Ex 5.7 class 12 maths ncert solutions | class 12 maths exercise 5.7 | class 12 maths ncert solutions chapter 5 exercise 5.7 | exercise 5.7 class 12 maths ncert solutions | continuity and differentiability class 12 ncert solutions
Looking for Ex 5.7 Class 12 Maths NCERT Solutions? You’re in the right place! This section offers comprehensive, step‑by‑step answers for all problems in Exercise 5.7 Class 12 Maths, a part of Chapter 5 – Continuity and Differentiability. These solutions cover advanced topics like Rolle’s Theorem and the Mean Value Theorem, ensuring you understand both the statements and applications of these fundamental theorems. Aligned with the latest CBSE and NCERT standards, the Class 12 Maths NCERT Solutions Chapter 5 Exercise 5.7 are ideal for effective revision and exam readiness. Explore these expertly crafted exercise 5.7 class 12 maths NCERT solutions to deepen your grasp of calculus and perform confidently in your board exams!

ex 5.7 class 12 maths ncert solutions || exercise 5.7 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.7 || class 12 maths exercise 5.7
Exercise 5.7
Now,
\(\frac{d y}{d x}=\frac{d\left(x^{2}\right)}{d x}+\frac{d(3 x)}{d x}+\frac{d(2)}{d x}\)
\(=2 x+3\)
Therefore,
\(\frac{d^{2} y}{d x^{2}}=\frac{d(2 x+3)}{d x}=\frac{d(2 x)}{d x}+\frac{d(3)}{d x}\)
\(=2+0\)
\(=2\)
Now,
\(\frac{d y}{d x}=\frac{d\left(x^{20}\right)}{d x}\)
\(=20 x^{19}\)
Therefore,
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left(20 x^{19}\right)}{d x}=20 \frac{d\left(x^{19}\right)}{d x}\)
\(=20 \times 19 \times x^{18}\)
\(=380 x^{18}\)
Now,
\(\frac{d y}{d x}=\frac{d(x \cos x)}{d x}\)
\(=\cos x \frac{d(x)}{d x}+x \frac{d(\cos x)}{d x}\)
\(=\cos x .1+x(-\sin x)\)
\(=\cos x-x \sin x\)
Therefore,
\(\frac{d^{2} y}{d x^{2}}=\frac{d(\cos x-x \sin x)}{d x}\)
\(=\frac{d(\cos x)}{d x}-\frac{d(x \sin x)}{d x}\)
\(=-\sin x-\left[\sin x \cdot \frac{d(x)}{d x}+x \cdot \frac{d(\sin x)}{d x}\right]\)
\(=-\sin x-(\sin x+x \cos x)\)
\(=-(x \cos x+2 \sin x)\)
ex 5.7 class 12 maths ncert solutions || exercise 5.7 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.7 || class 12 maths exercise 5.7
Now,
\(\frac{d y}{d x}=\frac{d(\log x)}{d x}=\frac{1}{x}\)
Therefore,
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{1}{x}\right)}{d x}=\left(-\frac{1}{x^{2}}\right)\)
Now,
\(\frac{d y}{d x}=\frac{d\left(x^{3} \log x\right)}{d x}\)
\(=\log x \cdot \frac{d\left(x^{3}\right)}{d x}+x^{3} \cdot \frac{d(\log x)}{d x}\)
\(= \log x \cdot 3 x^{2}+x^{3} \cdot \frac{1 }{ x }\)
\(=\log x \cdot 3 x^{2}+x^{2}\)
