d u}{d x}=(\log x)^{x}\left[\frac{x}{\log x} \cdot \frac{1}{x}+\log (\log x) \cdot(1)\right]\)
\(=\frac{d u}{d x}=(\log x)^{x}\left[\frac{1+\log (\log x) \cdot(\log x)}{\log x}\right]\)
\(=\frac{d u}{d x}=(\log x)^{x-1}[1+\log x \cdot \log (\log x)]\)
For, \( \mathrm{v}=\mathrm{x}^{\log x} \)
Taking \( \log \) on both sides, we get
\(\log \mathrm{v}=\log (x \log x)\)
\(\Rightarrow \log \mathrm{v}=\log x \cdot \log x\)
Now, differentiate both sides with respect to \(x\)
\(\frac{d}{d x}(\log v)=\frac{d}{d x}\left[(\log x)^{2}\right]\)
\(=\frac{1}{v} \frac{d v}{d x}=2 \cdot \log x \frac{d}{d x}(\log x)\)
\(=\frac{d v}{d x}=v\left[2 \cdot \frac{\log x}{x}\right]\)
\(=\frac{d v}{d x}=x^{\log x}\left[2 \cdot \frac{\log x}{x}\right]\)
\(=\frac{d v}{d x}=2 \cdot x^{\log x-1} \cdot \log x\)
Because, \( y=u+v \)
\(=\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}\)
\(=\frac{d y}{d x}=(\log x)^{x-1}[1+\log x \cdot \log (\log x)]+2 \cdot x^{\log x-1} \cdot \log x\)
exercise 5.5 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.5 || class 12 maths exercise 5.5 || continuity and differentiability class 12 ncert solutions || ex 5.5 class 12 maths ncert solutions
8 . Differentiate the functions given in w.r.t. \(x\).
\((\sin x)^{x}+\sin ^{-1} \sqrt{x}\)
\((\sin x)^{x}+\sin ^{-1} \sqrt{x}\)
Answer
Given: \( (\sin x)^{x}+\sin ^{-1} \sqrt{x} \)
Let \( y=(\sin x)^{x}+ \sin ^{-1} \sqrt{x} \)
Let \( y=\mathrm{u}+\mathrm{v} \)
\(=\mathrm{u}=(\sin x)^{x} \text { and } \mathrm{v}=\sin ^{-1} \sqrt{x}\)
for, \( \mathrm{u}=(\sin x)^{x} \)
Taking \( \log \) on both sides, we get
\(\log \mathrm{u}=\log (\sin x)^{x}\)
Now, differentiate both sides with respect to \(x\)
\(=\frac{d}{d x}(\log u)=\frac{d}{d x}[x \cdot \log (\sin x)\)
\(\left.=\frac{1}{u} \frac{d u}{d x}=x \cdot \frac{d}{d x} \log (\sin x)\right)+\log (\sin x) \cdot \frac{d}{d x}(x)\)
\(=\frac{d u}{d x}=u\left[x \cdot \frac{1}{\sin x} \frac{d}{d x}(\sin x)+\log (\sin x) \cdot(1)\right]\)
\(=\frac{d y}{d x}=(\sin x)^{x}\left[\frac{x}{\sin x} \cdot \cos x+\log (\sin x) \cdot(1)\right]\)
\(=\frac{d y}{d x}=(\sin x)^{x}[x \cdot \cot x+\log \sin x]\)
for, \( \mathrm{v}= \sin ^{-1} \sqrt{x} \)
Now, differentiate both sides with respect to \(x\)
\(=\frac{d v}{d x}=\frac{d}{d x}\left[\sin^{-1} \sqrt{x}\right]\)
\(=\frac{d v}{d x}=\frac{1}{\sqrt{1-(\sqrt{x})^{2}}} \cdot \frac{d}{d x}(\sqrt{x})\)
\(=\frac{d v}{d x}=\frac{1}{\sqrt{1-x}} \cdot \frac{1}{2(\sqrt{x})}\)
\(=\frac{d v}{d x}= \frac{1}{2 \sqrt{x-x^{2}}} \quad \operatorname{Because}, y=\mathrm{u}+\mathrm{v}\)
\(=\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}\)
\(=\frac{d y}{d x}=(\sin x)^{x}[x \cdot \cot x+\log \sin x]+\frac{1}{2 \sqrt{x-x^{2}}}\)
9 . Differentiate the functions given in w.r.t. \(x\).
