Ex 7.3 class 12 maths ncert solutions | class 12 maths exercise 7.3 | class 12 maths ncert solutions chapter 7 exercise 7.3 | exercise 7.3 class 12 maths ncert solutions | integrals class 12 ncert solutions
Looking for Exercise 7.3 Class 12 Maths NCERT Solutions? Our detailed guide to Class 12 Maths Chapter 7 Exercise 7.3 Solutions provides complete, step-by-step answers to integral problems involving trigonometric identities and substitutions. This section of Integrals Class 12 NCERT Solutions helps students master integration techniques essential for solving complex mathematical expressions. Designed according to the latest CBSE curriculum, these solutions enhance conceptual understanding and exam readiness. With clear explanations and solved examples, Exercise 7.3 Class 12 Maths NCERT Solutions is a must for effective learning and revision.

integrals class 12 ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.3 || exercise 7.3 class 12 maths ncert solutions || ex 7.3 class 12 maths ncert solutions || class 12 maths exercise 7.3
Exercise 7.3
1. Find the integrals of the functions.
\(\sin ^{2}(2 x+5)\)
\(\sin ^{2}(2 x+5)\)
Answer
\(\sin ^{2}(2 x+5)=\frac{1-\cos 2(2 x+5)}{2}=\frac{1-\cos (4 x+10)}{2}\)
\(\Rightarrow\int \sin ^{2}(2 x+5) \mathrm{d} x=\int \frac{1-\cos (4 x+10)}{2} d x\)
\(\Rightarrow\frac{1}{2} \int 1 \cdot d x-\frac{1}{2} \int \cos (4 x+10) d x\)
\(\Rightarrow\frac{1}{2} x-\frac{1}{2} \int \cos (4 x+10) d x\)
\(\Rightarrow\frac{1}{2} x-\frac{1}{2}\left(\frac{\sin (4 x+10)}{4}\right)+C\)
\(\Rightarrow\frac{1}{2} x-\frac{1}{8} \sin (4 x+10)+C\)
2. Find the integrals of the functions.
\(\sin 3 x \cos 4 x\)
\(\sin 3 x \cos 4 x\)
Answer
\(\int \sin 3 x \cos 4 x d x\)\(=\frac{1}{2} \int\{\sin (3 x+4 x)+\sin (3 x-4 x)\} d x\)
\(\Rightarrow\frac{1}{2} \int\{\sin 7 x+\sin (-x)\} d x\)
\(\Rightarrow\frac{1}{2} \int\{\sin 7 x-\sin x\} d x\)
\(\Rightarrow\frac{1}{2} \int \sin 7 x d x-\frac{1}{2} \int \sin x d x\)
\(\Rightarrow\frac{1}{2}\left(\frac{-\cos 7 x}{14}\right)-\frac{1}{2}(-\cos x)+C\)
\(\Rightarrow\frac{-\cos 7 x}{14}+\frac{\cos x}{2}+C\)
3. Find the integrals of the functions.
\(\cos 2 x \cos 4 x \cos 6 x\)
\(\cos 2 x \cos 4 x \cos 6 x\)
Answer
\(\int \cos 2 x \cos 4 x \cos 6 x d x\)\(=\int \cos 2 x\left[\frac{1}{2}\{\cos (4 x+6 x)+\cos (4 x+6 x)\}\right] d x\)
\(\Rightarrow \frac{1}{2} \int\{\cos 2 x \cos 10 x+\cos 2 x \cos (-2 x)\} d x\)
\(\Rightarrow\frac{1}{2} \int\left\{\cos 2 x \cos 10 x+\cos ^{2} 2 x\right\} d x\)
\(\Rightarrow\frac{1}{2} \int\left[\left\{\frac{1}{2} \cos (2 x+10 x)+\cos (2 x-10 x)\right\}\right.\) \(\left.+\left(\frac{1+\cos 4 x}{2}\right)\right] d x\)
\(\Rightarrow\frac{1}{4} \int(\cos 12 x+\cos 8 x+\cos 4 x) d x\)
\(\Rightarrow\frac{1}{4}\left[\frac{\sin 12 x}{12}+\frac{\sin 8 x}{8}+x+\frac{\sin 4 x}{4}\right]+C\)