\(=x^{2}(1+3 \log x)\)
Therefore,
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left[x^{2}(1+3 \log x)\right]}{d x}\)
\(=(1+3 \log x) \cdot \frac{d\left(x^{2}\right)}{d x}+x^{2} \frac{d(1+3 \log x)}{d x}\)
\(=(1+3 \log x) \cdot 2 x+x^{2} \cdot \frac{3}{x}\)
\(=2 x+6 x \log x+3 x\)
\(=5 x+6 x \log x\)
\(=x(5+6 \log x)\)
Now,
\(\frac{d y}{d x}=\frac{d\left(e^{x} \sin 5 x\right)}{d x}\)
\(=\sin 5 x \cdot \frac{d\left(e^{x}\right)}{d x}+e^{x} \cdot \frac{d(\sin 5 x)}{d x}\)
\(=\sin 5 x \cdot e^{x}+e^{x} \cdot \cos 5 x \cdot \frac{d(5 x)}{d x}\)
\(=\mathrm{e}^{x} \sin 5 x+\mathrm{e}^{x} \cos 5 x \cdot 5\)
\(=\mathrm{e}^{x}(\sin 5 x+5 \cos 5 x)\)
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left[e^{x}(\sin 5 x+5 \cos 5 x)\right]}{d x}\)
\(=(\sin 5 x+5 \cos 5 x) \cdot \frac{d\left(e^{x}\right)}{d x}+e^{x} \cdot \frac{d(\sin 5 x+5 \cos 5 x)}{d x}\)
\(=(\sin 5 x+5 \cos 5 x) e^{x}+e^{x}\left[\cos 5 x \cdot \frac{d(5 x)}{d x}+5(-\sin 5 x) \cdot \frac{d(5 x)}{d x}\right]\)
\(=\mathrm{e}^{x}(\sin 5 x+5 \cos 5 x)+\mathrm{e}^{x}(5 \cos 5 x-25 \sin 5 x)\)
\(=\mathrm{e}^{x}(10 \cos 5 x-24 \sin 5 x)\)
\(=2 \mathrm{e}^{x}(5 \cos 5 x-12 \sin 5 x)\)
Now,
\(\frac{d y}{d x}=\frac{d\left(e^{6 x} \cos 3 x\right)}{d x}\)
\(=\cos 3 x \cdot \frac{d\left(e^{6 x}\right)}{d x}+e^{6 x} \frac{d(\cos 3 x)}{d x}\)
\(=\cos 3 x \cdot e^{6 x} \cdot \frac{d(6 x)}{d x}+e^{6 x} \cdot(-\sin 3 x) \cdot \frac{d(3 x)}{d x}\)
\(=6 \mathrm{e} 6 x \cos 3 x-3 \mathrm{e} 6 x \sin 3 x\)
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left[6 e^{6 x} \cos 3 x-3 e^{6 x} \sin 3 x\right]}{d x}\)
\(=6 \cdot \frac{d\left(e^{6 x} \cos 3 x\right)}{d x}-3 \cdot \frac{d\left(e^{6 x} \sin 3 x\right)}{d x}\)
\(=6 \cdot\left[6 e^{6 x} \cos 3 x-3 e^{6 x} \sin 3 x\right]-3\left[\sin 3 x \cdot \frac{d\left(e^{6 x}\right)}{d x}+e^{6 x} \frac{d(\sin 3 x)}{d x}\right]\)
\(=36 \mathrm{e}^{6 x} \cos 3 x-18 \mathrm{e}^{6 x} \sin 3 x-3\left[\sin 3 x \cdot \mathrm{e}^{6 x} \cdot 6+\mathrm{e}^{6 x} \cdot \cos 3 x \cdot 3\right]\)
\(=36 \mathrm{e}^{6 x} \cos 3 x-18 \mathrm{e}^{6 x} \sin 3 x-18 \mathrm{e}^{6 x} \sin 3 x-9 \mathrm{e}^{6 x} \cos 3 x\)
\(=27 \mathrm{e}^{6 x} \cos 3 x-36 \mathrm{e}^{6 x} \sin 3 x\)
\(=9 \mathrm{e}^{6 x}(3 \cos 3 x-4 \sin 3 x)\)
\(\frac{d y}{d x}=\frac{d\left(\tan ^{-1}\right)}{d x}=\frac{1}{1+x^{2}}\)
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left[\frac{1}{1+x^{2}}\right]}{d x}\)
\(=\frac{d\left(1+x^{2}\right)^{-1}}{d x}=(-1) \cdot\left(1+x^{2}\right) \cdot \frac{d\left(1+x^{2}\right)}{d x}\)