\(x^{\sin x}+(\sin x)^{\cos x}\)
\(x^{\sin x}+(\sin x)^{\cos x}\)
Answer
Given: \( x^{\sin x}+(\sin x)^{\cos x} \)
Let \( y=x^{\sin x}+(\sin x)^{\cos x} \)
Let \( y=u+v \)
\(\Rightarrow \mathrm{u}=x^{\sin x} \text { and } \mathrm{v}=(\sin x)^{\cos x}\)
For, \( \mathrm{u}=x^{\sin x} \)
Taking \( \log \) on both sides, we get
\(\log \mathrm{u}=\log (x \sin x)\)
\(\Rightarrow \log \mathrm{u}=\sin x \cdot \log (x)\)
Now, differentiate both sides with respect to \(x\)
\(=\frac{d}{d x}(\log u)=\frac{d}{d x}[\sin x \cdot \log x\)
\(=\frac{1}{u} \frac{d u}{d x}=\sin x \cdot \frac{d}{d x}(\log x)+\log x \cdot \frac{d}{d x}(\sin x)\)
\(=\frac{d u}{d x}=u\left[\sin x \cdot \frac{1}{x}+\log x \cdot \cos x\right]\)
\(=\frac{d u}{d x}=(x)^{\sin x}\left[\frac{\sin x}{x}+\log x \cdot \cos x\right]\)
For, \( \mathrm{v}=(\sin x)^{\cos x} \)
Taking \( \log \) on both sides, we get
\(\log \mathrm{v}=\log (\sin x)^{\cos x}\)
\(\Rightarrow \log \mathrm{v}=\cos x \cdot \log (\sin x)\)
Now, differentiate both sides with respect to \( x \)
\(\frac{d}{d x}(\log v)=\frac{d}{d x}[\cos x \cdot \log (\sin x)]\)
\(=\frac{1}{v} \frac{d v}{d x}=\cos x \cdot \frac{d}{d x} \log (\sin x)+\log \sin x \cdot \frac{d}{d x}(\cos x)\)
\(=\frac{d v}{d x}=v\left[\cos x \cdot \frac{1}{\sin x} \cdot \frac{d}{d x}(\sin x)+\log (\sin x) \cdot(-\sin x)\right]\)
\(=\frac{d v}{d x}=(\sin x)^{\cos x}\left[\frac{\cos x}{\sin x} \cdot \cos x+\log \sin x \cdot(-\sin x)\right]\)
\(=\frac{d y}{d x}=(\sin x)^{\cos x}[\cot x \cdot \cos x-\sin x \cdot \log \sin x] \text { Because, } x=\mathrm{u}+\mathrm{v}\)
\(=\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}\)
\(=\frac{d y}{d x}=(x)^{\sin x}\left[\frac{\sin x}{x}+\log x \cdot \cos x\right]+(\sin x)^{\cos x}[\cot x \cdot \cos x-\sin x \cdot \log \sin x]\)