4. Find the integrals of the functions.
\(\sin ^{3}(2 x+1)\)
\(\sin ^{3}(2 x+1)\)
Answer
Let \( \mathrm{I}=\sin ^{3}(2 x+1) \)
\(\Rightarrow\int \sin ^{3}(2 x+1) d x=\int \sin ^{2}(2 x+1) \cdot \sin (2 x+1) d x\)
\(\Rightarrow\int\left(1-\cos ^{2}(2 x+1) )\sin (2 x+1) d x\right.\)
Let \( \cos (2 x+1)=\mathrm{t} \)
\(\Rightarrow-2 \sin (2 x+1) d x=d t\)
\(\Rightarrow \sin (2 x+1) \mathrm{d}x=\frac{-d t}{2}\)
\(\Rightarrow\mathrm{I}=\frac{-1}{2} \int\left(1-t^{2}\right) d t\)
\(\Rightarrow\frac{-1}{2}\left\{t-\frac{t^{3}}{3}\right\}\)
\(\Rightarrow\frac{-1}{2}\left\{\cos (2 x+1)-\frac{\cos ^{3}(2 x+1)}{3}\right\}\)
\(\Rightarrow\frac{-\cos (2 x+1)}{2}+\frac{\cos ^{3}(2 x+1)}{3}+C\)
5. Find the integrals of the functions.
\(\sin ^{3} x \cos ^{3} x\)
\(\sin ^{3} x \cos ^{3} x\)
Answer
\( \text { Let } \mathrm{I}=\int \sin ^{3} x \cos ^{3} x \cdot d x\)
\(\Rightarrow\int \cos ^{3} x \cdot \sin ^{3} x \cdot \sin x \cdot d x\)
\(\Rightarrow\int \cos ^{3} x\left(1-\cos ^{2} x\right) \sin x \cdot d x \)
\( \text {Let } \cos x=\mathrm{t}\)
\(\Rightarrow-\sin x \cdot \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \mathrm{I}=-\int t^{3}\left(1-t^{2}\right) d t\)
\(\Rightarrow-\int\left(t^{3}-t^{5}\right) d t\)
\(\Rightarrow-\left\{\frac{t^{4}}{4}-\frac{t^{6}}{6}\right\}+C\)
\(\Rightarrow-\left\{\frac{\cos ^{4} x}{6}-\frac{\cos ^{6} x}{4}\right\}+C\)
\(\Rightarrow\frac{\cos ^{6} x}{6}-\frac{\cos ^{4} x}{4}+C \)
6. Find the integrals of the functions.
\(\sin x \sin 2 x \sin 3 x\)
\(\sin x \sin 2 x \sin 3 x\)
Answer
\(\int \sin x \sin 2 x \sin 3 x d x=\int \sin x \cdot \frac{1}{2}[\{\cos (2 x-3 x)-\cos (2 x+3 x)\}] d x\)
\(\Rightarrow\frac{1}{2} \int\{\sin x \cos (-x)-\sin x \cos 5 x\} d x\)
\(\Rightarrow\frac{1}{2} \int\{\sin x \cos x-\sin x \cos 5 x\} d x\)
\(\Rightarrow\frac{1}{2} \int \frac{\sin 2 x}{2} d x-\frac{1}{2} \int \sin x \cos 5 x d x\)
\(\Rightarrow\frac{1}{4}\left[\frac{-\cos 2 x}{2}\right]-\frac{1}{2} \int\left\{\frac{1}{2} \sin (x+5 x)+\sin (x-5 x)\right\} d x\)
\(\Rightarrow\frac{-\cos 2 x}{2}-\frac{1}{4} \int(\sin 6 x+\sin (-4 x)) d x\)
\(\Rightarrow\frac{-\cos 2 x}{2}-\frac{1}{4}\left[\frac{-\cos 6 x}{3}+\frac{\cos 4 x}{4}\right]+C\)
\(\Rightarrow\frac{-\cos 2 x}{2}-\frac{1}{8}\left[\frac{-\cos 6 x}{3}+\frac{\cos 4 x}{2}\right]+C\)
\(\Rightarrow\frac{1}{8}\left[\frac{-\cos 6 x}{3}-\frac{\cos 4 x}{2}-\cos 2 x\right]+C\)
integrals class 12 ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.3 || exercise 7.3 class 12 maths ncert solutions || ex 7.3 class 12 maths ncert solutions || class 12 maths exercise 7.3