\(=\frac{1}{\left(1+x^{2}\right)^{2}} \times 2 x=\frac{-2 x}{\left(1+x^{2}\right)^{2}}\)
Now,
\(\frac{d y}{d x}=\frac{d[\log (\log x)]}{d x}\)
\(=\frac{1}{\log x} \cdot \frac{d(\log x)}{d x}=\frac{1}{x \log x}\)
\(=(x \log x)^{-1}\)
\(\frac{d^{2} y}{d x^{2}}=\frac{d(x \log x)^{-1}}{d x}\)
\(=(-1) \cdot(x \log x)^{-2} \cdot \frac{d(x \log x)}{d x}\)
\(=\frac{-1}{(x \log x)^{2}} \cdot\left[\log x \cdot \frac{d(x)}{d x}+x \cdot \frac{d(\log x)}{d x}\right]\)
\(=\frac{-1}{(x \log x)^{2}} \cdot\left[\log x \cdot 1+x \cdot \frac{1}{x}\right]\)
\(=\frac{-(1+\log x)}{(x \log x)^{2}}\)
Now,
\(\frac{d y}{d x}=\frac{d[\sin (\log x)]}{d x}\)
\(=\cos (\log x) \cdot \frac{d(\log x)}{d x}\)
\(=\frac{\cos (\log x)}{x}\)
Then
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{\cos (\log x)}{x}\right)}{d x}\)
\(=\frac{x \cdot \frac{d[\cos (\log x)]}{d x}-\cos (\log x) \cdot \frac{d(x)}{d x}}{x^{2}}\)
\(=\frac{x \cdot\left[-\sin (\log x) \cdot \frac{d(\log x)}{d x}\right]-\cos (\log x) \cdot 1}{x^{2}}\)
\(=\frac{-x \sin (\log x) \cdot \frac{1}{x} \cdot \cos (\log x)}{x^{2}}\)
\(=\frac{-\sin (\log x)+\cos (\log x)}{x^{2}}\)
ex 5.7 class 12 maths ncert solutions || exercise 5.7 class 12 maths ncert solutions || continuity and differentiability class 12 ncert solutions || class 12 maths ncert solutions chapter 5 exercise 5.7 || class 12 maths exercise 5.7
Now, on differentiating we get,
\(\frac{d y}{d x}=\frac{d[5 \cos x-3 \sin x]}{d x}\)
\(=\frac{d(5 \cos x)}{d x}-\frac{d(3 \sin x)}{d x}\)
\(=\frac{5 d(\cos 5 x)}{d x}-\frac{3 d(\sin x)}{d x}\)
\(=5(-\sin x)-3(\cos x)\)
\(=-(5 \sin x+\cos x)\)
Then,
\(\frac{d^{2} y}{d x^{2}}=\frac{d(-(5 \sin x+\cos x))}{d x}\)
\(=-\left[5 \cdot \frac{d(\sin x)}{d x}+3 \cdot \frac{d(\cos x)}{d x}\right]\)
\(=-[5 \cos x+3(-\sin x)]\)
\(=-[5 \cos x-3 \sin x]\)
\(=-y\)
Therefore,
\(\frac{d^{2} y}{d x^{2}}+y=0\)
Hence Proved.
Now,
\(\frac{d y}{d x}=\frac{d\left(\cos ^{-1}\right)}{d x}=\frac{-1}{\sqrt{1-x^{2}}}=-\left(1-x^{2}\right)^{-\frac{1}{2}}\)
Therefore,
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left(-\left(1-x^{2}\right)^{-\frac{1}{2}}\right)}{d x}\)
\(=-\left(-\frac{1}{2}\right) \cdot\left(1-x^{2}\right)^{-\frac{3}{2}} \cdot \frac{d\left(1-x^{2}\right)}{d x}\)
\(=\frac{1}{2{\sqrt{1-x^{2}}}^{3}} \times(-2 x)\)
\(\frac{d^{2} y}{d x^{2}}=\frac{-x}{{\sqrt{\left(1-x^{2}\right)}}^{3}}\ldots(1)\)
Now it is given that \( y=\cos ^{-1} x \)
\(\Rightarrow x=\cos y\)
Now putting the value of \( x \) in equation (1), we get
\(\frac{d^{2} y}{d x^{2}}=\frac{-\cos y}{{\sqrt{1-\cos ^{2} y}}^{3}}\)
\(=\frac{-\cos y}{{\sqrt{\sin ^{2} y}}^{3}}\)
