Ex 5.7 Class 12 Maths Ncert Solutions

Ex 5.7 class 12 maths ncert solutions | class 12 maths exercise 5.7 | class 12 maths ncert solutions chapter 5 exercise 5.7 | exercise 5.7 class 12 maths ncert solutions | continuity and differentiability class 12 ncert solutions

Looking for Ex 5.7 Class 12 Maths NCERT Solutions? You’re in the right place! This section offers comprehensive, step‑by‑step answers for all problems in Exercise 5.7 Class 12 Maths, a part of Chapter 5 – Continuity and Differentiability. These solutions cover advanced topics like Rolle’s Theorem and the Mean Value Theorem, ensuring you understand both the statements and applications of these fundamental theorems. Aligned with the latest CBSE and NCERT standards, the Class 12 Maths NCERT Solutions Chapter 5 Exercise 5.7 are ideal for effective revision and exam readiness. Explore these expertly crafted exercise 5.7 class 12 maths NCERT solutions to deepen your grasp of calculus and perform confidently in your board exams!

ex 5.7 class 12 maths ncert solutions
ex 5.7 class 12 maths ncert solutions || exercise 5.7 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.7 || class 12 maths exercise 5.7
Download the Math Ninja App Now

Exercise 5.7

1 . Find the second order derivatives of the function \(x^{2}+3 x+2\)
Answer
Let us take \( y=x^{2}+3 x+2 \)
Now,
\(\frac{d y}{d x}=\frac{d\left(x^{2}\right)}{d x}+\frac{d(3 x)}{d x}+\frac{d(2)}{d x}\)
\(=2 x+3\)
Therefore,
\(\frac{d^{2} y}{d x^{2}}=\frac{d(2 x+3)}{d x}=\frac{d(2 x)}{d x}+\frac{d(3)}{d x}\)
\(=2+0\)
\(=2\)
2 . Find the second order derivatives of the function \(x^{20}\)
Answer
Let us take \( y=x^{20} \)
Now,
\(\frac{d y}{d x}=\frac{d\left(x^{20}\right)}{d x}\)
\(=20 x^{19}\)
Therefore,
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left(20 x^{19}\right)}{d x}=20 \frac{d\left(x^{19}\right)}{d x}\)
\(=20 \times 19 \times x^{18}\)
\(=380 x^{18}\)
3 . Find the second order derivatives of the function \( x \cdot \cos x \)
Answer
Let us take \( y=x \cdot \cos x \)
Now,
\(\frac{d y}{d x}=\frac{d(x \cos x)}{d x}\)
\(=\cos x \frac{d(x)}{d x}+x \frac{d(\cos x)}{d x}\)
\(=\cos x .1+x(-\sin x)\)
\(=\cos x-x \sin x\)
Therefore,
\(\frac{d^{2} y}{d x^{2}}=\frac{d(\cos x-x \sin x)}{d x}\)
\(=\frac{d(\cos x)}{d x}-\frac{d(x \sin x)}{d x}\)
\(=-\sin x-\left[\sin x \cdot \frac{d(x)}{d x}+x \cdot \frac{d(\sin x)}{d x}\right]\)
\(=-\sin x-(\sin x+x \cos x)\)
\(=-(x \cos x+2 \sin x)\)
ex 5.7 class 12 maths ncert solutions || exercise 5.7 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.7 || class 12 maths exercise 5.7
Download the Math Ninja App Now
4 . Find the second order derivatives of the function \(\log x\)
Answer
Let us take \( y=\log x \)
Now,
\(\frac{d y}{d x}=\frac{d(\log x)}{d x}=\frac{1}{x}\)