7. Find the integrals of the functions.
\(\sin 4 x \sin 8 x\)
\(\sin 4 x \sin 8 x\)
Answer
\(\int \sin 4 x \sin 8 x d x=\int\left\{\frac{1}{2} \cos (4 x-8 x)-\cos (4 x+8 x)\right\} d x\)
\(\Rightarrow\frac{1}{2} \int\{\cos (-4 x)-\cos 12 x \}d x\)
\(\Rightarrow\frac{1}{2} \int\{\cos 4 x-\cos 12 x\} d x\)
\(\Rightarrow\frac{1}{2}\left[\frac{\sin 4 x}{4}-\frac{\sin 12 x}{12}\right]+C\)
8. Find the integrals of the functions.
\(\frac{1-\cos x}{1+\cos x}\)
\(\frac{1-\cos x}{1+\cos x}\)
Answer
\(\frac{1-\cos x}{1+\cos x}=\frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}=2 \tan ^{2} \frac{x}{2}=\left(\sec ^{2} \frac{x}{2}-1\right)\)
\( \therefore \int \frac{1-\cos x}{1+\cos x} d x=\int\left(\sec ^{2} \frac{x}{2}-1\right) d x\)
\(\Rightarrow\left[\frac{\tan \frac{x}{2}}{\frac{1}{2}}-x\right]+C\)
\(\Rightarrow2 \tan \frac{x}{2}-x+C\)
9. Find the integrals of the functions.
\(\frac{\cos x}{1+\cos x}\)
\(\frac{\cos x}{1+\cos x}\)
Answer
\(\frac{\cos x}{1+\cos x}=\frac{\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}=\frac{1}{2}\left[1-\tan ^{2} \frac{x}{2}\right]\)
\(\Rightarrow \int \frac{\cos x}{1+\cos x} d x=\int \frac{1}{2}\left[1-\tan ^{2} \frac{x}{2}\right] d x\)
\(\Rightarrow\frac{1}{2} \int\left[1-\sec ^{2} \frac{x}{2}\right] d x\)
\(\Rightarrow\frac{1}{2} \int\left[2-\sec ^{2} \frac{x}{2}\right] d x\)
\(
\Rightarrow\frac{1}{2}\left[2 x-\frac{\tan \frac{x}{2}}{\frac{1}{2}}\right]+C\)
\(\Rightarrow x-\tan \frac{x}{2}+C\)