\(=\frac{-\cos y}{(\sin y)^{3}}=\frac{-\cos y}{\sin y} \cdot \frac{1}{\sin ^{2} y}\)
\(=\frac{d^{2} y}{d x^{2}}=-\cot y \cdot \operatorname{cosec}^2 y\)
Now, on differentiating we get,
\(\frac{d y}{d x}=\frac{d(3 \cos (\log x))+4 \sin (\log x))}{d x}\)
\(=3 \cdot \frac{d(\cos (\log x))}{d x}+4 \cdot \frac{d(\sin (\log x))}{d x}\)
\(=3 \cdot\left[-\sin (\log x) \cdot \frac{d(\log x)}{d x}\right]+4 \cdot\left[\cos (\log x) \cdot \frac{d(\log x)}{d x}\right]\)
\(=\frac{d y}{d x}=\frac{-3 \sin (\log x)}{x}+\frac{4 \cos (\log x)}{x}=\frac{4 \cos (\log x)-3 \sin (\log x)}{x}\)
Again differentiating we get,
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left(\frac{4 \cos (\log x)-3 \sin (\log x)}{x}\right)}{d x}\)
\(=\frac{x\{4 \cos (\log x)-3 \sin (\log x)\}^{\prime}-\{4 \cos (\log x)-3 \sin (\log x)\}(x) \prime}{x^{2}}\)
\(=\frac{x\left[-4 \sin (\log x) \cdot(\log x)^{\prime}-3 \cos (\log x) \cdot(\log x) ^\prime\right]-4 \cos (\log x)+3 \sin (\log x)}{x^{2}}\)
\(=\frac{-4 \sin (\log x)-3 \cos (\log x)-4 \cos (\log x)+3 \sin (\log x)}{x^{2}}\)
\(=\frac{-\sin (\log x)-7 \cos (\log x)}{x^{2}}\)
Therefore,
\(x^{2} y_{2}+x y_{1}+y\)
\(=x^{2}\left(\frac{-\sin (\log x)-7 \cos (\log x)}{x^{2}}\right)+x\left(\frac{4 \cos (\log x)-3 \sin (\log x)}{x}\right)+3 \cos (\log x)+4 \sin (\log x)\)
\(=-\sin (\log x)-7 \cos (\log x)+4 \cos (\log x)-3 \sin (\log x)+3 \cos (\log x)+ 4 \sin (\log x)\)
\(=0\)
So, \( x^{2} y_{2}+xy_{1}+y=0 \)
Hence Proved
\(y=\mathrm{Ae}^{\mathrm{mx}}+\mathrm{Be}^{\mathrm{nx}}\)
\(\text { Then, } \frac{d y}{d x}=\frac{d\left(A e^{m x}+B e^{n x}\right)}{d x}\)
\(=\text { A. } \frac{d\left(e^{m x}\right)}{d x}+B \cdot \frac{d\left(e^{n x}\right)}{d x}\)
\(=\mathrm{A} \cdot \mathrm{e}^{m x} \frac{d(m x)}{d x}+B \cdot e^{n x} \frac{d(n x)}{d x}\)
\(=\mathrm{Ame}^{\mathrm{mx}}+\mathrm{Bne}^{\mathrm{nx}}\)
Now, on again differentiating we get,
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left(A m e^{m x}+B n e^{n x}\right)}{d x}\)
\(=\mathrm{Am} \cdot \frac{d\left(e^{m x}\right)}{d x}+B n \cdot \frac{d\left(e^{n x}\right)}{d x}\)
\(=\mathrm{Am} \cdot e^{m x} \frac{d(m x)}{d x}+B n \cdot e^{n x} \frac{d(n x)}{d x}\)
\(=\mathrm{Am}^{2} \mathrm{e}^{\mathrm{mx}}+\mathrm{Bn}^{2} \mathrm{e}^{\mathrm{nx}}\)
\(\therefore \frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y\)
\(=\mathrm{Am}^{2} \mathrm{e}^{\mathrm{mx}}+\mathrm{Bn}^{2} \mathrm{e}^{\mathrm{nx}}-(\mathrm{m}+\mathrm{n})\left(\mathrm{Ame}^{\mathrm{mx}}+\mathrm{Bne}^{\mathrm{nx}}\right)+\mathrm{mn}\left(\mathrm{Ae}^{\mathrm{mx}}+\mathrm{Be}^{\mathrm{nx}}\right)\)