10. Differentiate the functions given in w.r.t. \(x \).
\(x^{x \cos x}+\frac{x^{2}+1}{x^{2}-1}\)
\(x^{x \cos x}+\frac{x^{2}+1}{x^{2}-1}\)
Answer
Given: \( x^{x \cos x}+\frac{x^{2}+1}{x^{2}-1} \)
Let \( y=x^{x \cos x}+\frac{x^{2}+1}{x^{2}-1} \)
Let \( y=u+v \)
\( =\mathrm{u}=x^{x \cos x} \) and \( \mathrm{v}=\frac{x^{2}+1}{x^{2}-1} \)
for, \( \mathrm{u}=x^{x \cos x} \)
Taking \( \log \) on both sides, we get
\(\log \mathrm{u}=\log x^{x \cos x}\)
\(\Rightarrow \log \mathrm{u}=x \cdot \cos x \cdot \log\)
Now, differentiate both sides with respect to \(x\)
\(\frac{d}{d x}(\log u)=\frac{d}{d x}[x \cdot \cos x \cdot \log x]\)
\(=\frac{1}{u} \frac{d u}{d x}=\cos x \log x \cdot \frac{d}{d x}(x)+x \cdot \log x \cdot \frac{d}{d x}(\cos x)+x \cdot \cos x \cdot \frac{d}{d x}(\log x)\)
\(=\frac{d u}{d x}=u\left[\cos x \cdot \log x+x \cdot \log x(-\sin x)+x \cdot \cos x \cdot\left(\frac{1}{x}\right)\right]\)
\(=\frac{d u}{d x}=x^{x \cos x}[\cos x \cdot \log x-x \cdot \log x \cdot \sin x+\cos x]\)
\(=\frac{d y}{d x}=x^{x \cos x}[\cos x(1+\log x)-x \cdot \log x \cdot \sin x]\)
\(\text { for, } \mathrm{v}=\frac{x^{2}+1}{x^{2}-1}\)
Taking \( \log \) on both sides, we get
\(\log \mathrm{v}=\log \left(\frac{x^{2}+1}{x^{2}-1}\right)\)
\(\Rightarrow \log \mathrm{v}=\log \left(x^{2}+1\right)-\log \left(x^{2}-1\right)\)
Now, differentiate both sides with respect to \(x\)
\(\frac{d}{d x}(\log v)=\frac{d}{d x}\left[\log \left(x^{2}+1\right)-\log \left(x^{2}-1\right)\right]\)
\(=\frac{1}{v} \frac{d y}{d x}=\frac{1}{x^{2}+1} \cdot \frac{d}{d x}\left(x^{2}\right)-\frac{1}{x^{2}-1} \cdot \frac{d}{d x}\left(x^{2}\right)\)
\(=\frac{d y}{d x}=v \cdot\left[\frac{1}{x^{2}+1} \cdot(2 x)-\frac{1}{x^{2}-1} \cdot(2 x)\right]\)
\(=\frac{d y}{d x}=\left(\frac{x^{2}+1}{x^{2}-1}\right) \cdot\left[\frac{2 x\left(x^{2}-1\right)-2 x\left(x^{2}+1\right)}{\left(x^{2}+1\right)\left(x^{2}-1\right)}\right]\)
\(=\frac{d y}{d x}=\left(\frac{x^{2}+1}{x^{2}-1}\right) \cdot\left[\frac{-4 x}{\left(x^{2}+1\right)\left(x^{2}-1\right)}\right]\)
\(=\frac{d y}{d x}=\left[\frac{-4 x}{\left(x^{2}-1\right)^{2}}\right]\)
Because, \( y=u+v \)
\(=\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}\)
\(=\frac{d y}{d x}=x^{x \cos x}[\cos x(1+\log x)-x \cdot \log x \cdot \sin x]-\left[\frac{4 x}{\left(x^{2}-1\right)^{2}}\right]\)
11. Differentiate the functions given in w.r.t. \( x \).
\((x \cos x)^{x}+(x \sin x)^{\frac{1}{x}}\)
\((x \cos x)^{x}+(x \sin x)^{\frac{1}{x}}\)
Answer
Given: \( (x \cos x)^{x}+(x \sin x)^{\frac{1}{x}} \)
Let \( y=(x \cos x)^{x}+(x \sin x)^{\frac{1}{x}} \)
Let \( y=u+v \)
\( =\mathrm{u}=(x \cos x)^{x} \) and \( \mathrm{v}=(x \sin x)^{\frac{1}{x}} \)