Therefore,
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{1}{x}\right)}{d x}=\left(-\frac{1}{x^{2}}\right)\)
5 . Find the second order derivatives of the function \(x^{3} \log x\)
Answer
Let us take \( y=x^{3} \log x \)
Now,
\(\frac{d y}{d x}=\frac{d\left(x^{3} \log x\right)}{d x}\)
\(=\log x \cdot \frac{d\left(x^{3}\right)}{d x}+x^{3} \cdot \frac{d(\log x)}{d x}\)
\(= \log x \cdot 3 x^{2}+x^{3} \cdot \frac{1 }{ x }\)
\(=\log x \cdot 3 x^{2}+x^{2}\)
\(=x^{2}(1+3 \log x)\)
Therefore,
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left[x^{2}(1+3 \log x)\right]}{d x}\)
\(=(1+3 \log x) \cdot \frac{d\left(x^{2}\right)}{d x}+x^{2} \frac{d(1+3 \log x)}{d x}\)
\(=(1+3 \log x) \cdot 2 x+x^{2} \cdot \frac{3}{x}\)
\(=2 x+6 x \log x+3 x\)
\(=5 x+6 x \log x\)
\(=x(5+6 \log x)\)
6 . Find the second order derivatives of the function \(e^{x} \sin 5 x\)
Answer
Let us take \( y=\mathrm{e}^{x} \sin 5 x \)
Now,
\(\frac{d y}{d x}=\frac{d\left(e^{x} \sin 5 x\right)}{d x}\)
\(=\sin 5 x \cdot \frac{d\left(e^{x}\right)}{d x}+e^{x} \cdot \frac{d(\sin 5 x)}{d x}\)
\(=\sin 5 x \cdot e^{x}+e^{x} \cdot \cos 5 x \cdot \frac{d(5 x)}{d x}\)
\(=\mathrm{e}^{x} \sin 5 x+\mathrm{e}^{x} \cos 5 x \cdot 5\)
\(=\mathrm{e}^{x}(\sin 5 x+5 \cos 5 x)\)
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left[e^{x}(\sin 5 x+5 \cos 5 x)\right]}{d x}\)
\(=(\sin 5 x+5 \cos 5 x) \cdot \frac{d\left(e^{x}\right)}{d x}+e^{x} \cdot \frac{d(\sin 5 x+5 \cos 5 x)}{d x}\)
\(=(\sin 5 x+5 \cos 5 x) e^{x}+e^{x}\left[\cos 5 x \cdot \frac{d(5 x)}{d x}+5(-\sin 5 x) \cdot \frac{d(5 x)}{d x}\right]\)
\(=\mathrm{e}^{x}(\sin 5 x+5 \cos 5 x)+\mathrm{e}^{x}(5 \cos 5 x-25 \sin 5 x)\)
\(=\mathrm{e}^{x}(10 \cos 5 x-24 \sin 5 x)\)
\(=2 \mathrm{e}^{x}(5 \cos 5 x-12 \sin 5 x)\)
7 . Find the second order derivatives of the function \(e^{6 x} \cos 3 x\)
Answer
Let us take \( y=e^{6 x} \cos 3 x \)
Now,
\(\frac{d y}{d x}=\frac{d\left(e^{6 x} \cos 3 x\right)}{d x}\)
\(=\cos 3 x \cdot \frac{d\left(e^{6 x}\right)}{d x}+e^{6 x} \frac{d(\cos 3 x)}{d x}\)
\(=\cos 3 x \cdot e^{6 x} \cdot \frac{d(6 x)}{d x}+e^{6 x} \cdot(-\sin 3 x) \cdot \frac{d(3 x)}{d x}\)
\(=6 \mathrm{e} 6 x \cos 3 x-3 \mathrm{e} 6 x \sin 3 x\)
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left[6 e^{6 x} \cos 3 x-3 e^{6 x} \sin 3 x\right]}{d x}\)
\(=6 \cdot \frac{d\left(e^{6 x} \cos 3 x\right)}{d x}-3 \cdot \frac{d\left(e^{6 x} \sin 3 x\right)}{d x}\)
\(=6 \cdot\left[6 e^{6 x} \cos 3 x-3 e^{6 x} \sin 3 x\right]-3\left[\sin 3 x \cdot \frac{d\left(e^{6 x}\right)}{d x}+e^{6 x} \frac{d(\sin 3 x)}{d x}\right]\)
\(=36 \mathrm{e}^{6 x} \cos 3 x-18 \mathrm{e}^{6 x} \sin 3 x-3\left[\sin 3 x \cdot \mathrm{e}^{6 x} \cdot 6+\mathrm{e}^{6 x} \cdot \cos 3 x \cdot 3\right]\)