10. Find the integrals of the functions.
\(\sin ^{4} x\)
\(\sin ^{4} x\)
Answer
\(\sin ^{4} x=\sin ^{2} x \sin ^{2} x\)
\(\Rightarrow\left(\frac{1-\cos 2 x}{2}\right)\left(\frac{1-\cos 2 x}{2}\right)\)
\(\Rightarrow\frac{1}{4}(1-\cos 2 x)^{2}\)
\(\Rightarrow\frac{1}{4}\left[1+\cos ^{2} 2 x-2 \cos 2 x\right]\)
\(\Rightarrow\frac{1}{4}\left[1+\left(\frac{1+\cos 4 x}{2}\right)-2 \cos 2 x\right]\)
\(\Rightarrow\frac{1}{4}\left[1+\frac{1}{2}+\frac{1}{2} \cos 4 x-2 \cos 2 x\right]\)
\(\Rightarrow\frac{1}{4}\left[\frac{3}{2}+\frac{1}{2} \cos 4 x-2 \cos 2 x\right]\)
Now, \( \int \sin ^{4} x d x=\frac{1}{4} \int\left[\frac{3}{2}+\frac{1}{2} \cos 4 x-2 \cos 2 x\right] d x \)
\(\Rightarrow\frac{1}{4}\left[\frac{3}{2} x+\frac{1}{2}\left(\frac{\sin 4 x}{4}\right)-\frac{2 \sin 2 x}{2}\right]+C\)
\(\Rightarrow\frac{1}{8}\left[3 x+\left(\frac{\sin 4 x}{4}\right)-2 \sin 2 x\right]+C\)
\(\Rightarrow\frac{3 x}{8}-\frac{1}{4} \sin 2 x+\frac{1}{32} \sin 4 x+C\)
11. Find the integrals of the functions.
\(\cos ^{4} 2 x\)
\(\cos ^{4} 2 x\)
Answer
\(\cos ^{4} 2 x=\left(\cos ^{2} 2\right)^{2}\)
\(\Rightarrow\left(\frac{1+\cos 4 x}{2}\right)^{2}\)
\(\Rightarrow\frac{1}{4}\left[1+\cos ^{2} 4 x-2 \cos 4 x\right]\)
\(\Rightarrow\frac{1}{4}\left[1+\left(\frac{1+\cos 8 x}{2}\right)+2 \cos 4 x\right]\)
\(\Rightarrow\frac{1}{4}\left[1+\frac{1}{2}+\frac{1}{2} \cos 8 x+2 \cos 4 x\right]\)
\(\Rightarrow\frac{1}{4}\left[\frac{3}{2}+\frac{1}{2} \cos 8 x+2 \cos 4 x\right]\)
Now, \( \int \cos ^{4} 2 x d x=\int\left[\frac{3}{8}+\frac{1}{8} \cos 8 x+\frac{1}{2} \cos 4 x\right] d x \)
\(\Rightarrow\frac{3 x}{8}+\frac{1}{64} \sin 8 x+\frac{1}{8} \sin 4 x+C\)
12. Find the integrals of the functions.
\(\frac{\sin ^{2} x}{1+\cos x}\)
\(\frac{\sin ^{2} x}{1+\cos x}\)
Answer
\(\frac{\sin ^{2} x}{1+\cos x}=\frac{\left(2 \sin \frac{x}{2} \cos \frac{x}{2}\right)^{2}}{2 \cos ^{2} \frac{x}{2}}\)
\(\Rightarrow\frac{4 \sin ^{2} \frac{x}{2} \cos ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\)
\(\Rightarrow2 \sin ^{2} \frac{x}{2}\)
\(=1-\cos x\)
\(\Rightarrow \int \frac{\sin ^{2} x}{1+\cos x} d x=\int(1-\cos x) d x\)
\(=x-\sin x+C\)