for, \( \mathrm{u}=(x \cos x)^{x} \)
Taking \( \log \) on both sides, we get
\(\log \mathrm{u}=\log (x \cos x)^{x}\)
\(\Rightarrow \log \mathrm{u}=x \cdot \log (x \cos x)\)
\(\Rightarrow \log \mathrm{u}=x(\log x+\log (\cos x))\)
\(\Rightarrow \log \mathrm{u}=x(\log x)+x(\log (\cos x))\)
Now, differentiate both sides with respect to \(x\)
\(=\frac{d y}{d x}(\log x)=\frac{d}{d x}[x \cdot \log (x)]+\frac{d}{d x}[x \cdot \log (\cos x)]\)
\(=\frac{1}{u} \frac{d u}{d x}=\left\{x \cdot \frac{d}{d x}(\log x)+\log x \cdot \frac{d}{d x}(x)\right\}+\left\{x \cdot \frac{d}{d x}(\log \cos x)+\right.\)
\(\left.\log \cos x \cdot \frac{d}{d x}(x)\right\}\)
\(=\frac{d u}{d x}=u\left[\left\{x \cdot \frac{1}{x}+\log x \cdot(1)\right\}+\left\{x \cdot \frac{1}{\cos x} \cdot \frac{d}{d x}(\cos x)+\log \cos x \cdot(1)\right\}\right]\)
Taking \( \log \) on both sides, we get
\(\log \mathrm{v}=\log (x \sin x)^{\frac{1}{x}}\)
Now, differentiate both sides with respect to \(x\)
\(\frac{d}{d x}(\log v)=\frac{d}{d x}\left[\frac{1}{x} \cdot(\log x)\right]+\frac{d}{d x}\left[\frac{1}{x} \cdot \log (\sin x)\right]\)
\(=\frac{1}{v} \frac{d y}{d x}=\left\{\frac{1}{x} \cdot \frac{d}{d x}(\log x)+\log x \cdot \frac{d}{d x}\left(\frac{1}{x}\right)\right\}+\left\{\frac{1}{x} \cdot \frac{d}{d x}(\log \sin x)+\right.\)
\(\left.\log \sin x \cdot \frac{d}{d x}\left(\frac{1}{x}\right)\right\}\)
\(=\frac{d y}{d x}=v\left[\left\{\frac{1}{x} \cdot \frac{d}{d x}(\log x)+\log x \cdot \frac{d}{d x}\left(\frac{1}{x}\right)\right\}+\left\{\frac{1}{x} \cdot \frac{d}{d x}(\log \sin x)+\right.\right.\)
\(\left.\left.\log \sin x \cdot \frac{d}{d x}\left(\frac{1}{x}\right)\right\}\right]\)
\(=\frac{d y}{d x}=(x \sin x)^{\frac{1}{x}}\left[\left\{\frac{1}{x^{2}}(1-\log x)\right\}+\left\{\frac{\cos x}{x \cdot \sin x} \cdot-\frac{\log \sin x}{x^{2}}\right\}\right]\)
\(=\frac{d y}{d x}=(x \sin x)^{\frac{1}{x}}\left[\frac{1-\log x}{x^{2}}+\frac{\cot x}{x}-\frac{\log \sin x}{x^{2}}\right]\)
\(=\frac{d y}{d x}=(x \sin x)^{\frac{1}{x}}\left[\frac{1-\log x+x \cot x-\log \sin x}{x^{2}}\right]\)
\(=\frac{d y}{d x}=(x \sin x)^{\frac{1}{x}}\left[\frac{1+x \cot x-\log (x \cdot \sin x)}{x^{2}}\right]\)
\(=\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}\)
\(=\frac{d y}{d x}=(x \cos x)^{x}[1-x \cdot \tan x+\log (x \cdot \cos x)]+ (x \sin x)^{\frac{1}{x}}\left[\frac{1+x \cot x-\log (x \cdot \sin x)}{x^{2}}\right]\)
exercise 5.5 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.5 || class 12 maths exercise 5.5 || continuity and differentiability class 12 ncert solutions || ex 5.5 class 12 maths ncert solutions