\(=36 \mathrm{e}^{6 x} \cos 3 x-18 \mathrm{e}^{6 x} \sin 3 x-18 \mathrm{e}^{6 x} \sin 3 x-9 \mathrm{e}^{6 x} \cos 3 x\)
\(=27 \mathrm{e}^{6 x} \cos 3 x-36 \mathrm{e}^{6 x} \sin 3 x\)
\(=9 \mathrm{e}^{6 x}(3 \cos 3 x-4 \sin 3 x)\)
8 . Find the second order derivatives of the function \(\tan ^{-1} x\)
Answer
Let us take \( y=\tan ^{-1} x \) Now,
\(\frac{d y}{d x}=\frac{d\left(\tan ^{-1}\right)}{d x}=\frac{1}{1+x^{2}}\)
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left[\frac{1}{1+x^{2}}\right]}{d x}\)
\(=\frac{d\left(1+x^{2}\right)^{-1}}{d x}=(-1) \cdot\left(1+x^{2}\right) \cdot \frac{d\left(1+x^{2}\right)}{d x}\)
\(=\frac{1}{\left(1+x^{2}\right)^{2}} \times 2 x=\frac{-2 x}{\left(1+x^{2}\right)^{2}}\)
9 . Find the second order derivatives of the function \(\log (\log x)\)
Answer
Let us take \( y=\log (\log x) \)
Now,
\(\frac{d y}{d x}=\frac{d[\log (\log x)]}{d x}\)
\(=\frac{1}{\log x} \cdot \frac{d(\log x)}{d x}=\frac{1}{x \log x}\)
\(=(x \log x)^{-1}\)
\(\frac{d^{2} y}{d x^{2}}=\frac{d(x \log x)^{-1}}{d x}\)
\(=(-1) \cdot(x \log x)^{-2} \cdot \frac{d(x \log x)}{d x}\)
\(=\frac{-1}{(x \log x)^{2}} \cdot\left[\log x \cdot \frac{d(x)}{d x}+x \cdot \frac{d(\log x)}{d x}\right]\)
\(=\frac{-1}{(x \log x)^{2}} \cdot\left[\log x \cdot 1+x \cdot \frac{1}{x}\right]\)
\(=\frac{-(1+\log x)}{(x \log x)^{2}}\)
10. Find the second order derivatives of the function \(\sin (\log x)\)
Answer
Let us take \( y=\sin (\log x) \)
Now,
\(\frac{d y}{d x}=\frac{d[\sin (\log x)]}{d x}\)
\(=\cos (\log x) \cdot \frac{d(\log x)}{d x}\)
\(=\frac{\cos (\log x)}{x}\)
Then
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{\cos (\log x)}{x}\right)}{d x}\)
\(=\frac{x \cdot \frac{d[\cos (\log x)]}{d x}-\cos (\log x) \cdot \frac{d(x)}{d x}}{x^{2}}\)
\(=\frac{x \cdot\left[-\sin (\log x) \cdot \frac{d(\log x)}{d x}\right]-\cos (\log x) \cdot 1}{x^{2}}\)
\(=\frac{-x \sin (\log x) \cdot \frac{1}{x} \cdot \cos (\log x)}{x^{2}}\)
\(=\frac{-\sin (\log x)+\cos (\log x)}{x^{2}}\)
ex 5.7 class 12 maths ncert solutions || exercise 5.7 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.7 || class 12 maths exercise 5.7
Download the Math Ninja App Now
11. If \( y=5 \cos x-3 \sin x \), prove that \( \frac{d^{2} y}{d x^{2}}+y=0 \)
Answer
It is given that \( y=5 \cos x-3 \sin x \)
Now, on differentiating we get,
\(\frac{d y}{d x}=\frac{d[5 \cos x-3 \sin x]}{d x}\)
\(=\frac{d(5 \cos x)}{d x}-\frac{d(3 \sin x)}{d x}\)
\(=\frac{5 d(\cos 5 x)}{d x}-\frac{3 d(\sin x)}{d x}\)
\(=5(-\sin x)-3(\cos x)\)
\(=-(5 \sin x+\cos x)\)
Then,
\(\frac{d^{2} y}{d x^{2}}=\frac{d(-(5 \sin x+\cos x))}{d x}\)
\(=-\left[5 \cdot \frac{d(\sin x)}{d x}+3 \cdot \frac{d(\cos x)}{d x}\right]\)
\(=-[5 \cos x+3(-\sin x)]\)
\(=-[5 \cos x-3 \sin x]\)
\(=-y\)
Therefore,
\(\frac{d^{2} y}{d x^{2}}+y=0\)
Hence Proved.