13. Find the integrals of the functions.
\(\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}\)
\(\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}\)
Answer
Using the identity \( \cos A-\cos B=-2 \sin \frac{A+B}{2} \sin \frac{A-B}{2} \), we have
\(\frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha}=\frac{-2 \sin \frac{2 x+2 \alpha}{2} \sin \frac{2 x-2 \alpha}{2}}{-2 \sin \frac{x+\alpha}{2} \sin \frac{x-\alpha}{2}}\)
\(=\frac{\sin (x+\alpha) \sin (x-\alpha)}{\sin \left(\frac{x+\alpha}{2}\right) \sin \left(\frac{x-\alpha}{2}\right)}\)
Now, using the identity \( \sin 2 x=2 \sin x\cos x \), we have
\(=\frac{\left[2 \sin \left(\frac{x+\alpha}{2}\right) \cos \left(\frac{x+\alpha}{2}\right)\right]\left[2 \sin \left(\frac{x-\alpha}{2}\right) \cos \left(\frac{x-\alpha}{2}\right)\right]}{\sin \left(\frac{x+\alpha}{2}\right) \sin \left(\frac{x-\alpha}{2}\right)}\)
\(=4 \cos \left(\frac{x+\alpha}{2}\right) \cos \left(\frac{x-\alpha}{2}\right)\)
Using identity \( 2 \cos \mathrm{A} \cos \mathrm{B}=\cos (\mathrm{A}+\mathrm{B})+\cos (\mathrm{A}-\mathrm{B}) \), we have
\(=2\left[\cos \left(\frac{x+\alpha}{2}+\frac{x-\alpha}{2}\right)+\cos \frac{x+\alpha}{2}+\frac{x-\alpha}{2}\right]\)
\(=2[\cos (x)+\cos \alpha]\)
\(=2 \cos x+2 \cos \alpha\)
\(\Rightarrow \int \frac{\cos 2 x-\cos 2 \alpha}{\cos x-\cos \alpha} d x=\int(2 \cos x+2 \cos \alpha) d x\)
\(=2[\sin x+x \cos \alpha]+C\)
14. Find the integrals of the functions.
\(\frac{\cos x-\sin x}{1+\sin 2 x}\)
\(\frac{\cos x-\sin x}{1+\sin 2 x}\)
Answer
\(\frac{\cos x-\sin x}{1+\sin 2 x}\)
\(\Rightarrow\frac{\cos x-\sin x}{\left(\sin ^{2} x+\cos ^{2} x\right)+2 \sin x \cos x}\)
\(\Rightarrow\frac{\cos x-\sin x}{(\sin x+\cos x)^{2}}\)
Let \( \sin x+\cos x=\mathrm{t} \)
\(\Rightarrow(\cos x-\sin x) \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow\int \frac{\cos x-\sin x}{1+\sin 2 x} d x=\int \frac{\cos x-\sin x}{(\sin x+\cos x)^{2}} d x\)
\(\Rightarrow\int \frac{d t}{t^{2}}\)
\(=-\mathrm{t}^{-1}+\mathrm{C}\)
\(\Rightarrow-\frac{1}{t}+C\)
\(\Rightarrow\frac{-1}{\sin x+\cos x}+C\)
15. Find the integrals of the functions.
\(\tan ^{2} 2 x \sec 2 x\)
\(\tan ^{2} 2 x \sec 2 x\)
Answer
\(\tan ^{3} 2 x \sec 2 x=\tan ^{2} 2 x \tan 2 \mathrm{xsec} 2 x\)
\(=\left(\sec ^{2} 2 x-1\right) \tan 2 x\mathrm{sec} 2 x\)
\(=\sec ^{2} 2 x\cdot \tan 2x \mathrm{sec} 2 x-\tan 2 x\mathrm{sec} 2x\)
\(\Rightarrow \int \tan ^{3} 2 x \sec 2 x d x=\int \sec ^{2} 2 x \tan 2 x \sec 2 x d x-\int \tan 2 x \sec 2 x d x\)
\(\Rightarrow \int \sec ^{2} 2 x \tan 2 x \sec 2 x d x-\frac{\sec 2 x}{2}+C\)
Now, Let \( \sec 2 x=\mathrm{t} \)
\(\Rightarrow 2 \sec 2 x \tan 2 x d x=d t\)
Thus, \( \int \tan ^{3} 2 x \sec 2 x d x=\frac{1}{2} \int t^{2} d t-\frac{\sec 2 x}{2}+C \)
\(\Rightarrow\frac{t^{3}}{6}-\frac{\sec 2 x}{2}+C\)
\(\Rightarrow\frac{(\sec 2 x)^{3}}{6}-\frac{\sec 2 x}{2}+C\)
integrals class 12 ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.3 || exercise 7.3 class 12 maths ncert solutions || ex 7.3 class 12 maths ncert solutions || class 12 maths exercise 7.3