12. Find \(\frac{ d y }{ d x } \) of the functions.
\(x^{y}+y^{x}=1\)
\(x^{y}+y^{x}=1\)
Answer
Given: \( x^{y}+y^{x}=1 \)
Let \( y=x^{y}+y^{x}=1 \)
Let \( \mathrm{u}=x^{y} \) and \( \mathrm{v}=y^{x} \)
Then, \( \Rightarrow \mathrm{u}+\mathrm{v}=1 \)
\(=\frac{d u}{d x}+\frac{d v}{d x}=0\)
For, \( \mathrm{u}=x y \)
Taking \( \log \) on both sides, we get
\( \log \mathrm{u}=\log x y \)
\(\Rightarrow \log \mathrm{u}=x \cdot \log (x)\)
Now, differentiate both sides with respect to \(x\)
\(=\frac{d}{d x}(\log u)=\frac{d}{d x}[y \cdot \log (x)]\)
\(=\frac{1}{u} \frac{d u}{d x}=\left\{y \cdot \frac{d}{d x}(\log x)+\log x \cdot \frac{d}{d x}(y)\right\}\)
\(=\frac{d u}{d x}=u\left[y \cdot \frac{1}{x}+\log x \cdot\left(\frac{d y}{d x}\right)\right]\)
\(=\frac{d y}{d x}=x^{y}\left[\frac{y}{x}+\log x \cdot\left(\frac{d y}{d x}\right)\right]\)
For, \( \mathrm{v}=y^{x} \)
Taking \( \log \) on both sides, we get
\(\log \mathrm{v}=\log y^{x}\)
\(\Rightarrow \log \mathrm{v}=x \cdot \log (y)\)
Now, differentiate both sides with respect to \(x\)
\(=\frac{d}{d x}(\log v)=\frac{d}{d x}[x \cdot \log (y)]\)
\(=\frac{1}{v} \frac{d v}{d x}=\left\{x \cdot \frac{d}{d x}(\log y)+\log y \cdot \frac{d}{d x} x\right\}\)
\(=\frac{d v}{d x}=v\left[x \cdot \frac{1}{y} \cdot \frac{d y}{d x}+\log y \cdot\left(\frac{d y}{d x}\right)\right]\)
\(=\frac{d y}{d x}=y^{x}\left[\frac{x}{y} \cdot \frac{d y}{d x}+\log y\right]\)
because, \( \frac{d u}{d x}+\frac{d v}{d x}=0 \)
\(\text { so, } x^{y}\left[\frac{y}{x}+\log x \cdot\left(\frac{d y}{d x}\right)\right]+y^{x}\left[\frac{x}{y} \cdot \frac{d y}{d x}+\log y\right]=0\)
\(=\left(x^{y} \log x+x y^{x-1}\right) \cdot \frac{d y}{d x}+\left(y x^{y-1}+y^{x} \log y\right)=0\)
\(=\left(x^{y} \log x+x y^{x-1}\right) \cdot \frac{d y}{d x}=-\left(y x^{y-1}+y^{x} \log y\right)\)
\(=\frac{d y}{d x}=-\frac{\left(y x^{y-1}+y^{x} \log y\right)}{\left(x^{y} \log x+x y^{x-1}\right)}\)
13. Find \( \frac{ d y }{ d x } \) of the functions.
\(y^{x}=x^{y}\)
\(y^{x}=x^{y}\)
Answer
Given: \( y^{x}=x^{y} \)
Taking \( \log \) on both sides, we get
\(\log yx=\log x^{y}\)
\(\Rightarrow x \log y=x \log x\)
Now, differentiate both sides with respect to \(x\)
\(x \cdot \frac{d}{d x} \log y+\log y \cdot \frac{d}{d x} x=y \cdot \frac{d}{d x} \log x+\log x \cdot \frac{d}{d x} y\)
\(x \cdot \frac{1}{y} \cdot \frac{d y}{d x}+\log y \cdot(1)=y \cdot \frac{1}{x}+\log x \cdot \frac{d y}{d x}\)
\(\frac{x}{y} \cdot \frac{d y}{d x}-\log x \cdot \frac{d y}{d x}=y \cdot \frac{1}{x}-\log y\)
\(=\frac{d y}{d x}\left(\frac{x}{y}-\log x\right)=\frac{y-x \log y}{x}\)
\(=\frac{d y}{d x}\left(\frac{x-y \log x}{y}\right)=\frac{y-x \log y}{x}\)
\(=\frac{d y}{d x}=\frac{y}{x}\left(\frac{y-x \log y}{x-y \log x}\right)\)