12. If \( y=\cos ^{-1} x \), Find \( \frac{ d^{2} y }{ d x^{2} } \) in terms of \( y \) alone.
Answer
It is given that \( y=\cos ^{-1} x \)
Now,
\(\frac{d y}{d x}=\frac{d\left(\cos ^{-1}\right)}{d x}=\frac{-1}{\sqrt{1-x^{2}}}=-\left(1-x^{2}\right)^{-\frac{1}{2}}\)
Therefore,
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left(-\left(1-x^{2}\right)^{-\frac{1}{2}}\right)}{d x}\)
\(=-\left(-\frac{1}{2}\right) \cdot\left(1-x^{2}\right)^{-\frac{3}{2}} \cdot \frac{d\left(1-x^{2}\right)}{d x}\)
\(=\frac{1}{2{\sqrt{1-x^{2}}}^{3}} \times(-2 x)\)
\(\frac{d^{2} y}{d x^{2}}=\frac{-x}{{\sqrt{\left(1-x^{2}\right)}}^{3}}\ldots(1)\)
Now it is given that \( y=\cos ^{-1} x \)
\(\Rightarrow x=\cos y\)
Now putting the value of \( x \) in equation (1), we get
\(\frac{d^{2} y}{d x^{2}}=\frac{-\cos y}{{\sqrt{1-\cos ^{2} y}}^{3}}\)
\(=\frac{-\cos y}{{\sqrt{\sin ^{2} y}}^{3}}\)
\(=\frac{-\cos y}{(\sin y)^{3}}=\frac{-\cos y}{\sin y} \cdot \frac{1}{\sin ^{2} y}\)
\(=\frac{d^{2} y}{d x^{2}}=-\cot y \cdot \operatorname{cosec}^2 y\)
13. If \( y=3 \cos (\log x)+4 \sin (\log x) \), show that \( x^{2} y_{2}+x y_{1}+y=0 \)
Answer
It is given that \( y=3 \cos (\log x)+4 \sin (\log x) \)
Now, on differentiating we get,
\(\frac{d y}{d x}=\frac{d(3 \cos (\log x))+4 \sin (\log x))}{d x}\)
\(=3 \cdot \frac{d(\cos (\log x))}{d x}+4 \cdot \frac{d(\sin (\log x))}{d x}\)
\(=3 \cdot\left[-\sin (\log x) \cdot \frac{d(\log x)}{d x}\right]+4 \cdot\left[\cos (\log x) \cdot \frac{d(\log x)}{d x}\right]\)
\(=\frac{d y}{d x}=\frac{-3 \sin (\log x)}{x}+\frac{4 \cos (\log x)}{x}=\frac{4 \cos (\log x)-3 \sin (\log x)}{x}\)
Again differentiating we get,
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{4 \cos (\log x)-3 \sin (\log x)}{x}\right)}{d x}\)
\(=\frac{x\{4 \cos (\log x)-3 \sin (\log x)\}^{\prime}-\{4 \cos (\log x)-3 \sin (\log x)\}(x) \prime}{x^{2}}\)
\(=\frac{x\left[-4 \sin (\log x) \cdot(\log x)^{\prime}-3 \cos (\log x) \cdot(\log x) ^\prime\right]-4 \cos (\log x)+3 \sin (\log x)}{x^{2}}\)
\(=\frac{-4 \sin (\log x)-3 \cos (\log x)-4 \cos (\log x)+3 \sin (\log x)}{x^{2}}\)