16. Find the integrals of the functions.
\(\tan ^{4} x\)
\(\tan ^{4} x\)
Answer
\(\tan ^{4} x=\tan ^{2} x \cdot \tan ^{2} x\)
\(=\left(\sec ^{2} x-1\right) \tan ^{2} x\)
\(=\sec ^{2} x \tan ^{2} x-\tan ^{2} x\)
\(=\sec ^{2} x \tan ^{2} x-\left(\sec ^{2} x-1\right)\)
\(=\sec ^{2} x \tan ^{2} x-\sec ^{2} x+1\)
Now, \( \int \tan ^{4} x d x=\int \sec ^{2} x \tan ^{2} x d x-\int \sec ^{2} x d x-\int 1 . d x \)
\(\Rightarrow\int \sec ^{2} x \tan ^{2} x d x-\tan x+x+C\)
Now, let \( \tan x=\mathrm{t} \)
\(\Rightarrow \sec ^{2} xdx=\mathrm{dt}\)
\(\Rightarrow \int \sec ^{2} x \tan ^{2} x d x=\int t^{2} d t=\frac{t^{3}}{3}=\frac{\tan ^{3} x}{3}\)
\(\Rightarrow \int \tan ^{4} x d x=\frac{1}{3} \tan ^{3} x-\tan x+x+C\)
17. Find the integrals of the functions.
\(\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}\)
\(\frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}\)
Answer
\(\Rightarrow \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}=\frac{\sin ^{3} x}{\sin ^{2} x \cos ^{2} x}+\frac{\cos ^{3} x}{\sin ^{2} x \cos ^{2} x}\)
\(\Rightarrow\frac{\sin x}{\cos ^{2} x}+\frac{\cos x}{\sin ^{2} x}\)
\(=\tan x \sec x+\cot x \operatorname{cosec} x\)
\( \text {Now, } \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} d x=\int \tan x \sec x+\cot x \operatorname{cosec} x\)
\(=\sec x-\operatorname{cosec} x+C\)
integrals class 12 ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.3 || exercise 7.3 class 12 maths ncert solutions || ex 7.3 class 12 maths ncert solutions || class 12 maths exercise 7.3
18. Find the integrals of the functions.
\(\frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x}\)
\(\frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x}\)
Answer
\(\frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x}=\frac{\cos 2 x+(1+\cos 2 x)}{\cos ^{2} x}\)
\(=\frac{1}{\cos ^{2} x}\)
\(=\sec ^{2} x\)
Now, \( \int \frac{\cos 2 x+2 \sin ^{2} x}{\cos ^{2} x} d x=\int \sec ^{2} x d x \)
\(=\tan x+C\)
19. Find the integrals of the functions.
\(\frac{1}{\sin x \cos ^{3} x}\)
\(\frac{1}{\sin x \cos ^{3} x}\)
Answer
\(\frac{1}{\sin x \cos ^{3} x}=\frac{\sin x}{\cos ^{3} x}+\frac{1}{\sin x \cos x}\)
\(\Rightarrow\tan x \sec ^{2} x+\frac{\frac{1}{\cos ^{2} x}}{\frac{\sin x \cos x}{\cos ^{2} x}}\)
\(\Rightarrow\tan x \sec ^{2} x+\frac{\sec ^{2} x}{\tan x}\)
Now, \( \int \frac{1}{\sin x \cos ^{3} x} d x=\int \tan x \sec ^{2} x d x+\int \frac{\sec ^{2} x}{\tan x} d x\)
let \( \tan x=\mathrm{t} \)
\(\Rightarrow \sec ^{2} x \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{1}{\sin x \cos ^{3} x} d x=\int t d t+\int \frac{1}{t} d t\)
\(\Rightarrow \frac{t^{2}}{2}+\log |t|+C\)
\(\Rightarrow\frac{1}{2} \tan ^{2} x+\log |\tan x|+\mathrm{C}\)