14. Find \( \frac{ d y }{ d x } \) of the functions.
\((\cos x)^{y}=(\cos x)^{x}\)
\((\cos x)^{y}=(\cos x)^{x}\)
Answer
Given: \( (\cos x)^{y}=(\cos x)^x \)
Taking \( \log \) on both sides, we get
\(\log (\cos x)^{y}=\log (\cos y)^{x}\)
\(\Rightarrow y \log (\cos x)=x \log (\cos y)\)
Now, differentiate both sides with respect to \(x \)
\(y\cdot \frac{d}{d x} \log (\cos x)+\log (\cos x) \cdot \frac{d}{d x} y=x \cdot \frac{d}{d x} \log (\cos y)+\log \cos y \cdot \frac{d}{d x} x\)
\(=y \cdot \frac{1}{\cos x} \cdot \frac{d}{d x}(\cos x)+\log (\cos x) \cdot \frac{d y}{d x}=x \cdot \frac{1}{\cos y} \cdot \frac{d}{d x}(\cos y)+\)
\(\log (\cos y) \cdot \frac{d y}{d x}\)
\(=\frac{y}{\cos x} \cdot(-\sin x)+\log (\cos x) \cdot \frac{d y}{d x}=\frac{x}{\cos y} \cdot(-\sin y) \cdot \frac{d y}{d x}+\)
\(\log (\cos y) \cdot(1)\)
\(=\frac{d y}{d x}\left(\frac{x \cdot \sin y}{\cos y}+\log (\cos x)\right)=y \cdot \frac{\sin x}{\cos x}+\log (\cos y)\)
\(=\frac{d y}{d x}(x \tan x+\log (\cos x))=y \cdot \tan x+\log (\cos y)\)
\(=\frac{d y}{d x}=\left(\frac{y \cdot \tan x+\log (\cos y)}{x \cdot \tan x+\log (\cos x)}\right)\)
15. Find \( \frac{ d y }{ d x } \) of the functions.
\(x y=e^{(x-y)}\)
\(x y=e^{(x-y)}\)
Answer
Given: \( xy=\mathrm{e}^{(x-y)} \)
Taking \( \log \) on both sides, we get
\(\log (x y)=\log (e(x-y))\)
\(\Rightarrow \log x+\log y=(x-y) \log e\)
\(\Rightarrow \log x+\log y=(x-y) .1\)
\(\Rightarrow \log x+\log y=(x-y)\)
Now, differentiate both sides with respect to \(x\)
\(\frac{d}{d x} \log x+\frac{d}{d x} \log y=\frac{d}{d x} x-\frac{d}{d x} y\)
\(\frac{1}{x}+\frac{1}{y} \frac{d y}{d x}=1-\frac{d y}{d x}\)
\(\left(1+\frac{1}{y}\right) \frac{d y}{d x}=1-\frac{1}{x}\)
\(\frac{1+y}{y} \frac{d y}{d x}=\frac{x-1}{x}\)
\(\frac{d y}{d x}=\frac{y(x-1)}{x(1+y)}\)
16. Find the derivative of the function given by \( \mathrm{f}(x)=(1+x)\left(1+x^{2}\right) \) \( \left(1+x^{4}\right)\left(1+x^{8}\right) \) and hence find \( f^{\prime}(1) \).
Answer
Given: \( \mathrm{f}(x)=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right) \)
Taking \( \log \) on both sides, we get
\(\log \mathrm{f}(x)=\log (1+x)+\log \left(1+x^{2}\right)+\log \left(1+x^{4}\right)+\log \left(1+x^{8}\right)\)
Now, differentiate both sides with respect to \(x\)
\(\frac{d}{d x} \log f(x)=\frac{d}{d x} \log (1+x)+\frac{d}{d x} \log \left(1+x^{2}\right)+\frac{d}{d x} \log \left(1+x^{4}\right)+ \frac{d}{d x} \log \left(1+x^{8}\right)\)
\(=\frac{1}{f(x)} \cdot \frac{d}{d x}[f(x)]\)
\(=\frac{1}{1+x} \cdot \frac{d}{d x}(1+x)+\frac{1}{1+x^{2}} \frac{d}{d x}\left(1+x^{2}\right)+\frac{1}{1+x^{4}} \frac{d}{d x}\left(1+x^{4}\right)+\frac{1}{1+x^{8}} \frac{d}{d x}(1+x^{8})\)
\(=\mathrm{f}^{\prime}(x)=\mathrm{f}(x)=\left[\frac{1}{1+x}+\frac{1}{1+x^{2}} \cdot(2 x)+\frac{1}{1+x^{4}} \cdot\left(4 x^{3}\right)+\frac{1}{1+x^{8}}\left(8 x^{7}\right)\right]\)
\(=f^{\prime}(x)=(1+x)\left(1+x^{2}\right)\left(1+x^{4}\right)\left(1+x^{8}\right)\left[\frac{1}{1+x}+\frac{2 x}{1+x^{2}}+\frac{4 x^{3}}{1+x^{4}}+ \frac{8 x^{7}}{1+x^{8}}\right]\)
\(=f^{\prime}(x)=(1+1)\left(1+1^{2}\right)\left(1+1^{4}\right)\left(1+1^{8}\right)\left[\frac{1}{1+1}+\frac{2(1)}{1+1}+\frac{4(1)^{3}}{1+(1)^{4}}+ \frac{8(1)^{7}}{1+(1)^{8}}\right]\)
\(=f^{\prime}(1)=(2)(2)(2)(2)\left[\frac{1}{2}+\frac{2}{2}+\frac{4}{2}+\frac{8}{2}\right]\)
\(=f^{\prime}(1)=16\left[\frac{1+2+4+8}{2}\right]\)
\(=f^{\prime}(1)=16\left(\frac{15}{2}\right)\)
\(=f^{\prime}(1)=120\)
17. Differentiate \( \left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right) \) in three ways mentioned below:
(i) by using product rule
(ii) by expanding the product to obtain a single polynomial.