\(=\mathrm{Am}^{2} \mathrm{e}^{\mathrm{mx}}+\mathrm{Bn}^{2} \mathrm{e}^{\mathrm{nx}}-\mathrm{Am}^{2} \mathrm{e}^{\mathrm{mx}}-\mathrm{Bmne}^{\mathrm{nx}}-\mathrm{Amne}^{\mathrm{mx}}-\mathrm{Bn}^{2} \mathrm{e}^{\mathrm{ex}}+\mathrm{Amne}^{\mathrm{mx}}+ \mathrm{Bmne}^{\mathrm{nx}}\)
\(=0\)
\(=\frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y=0\)
Hence Proved
\(y=500 \mathrm{e}^{7 x}+600 \mathrm{e}^{-7 x}\)
\(\frac{d y}{d x}=\frac{d\left(500 e^{7 x}+600 e^{-7 x}\right)}{d x}\)
\(=500 \cdot \frac{d\left(e^{7 x}\right)}{d x}+600 \cdot \frac{d(-7 x)}{d x}\)
\(=500 \cdot e^{7 x} \frac{d(7 x)}{d x}+600 \cdot e^{-7 x} \frac{d(-7 x)}{d x}\)
\(=3500 \mathrm{e}^{7 x}-4200 \mathrm{e}^{-7 x}\)
Now, on again differentiating we get,
\(\frac{d^{2} y}{d x^{2}}=\frac{d\left(3500 e^{7 x}-4200 e^{-7 x}\right)}{d x}\)
\(=3500 \cdot \frac{d\left(e^{7 x}\right)}{d x}-4200 \frac{d\left(e^{-7 x}\right)}{d x}\)
\(=3500 e^{7 x} \frac{d(7 x)}{d x}-42500 e^{-7 x} \frac{d}{d x(-7 x)}\)
\(=7 \times 3500 \cdot \mathrm{e}^{7 x}+7 \times 4200 \cdot \mathrm{e}^{-7 x}\)
\(=49 \times 500 \mathrm{e}^{7 x}+49 \times 600 \mathrm{e}^{-7 x}\)
\(=49\left(500 \mathrm{e}^{7 x}+600 \mathrm{e}^{-7 x}\right)\)
\(=49 y\)
\(\therefore \frac{d^{2} y}{d x^{2}}=49 y\)
Hence Proved
\( e^{y}(x+1)=1 \)
\(=\mathrm{e}^{y}=\frac{1}{x+1}\)
Now, taking logarithm on both the sides we get,
\(y=\log \frac{1}{x+1}\)
On differentiating both sides, we get,
\(\frac{d y}{d x}=(x+1) \frac{d\left(\frac{1}{x+1}\right)}{d x}\)
\(=(x+1) \cdot \frac{-1}{(x+1)^{2}}=\frac{-1}{x+1}\)
Again, on differentiating we get,
\(\therefore \frac{d^{2} y}{d x^{2}}=-\frac{d\left(\frac{1}{x+1}\right)}{d x}\)
\(=-\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{1}{(x+1)^{2}}\)
\(=\frac{d^{2} y}{d x^{2}}=\frac{1}{(x+1)^{2}}\)
\(=\frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}\)
Hence Proved
\(y=\left(\tan ^{-1} x\right)^{2}\)
On differentiating we get,
\(\frac{d y}{d x}=\frac{d\left[\left(\tan ^{-1} x\right)^{2}\right]}{d x}\)
\(=2 \tan ^{-1} x \frac{d\left[\tan ^{-1} x\right]}{d x}\)
\(=2 \tan ^{-1} x \frac{1}{1+x^{2}}\)
\(=\left(1+x^{2}\right) \frac{d y}{d x}=2 \tan ^{-1} x\)
Again differentiating, we get,
\(\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}=2\left(\frac{1}{1+x^{2}}\right)\)
\(=\left(1+x^{2}\right)^{2} \frac{d^{2} y}{d x^{2}}+2 x\left(1+x^{2}\right) \frac{d y}{d x}=2\)
So, \( \left(1+x^{2}\right) 2 y^{2}+2 x\left(1+x^{2}\right) y_{1}=2 \)
where, \( y_{1}=\frac{d y}{d x} \) and \( y_{2}=\frac{d^{2} y}{d x^{2}} \)
Hence Proved