20. Find the integrals of the functions.
\(\frac{\cos 2 x}{(\cos x+\sin x)^{2}}\)
\(\frac{\cos 2 x}{(\cos x+\sin x)^{2}}\)
Answer
\(\frac{\cos 2 x}{(\cos x+\sin x)^{2}}=\frac{\cos 2 x}{\cos ^{2} x+\sin ^{2} x+2 \sin x \cos x}=\frac{\cos 2 x}{1+\sin 2 x}\)
Now, \( \int \frac{\cos 2 x}{(\cos x+\sin x)^{2}} d x=\int \frac{\cos 2 x}{1+\sin 2 x} d x \)
Let \( 1+\sin 2 x=\mathrm{t} \)
\(\Rightarrow 2 \cos 2 xdx=\mathrm{dt}\)
Thus, \( \int \frac{\cos 2 x}{(\cos x+\sin x)^{2}} d x=\frac{1}{2} \int \frac{1}{t} d t \)
\(\Rightarrow \frac{1}{2} \log |t|+C\)
\(\Rightarrow \frac{1}{2} \log |1+\sin 2 x|+C\)
\(\Rightarrow \frac{1}{2} \log \left|(\cos x+\sin x)^{2}\right|+C\)
\(=\log |\sin x+\cos x|+C\)
integrals class 12 ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.3 || exercise 7.3 class 12 maths ncert solutions || ex 7.3 class 12 maths ncert solutions || class 12 maths exercise 7.3
21. Find the integrals of the functions.
\(\sin ^{-1}(\cos x)\)
\(\sin ^{-1}(\cos x)\)
Answer
\(\sin ^{-1(\cos x)}\)
Let \( \cos x=\mathrm{t} \quad\ldots \text{(1)}\)
Then, \( \sin x=\sqrt{1-t^{2}} \)
Differentiating both sides of (1), we get,
\(\Rightarrow(-\sin x) dx=\mathrm{dt}\)
\(\Rightarrow dx=\frac{-d t}{\sin x}\)
\(\Rightarrow dx=\frac{-d t}{\sqrt{1-t^{2}}}\)
\(\Rightarrow \text { Now, } \int \sin ^{-1}(\cos x) d x=\int \sin ^{-1} t\left(\frac{-d t}{\sqrt{1-t^{2}}}\right)\)
\(\Rightarrow\int \frac{\sin ^{-1} t}{\sqrt{1-t^{2}}} d t\)
Let \( \sin ^{-1} \mathrm{t}=v \)
\(\Rightarrow \frac{-d t}{\sqrt{1-t^{2}}}=d v\)
\(\Rightarrow \int \sin ^{-1}(\cos x) dx=-\int v \mathrm{d}v\)
\(\Rightarrow-\frac{v^{2}}{2}+C\)
\(\Rightarrow-\frac{\left(\sin ^{-1} t\right)^{2}}{2}+C\)
\(=-\frac{\left(\sin ^{-1}(\cos x)\right)^{2}}{2}+C \quad\ldots \text{(2)}\)
We know that,
\(\sin -1 x+\cos -1 x=\frac{\pi}{2}\)
\(\Rightarrow \sin ^{-1}(\cos x)=\frac{\pi}{2}-\cos ^{-1}(\cos x)=\left(\frac{\pi}{2}-x\right)\)
Now, substituting in eq (2), we get,
\(\Rightarrow \int \sin ^{-1}(\cos x) d x=\frac{-\left[\frac{\pi}{2}-x\right]^{2}}{2}+C\)
\(\Rightarrow-\frac{1}{2}\left(\frac{\pi^{2}}{2}-x^{2}-\pi x\right)+C\)
\(\Rightarrow-\frac{\pi^{2}}{8}-\frac{x^{2}}{2}+\frac{1}{2} \pi x+C\)
\(\Rightarrow\frac{1}{2} \pi x-\frac{x^{2}}{2}+\left(C-\frac{\pi^{2}}{8}\right)\)
\(\Rightarrow\frac{1}{2} \pi x-\frac{x^{2}}{2}+C_{1}\)