\(=\frac{-\sin (\log x)-7 \cos (\log x)}{x^{2}}\)
Therefore,
\(x^{2} y_{2}+x y_{1}+y\)
\(=x^{2}\left(\frac{-\sin (\log x)-7 \cos (\log x)}{x^{2}}\right)+x\left(\frac{4 \cos (\log x)-3 \sin (\log x)}{x}\right)+3 \cos (\log x)+4 \sin (\log x)\)
\(=-\sin (\log x)-7 \cos (\log x)+4 \cos (\log x)-3 \sin (\log x)+3 \cos (\log x)+ 4 \sin (\log x)\)
\(=0\)
So, \( x^{2} y_{2}+xy_{1}+y=0 \)
Hence Proved
14. If \( y=\mathrm{Ae}^{\mathrm{mx}}+\mathrm{Be}^{\mathrm{nx}} \), show that \( \frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y=0 \)
Answer
According to given equation, we have,
\(y=\mathrm{Ae}^{\mathrm{mx}}+\mathrm{Be}^{\mathrm{nx}}\)
\(\text { Then, } \frac{d y}{d x}=\frac{d\left(A e^{m x}+B e^{n x}\right)}{d x}\)
\(=\text { A. } \frac{d\left(e^{m x}\right)}{d x}+B \cdot \frac{d\left(e^{n x}\right)}{d x}\)
\(=\mathrm{A} \cdot \mathrm{e}^{m x} \frac{d(m x)}{d x}+B \cdot e^{n x} \frac{d(n x)}{d x}\)
\(=\mathrm{Ame}^{\mathrm{mx}}+\mathrm{Bne}^{\mathrm{nx}}\)
Now, on again differentiating we get,
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left(A m e^{m x}+B n e^{n x}\right)}{d x}\)
\(=\mathrm{Am} \cdot \frac{d\left(e^{m x}\right)}{d x}+B n \cdot \frac{d\left(e^{n x}\right)}{d x}\)
\(=\mathrm{Am} \cdot e^{m x} \frac{d(m x)}{d x}+B n \cdot e^{n x} \frac{d(n x)}{d x}\)
\(=\mathrm{Am}^{2} \mathrm{e}^{\mathrm{mx}}+\mathrm{Bn}^{2} \mathrm{e}^{\mathrm{nx}}\)
\(\therefore \frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y\)
\(=\mathrm{Am}^{2} \mathrm{e}^{\mathrm{mx}}+\mathrm{Bn}^{2} \mathrm{e}^{\mathrm{nx}}-(\mathrm{m}+\mathrm{n})\left(\mathrm{Ame}^{\mathrm{mx}}+\mathrm{Bne}^{\mathrm{nx}}\right)+\mathrm{mn}\left(\mathrm{Ae}^{\mathrm{mx}}+\mathrm{Be}^{\mathrm{nx}}\right)\)
\(=\mathrm{Am}^{2} \mathrm{e}^{\mathrm{mx}}+\mathrm{Bn}^{2} \mathrm{e}^{\mathrm{nx}}-\mathrm{Am}^{2} \mathrm{e}^{\mathrm{mx}}-\mathrm{Bmne}^{\mathrm{nx}}-\mathrm{Amne}^{\mathrm{mx}}-\mathrm{Bn}^{2} \mathrm{e}^{\mathrm{ex}}+\mathrm{Amne}^{\mathrm{mx}}+ \mathrm{Bmne}^{\mathrm{nx}}\)
\(=0\)
\(=\frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y=0\)