(iii) by logarithmic differentiation.
Do they all give the same answer?
(i) by using product rule
(ii) by expanding the product to obtain a single polynomial.
(iii) by logarithmic differentiation.
Do they all give the same answer?
Answer
Given: \( \left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right) \)
Let \( y=\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right) \)
(i) By applying product rule differentiate both sides with respect to \(x\)
\(\frac{d y}{d x}=\frac{d y}{d x}\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right)\)
\(=\frac{d y}{d x}=\left(x^{3}+7 x+9\right) \cdot \frac{d}{d x}\left(x^{2}-5 x+8\right)+\left(x^{2}-5 x+8\right) \cdot \frac{d}{d x}\left(x^{3}+7 x+9\right)\)
\(=\frac{d y}{d x}=\left(x^{3}+7 x+9\right) \cdot(2 x-5)+\left(x^{2}-5 x+8\right) \cdot\left(3 x^{2}+7\right)\)
\(=\frac{d y}{d x}=2 x^{4}+14 x^{2}+18 x-5 x^{3}-35 x-45+3 x^{4}+7 x^{2}-15 x^{3}- 35 x+24 x^{2}+56\)
\(=\frac{d y}{d x}=5 x^{4}-20 x^{3}+45 x^{2}-52 x+11 \ldots(1)\)
(ii) by expanding the product to obtain a single polynomial
\(y=\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right)\)
\(y=x^{5}+7 x^{3}+9 x^{2}-5 x^{4}-35 x^{2}-45 x+8 x^{3}+56 x+72\)
\(y=x^{5}-5 x^{4}+15 x^{3}-26 x^{2}+11 x+72\)
Now, differentiate both sides with respect to \(x\)
\(\frac{d y}{d x}=\frac{d}{d x}\left(x^{5}\right)-\frac{d}{d x}\left(5 x^{4}\right)+\frac{d}{d x}\left(15 x^{3}\right)-\frac{d}{d x}\left(26 x^{2}\right)+\frac{d}{d x}(11 x)+\)
\(\frac{d}{d x}(72)\)
\(\frac{d y}{d x}=5 x^{4}-20 x^{3}+45 x^{2}-52 x+11 \ldots(2)\)
(iii) by logarithmic differentiation
\(y=\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right)\)
Taking \( \log \) on both sides, we get
\(\log y=\log \left(\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right)\right)\)
\(\log y=\log \left(x^{2}-5 x+8\right)+\log \left(x^{3}+7 x+9\right)\)
Now, differentiate both sides with respect to \(x\)
\(\frac{d y}{d x}(\log y)=\frac{d}{d x} \log \left(x^{2}-5 x+8\right)+\frac{d}{d x} \log \left(x^{3}+7 x+9\right)\)
\(=\frac{1}{y} \frac{d}{d x}(y)=\left[\frac{1}{\left(x^{2}-5 x+8\right)} \cdot \frac{d}{d x}\left(x^{2}-5 x+8\right)+\frac{1}{\left(x^{3}+7 x+9\right)} \cdot \frac{d}{d x}\left(x^{3}+7 x+9\right) \right]\)
\(=\frac{1}{y} \frac{d}{d x}(y)=\left[\frac{1}{\left(x^{2}-5 x+8\right)} \cdot(2 x-5)+\frac{1}{\left(x^{3}+7 x+9\right)} \cdot\left(3 x^{2}+7\right)\right]\)
\(=\frac{d}{d x}(y)=y \cdot\left[\frac{(2 x-5)}{\left(x^{2}-5 x+8\right)}+\frac{\left(3 x^{2}+7\right)}{\left(x^{3}+7 x+9\right)}\right]\)
\(=\frac{d}{d x}(y)=y \cdot\left[\frac{(2 x-5)\left(x^{3}+7 x+9\right)+\left(3 x^{2}+7\right)\left(x^{2}-5 x+9\right)}{\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right)}\right]\)
\(=\frac{d}{d x}(y)=y \cdot\left[\frac{2 x^{4}+14 x^{2}+18 x-5 x^{3}-35 x-45+3 x^{4}-15 x^{3}+24 x^{2}+7 x^{2}-35 x+56}{(x-5 x+8)(x+7 x+9)}\right]\)
\(=\frac{d}{d x}(y)=\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right) \cdot\left[\frac{5 x^{4}-20 x^{3}-45 x^{2}-52 x+11}{\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right)}\right]\)
\(=\frac{d y}{d x}=5 x^{4}-20 x^{3}+45 x^{2}-52 x+11 \ldots . .(3)\)
From equation (i), (ii) and (iii), we can say that value of given function after differentiating by all the three methods is same.