22. Find the integrals of the functions.
\(\frac{1}{\cos (x-a) \cos (x-b)}\)
\(\frac{1}{\cos (x-a) \cos (x-b)}\)
Answer
\(\frac{1}{\cos (x-a) \cos (x-b)}=\frac{1}{\sin (a-b)}\left[\frac{\sin (a-b)}{\cos (x-a) \cos (x-b)}\right]\)
\(\Rightarrow\frac{1}{\sin (a-b)}\left[\frac{\sin [(x-b)-(x-a)]}{\cos (x-a) \cos (x-b)}\right]\)
\(\Rightarrow\frac{1}{\sin (a-b)}\left[\frac{\sin (x-b) \cos (x-a)-\cos (x-b) \sin (x-a)}{\cos (x-a) \cos (x-b)}\right]\)
\(\Rightarrow\frac{1}{\sin (a-b)}[\tan (x-b)-\tan (x-a)]\)
Now, \( \int \frac{1}{\cos (x-a) \cos (x-b)} d x=\frac{1}{\sin (a-b)} \int[\tan (x-b)-\tan (x-a)] d x \)
\(\Rightarrow\frac{1}{\sin (a-b)}[-\log |\cos (x-b)|+|\log \cos (x-a)|]\)
\(\Rightarrow\frac{1}{\sin (a-b)}\left[\log \left|\frac{\cos (x-a)}{\cos (x-b)}\right|\right]+C\)
23. \( \int \frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} \) is equal to
A. \( \tan x+\cot x+C \)
B. \( \tan x+\operatorname{cosec} x+C \)
C. \( -\tan x+\cot x+C \)
D. \( \tan x+\sec x+C \)
A. \( \tan x+\cot x+C \)
B. \( \tan x+\operatorname{cosec} x+C \)
C. \( -\tan x+\cot x+C \)
D. \( \tan x+\sec x+C \)
Answer
\(\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x=\int\left(\frac{\sin x}{\sin ^{2} x \cos ^{2} x}-\frac{\cos x}{\sin ^{2} x \cos ^{2} x}\right) d x\)
\(=\int\left(\sec ^{2} x-\operatorname{cosec}^{2} x\right) d x\)
We know that,
\(\int \sec ^{2} x d x=\tan x+c\)
\(\int \operatorname{cosec}^{2} x d x=-\cot x+c\)
\(=\tan x+\cot x+C \cdot A \text { Answer }\)
24. \( \int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)} \)
A. \( -\cot \left(e^{x}\right)+C \) B. \( \tan \left(e^{x}\right)+C \) C. \( \tan \left(x e^{x}\right)+C \) D. \( \cot \left(e^{x}\right)+C \)
A. \( -\cot \left(e^{x}\right)+C \) B. \( \tan \left(e^{x}\right)+C \) C. \( \tan \left(x e^{x}\right)+C \) D. \( \cot \left(e^{x}\right)+C \)
Answer
Let \( x . e^{x}=\mathrm{t} \)
Differentiating both sides we get,
\(\Rightarrow\left(e^{x} \cdot x+e^{x} \cdot 1\right) \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow e^{x}(x+1)=\mathrm{dt}\)
\(\text {Now, } \int \frac{e^{x}(1+x)}{\cos ^{2}\left(e^{x} x\right)} d x=\int \frac{d t}{\cos ^{2} t}\)
\(=\int \sec ^{2} t \cdot d t\)
\(=\tan \mathrm{t}+\mathrm{C}\)
\(=\tan \left(e^{x} \cdot x\right)+\mathrm{C}\)