Hence Proved
15. If \( y=500 \mathrm{e}^{7 x}+600 \mathrm{e}^{-7 x} \), show that \( \frac{d^{2} y}{d x^{2}}=49 y \).
Answer
According to given equation, we have,
\(y=500 \mathrm{e}^{7 x}+600 \mathrm{e}^{-7 x}\)
\(\frac{d y}{d x}=\frac{d\left(500 e^{7 x}+600 e^{-7 x}\right)}{d x}\)
\(=500 \cdot \frac{d\left(e^{7 x}\right)}{d x}+600 \cdot \frac{d(-7 x)}{d x}\)
\(=500 \cdot e^{7 x} \frac{d(7 x)}{d x}+600 \cdot e^{-7 x} \frac{d(-7 x)}{d x}\)
\(=3500 \mathrm{e}^{7 x}-4200 \mathrm{e}^{-7 x}\)
Now, on again differentiating we get,
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left(3500 e^{7 x}-4200 e^{-7 x}\right)}{d x}\)
\(=3500 \cdot \frac{d\left(e^{7 x}\right)}{d x}-4200 \frac{d\left(e^{-7 x}\right)}{d x}\)
\(=3500 e^{7 x} \frac{d(7 x)}{d x}-42500 e^{-7 x} \frac{d}{d x(-7 x)}\)
\(=7 \times 3500 \cdot \mathrm{e}^{7 x}+7 \times 4200 \cdot \mathrm{e}^{-7 x}\)
\(=49 \times 500 \mathrm{e}^{7 x}+49 \times 600 \mathrm{e}^{-7 x}\)
\(=49\left(500 \mathrm{e}^{7 x}+600 \mathrm{e}^{-7 x}\right)\)
\(=49 y\)
\(\therefore \frac{d^{2} y}{d x^{2}}=49 y\)
Hence Proved
16. If \( \mathrm{e}^{y}(x+1)=1 \), show that \(\frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}\)
Answer
It is given that
\( e^{y}(x+1)=1 \)
\(=\mathrm{e}^{y}=\frac{1}{x+1}\)
Now, taking logarithm on both the sides we get,
\(y=\log \frac{1}{x+1}\)
On differentiating both sides, we get,
\(\frac{d y}{d x}=(x+1) \frac{d\left(\frac{1}{x+1}\right)}{d x}\)
\(=(x+1) \cdot \frac{-1}{(x+1)^{2}}=\frac{-1}{x+1}\)
Again, on differentiating we get,
\(\therefore \frac{d^{2} y}{d x^{2}}=-\frac{d\left(\frac{1}{x+1}\right)}{d x}\)
\(=-\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{1}{(x+1)^{2}}\)
\(=\frac{d^{2} y}{d x^{2}}=\frac{1}{(x+1)^{2}}\)
\(=\frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}\)
Hence Proved
17. If \( y=\left(\tan ^{-1} x\right)^{2} \), show that \( \left(x^{2}+1\right)^{2} y_{2}+2 x\left(x^{2}+1\right) y_{1}=2 \)
Answer
It is given that
\(y=\left(\tan ^{-1} x\right)^{2}\)
On differentiating we get,
\(\frac{d y}{d x}=\frac{d\left[\left(\tan ^{-1} x\right)^{2}\right]}{d x}\)
\(=2 \tan ^{-1} x \frac{d\left[\tan ^{-1} x\right]}{d x}\)
\(=2 \tan ^{-1} x \frac{1}{1+x^{2}}\)
\(=\left(1+x^{2}\right) \frac{d y}{d x}=2 \tan ^{-1} x\)
Again differentiating, we get,
\(\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}=2\left(\frac{1}{1+x^{2}}\right)\)
\(=\left(1+x^{2}\right)^{2} \frac{d^{2} y}{d x^{2}}+2 x\left(1+x^{2}\right) \frac{d y}{d x}=2\)
So, \( \left(1+x^{2}\right) 2 y^{2}+2 x\left(1+x^{2}\right) y_{1}=2 \)
where, \( y_{1}=\frac{d y}{d x} \) and \( y_{2}=\frac{d^{2} y}{d x^{2}} \)
Hence Proved
ex 5.7 class 12 maths ncert solutions || exercise 5.7 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.7 || class 12 maths exercise 5.7
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top