18. If \( \mathrm{u}, \mathrm{v} \) and w are functions of \(x \), then show that
\(\frac{d}{d x}(u \cdot v \cdot w)=\frac{d u}{d x} v \cdot w+u \cdot \frac{d v}{d x} \cdot w+u \cdot v \cdot \frac{d w}{d x}\)
in two ways - first by repeated application of product rule, second by logarithmic differentiation.
\(\frac{d}{d x}(u \cdot v \cdot w)=\frac{d u}{d x} v \cdot w+u \cdot \frac{d v}{d x} \cdot w+u \cdot v \cdot \frac{d w}{d x}\)
in two ways - first by repeated application of product rule, second by logarithmic differentiation.
Answer
To prove: \( \frac{d}{d x}(u \cdot v \cdot w)=\frac{d u}{d x} v \cdot w+u \cdot \frac{d v}{d x} \cdot w+u \cdot v \cdot \frac{d w}{d x} \)
Let \( y=\mathrm{u} . \mathrm{v} \). w=u. (v. w)
(a) by applying product rule differentiate both sides with respect to \(x\)
\(\frac{d y}{d x}=(v \cdot w) \cdot \frac{d u}{d x}+u \cdot \frac{d}{d x}(v \cdot w)\)
\(=\frac{d y}{d x}=(v \cdot w) \cdot \frac{d u}{d x}+u \cdot\left[v \cdot \frac{d}{d x}(w)+w \cdot \frac{d}{d x}(v)\right]\)
\(=\frac{d y}{d x}=(v \cdot w) \cdot \frac{d u}{d x}+(u \cdot v) \cdot \frac{d w}{d x}+(u \cdot w \cdot) \cdot \frac{d v}{d x}\)
(b) Taking log on both sides, we get
as, \( y=\mathrm{u} . \mathrm{v} . \mathrm{w} \)
\(\log y=\log (u . v . w)\)
\(\log y=\log u+\log v+\log w\)
Now, differentiate both sides with respect to \(x \)
\(=\frac{d}{d x}(\log y)=\frac{d}{d x} \log u+\frac{d}{d x} \log v+\frac{d}{d x} \log w\)
\(=\frac{1}{y} \cdot \frac{d}{d x}(y)=\frac{1}{u} \cdot \frac{d}{d x}(u)+\frac{1}{v} \cdot \frac{d}{d x}(v)+\frac{1}{w} \cdot \frac{d}{d x}(w)\)
\(=\frac{d y}{d x}(y)=y\left[\frac{1}{u} \cdot \frac{d u}{d x}+\frac{1}{v} \cdot \frac{d v}{d x}+\frac{1}{w} \cdot \frac{d w}{d x}\right]\)
\(=\frac{d y}{d x}=u \cdot v \cdot w\left[\frac{1}{u} \cdot \frac{d u}{d x}+\frac{1}{v} \frac{d v}{d x}+\frac{1}{w} \cdot \frac{d w}{d x}\right]\)
\(=\frac{d y}{d x}=v \cdot w \cdot \frac{d u}{d x}+u \cdot w \cdot \frac{d v}{d x}+u \cdot v \cdot \frac{d w}{d x}\)
From equation (i), (ii) and (iii), we can say that value of given function after differentiating by all the three methods is same.