Ex 7.4 class 12 maths ncert solutions | class 12 maths exercise 7.4 | class 12 maths ncert solutions chapter 7 exercise 7.4 | exercise 7.4 class 12 maths ncert solutions | integrals class 12 ncert solutions
Exercise 7.4 Class 12 Maths NCERT Solutions deals with integration using partial fractions, a crucial method in calculus. These step-by-step Class 12 Maths Exercise 7.4 solutions help students learn to break down complex rational expressions into simpler parts before integrating. The Class 12 Maths NCERT Solutions Chapter 7 Exercise 7.4 are prepared as per the CBSE curriculum to aid in deep conceptual clarity. These Integrals Class 12 NCERT Solutions are perfect for regular practice, board exam preparation, and competitive exams like JEE.

class 12 maths ncert solutions chapter 7 exercise 7.4 || integrals class 12 ncert solutions || ex 7.4 class 12 maths ncert solutions || exercise 7.4 class 12 maths ncert solutions || class 12 maths exercise 7.4
Exercise 7.4
1. Integrate the functions.
\(\frac{3 x^{2}}{x^{6}+1}\)
\(\frac{3 x^{2}}{x^{6}+1}\)
Answer
Let \( x^{3}=\mathrm{t} \)
\(\Rightarrow 3 x^{2} \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{3 x^{2}}{x^{6}+1} d x=\int \frac{d t}{\left(t^{2}+1\right)}\)
\(=\tan ^{-1} \mathrm{t}+\mathrm{C}\)
\(=\tan ^{-1}\left(x^{3}\right)+\mathrm{C}\)
2. Integrate the functions.
\(\frac{1}{\sqrt{1+4 x^{2}}}\)
\(\frac{1}{\sqrt{1+4 x^{2}}}\)
Answer
Let \( 2 x=\mathrm{t} \)
\(\Rightarrow 2 \mathrm{d}x=\mathrm{dt}\)
\(\frac{1}{\sqrt{1+4 x^{2}}}\)
\(=\int \frac{d t}{2 \sqrt{1+t^{2}}}\)
\(\Rightarrow\frac{1}{2}\left[\log \left|t+\sqrt{t^{2}+1}\right|\right]+C\)
\(\Rightarrow\frac{1}{2}\left[\log \left|2 x+\sqrt{4 x^{2}+1}\right|\right]+C\)
3. Integrate the functions.
\(\frac{1}{\sqrt{(2-x)^{2}+1}}\)
\(\frac{1}{\sqrt{(2-x)^{2}+1}}\)
Answer
Let \( 2-x=\mathrm{t} \)
\(\Rightarrow-\mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{1}{\sqrt{(2-x)^{2}+1}} d x=-\int \frac{d t}{\sqrt{t^{2}+1}}\)
\(\Rightarrow-\left[\log \left|t+\sqrt{t^{2}+1}\right|\right]+C\)
\(\Rightarrow\left[\log \left|(2-x)+\sqrt{(2-x)^{2}+1}\right|\right]+C\)
\(=\log \left|\frac{1}{(2-x)+\sqrt{x^{2}-4 x+5}}\right|+C\)
4. Integrate the functions.
\(\frac{1}{\sqrt{9-25 x^{2}}}\)
\(\frac{1}{\sqrt{9-25 x^{2}}}\)
Answer
Let \( 5 x=\mathrm{t} \)
\(\Rightarrow 5 \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{1}{\sqrt{1-25 x^{2}}} d x=-\int \frac{d t}{\sqrt{3^{2}-t^{2}}}\)
\(\Rightarrow\frac{1}{5} \sin ^{-1}\left(\frac{t}{3}\right)+C\)
\(\Rightarrow\frac{1}{5} \sin ^{-1}\left(\frac{5 x}{3}\right)+C\)
5. Integrate the functions.
\(\frac{3 x}{1+2 x^{4}}\)
\(\frac{3 x}{1+2 x^{4}}\)
Answer
Let \( \sqrt{2} x^{2}=t \)
\(\Rightarrow 2 \sqrt{2 x} d x=\mathrm{dt}\)
\(\Rightarrow \int \frac{3 x}{1+2 x^{2}} d x=\frac{3}{2 \sqrt{2}} \int \frac{d t}{1+t^{2}}\)
\(\Rightarrow\frac{3}{2 \sqrt{2}}\left[\tan ^{-1} t\right]+C\)
\(\Rightarrow\frac{3}{2 \sqrt{2}} \tan ^{-1} \sqrt{2} x^{2}+C\)
6. Integrate the functions.
\(\frac{x^{2}}{1-x^{6}}\)
\(\frac{x^{2}}{1-x^{6}}\)
Answer
Let \( x^{3}=\mathrm{t} \)
\(\Rightarrow 3 x^{2} \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{x^{2}}{1-x^{6}} d x=\frac{1}{3} \int \frac{d t}{1-t^{2}}\)
\(\Rightarrow\frac{1}{3}\left[\frac{1}{2} \log \left|\frac{1+t}{1-t}\right|\right]+C\)
\(\Rightarrow\frac{1}{6}\left[\log \left|\frac{1+x^{3}}{1-x^{3}}\right|\right]+C\)
class 12 maths ncert solutions chapter 7 exercise 7.4 || integrals class 12 ncert solutions || ex 7.4 class 12 maths ncert solutions || exercise 7.4 class 12 maths ncert solutions || class 12 maths exercise 7.4
7. Integrate the functions.
\(\frac{x-1}{\sqrt{x^{2}-1}}\)
\(\frac{x-1}{\sqrt{x^{2}-1}}\)
Answer
\(\int \frac{x-1}{\sqrt{x^{2}-1}} d x=\int \frac{x}{\sqrt{x^{2}-1}} d x-\int \frac{1}{\sqrt{x^{2}-1}} d x\)
For \( \int \frac{x}{\sqrt{x^{2}-1}} d x \)
Let \( x^{2}-1=\mathrm{t} \)
\(\Rightarrow 2x \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{x}{\sqrt{x^{2}-1}} d x=\frac{1}{2} \int \frac{d t}{\sqrt{t}}\)
\(\Rightarrow\frac{1}{2} \int t^{-\frac{1}{2}} d t\)
\(\Rightarrow\frac{1}{2}\left[2 t^{-\frac{1}{2}}\right]=\sqrt{t}=\sqrt{x^{2}-1}\)
\(\Rightarrow \int \frac{x}{\sqrt{x^{2}-1}} d x=\int \frac{x}{\sqrt{x^{2}-1}} d x-\int \frac{1}{\sqrt{x^{2}-1}} d x\)
\(\Rightarrow \sqrt{x^{2}-1}-1 \log \left|x+\sqrt{x^{2}-1}\right|+C\)
8. Integrate the functions.
\(\frac{x^{2}}{\sqrt{x^{6}+a^{6}}}\)
\(\frac{x^{2}}{\sqrt{x^{6}+a^{6}}}\)
Answer
Let \( x^{3}=\mathrm{t} \)
\(\Rightarrow 3 x^{2} \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \frac{x^{2}}{\sqrt{x^{6}+a^{6}}} d x=\frac{1}{3} \int \frac{d t}{\sqrt{t^{2}+\left(a^{3}\right)^{2}}}\)
\(\Rightarrow\frac{1}{3} \log \left|t+\sqrt{t^{2}+a^{6}}\right|+C\)
\(\Rightarrow\frac{1}{3} \log \left|x^{3}+\sqrt{x^{6}+a^{6}}\right|+C\)
9. Integrate the functions.
\(\frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}}\)
\(\frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}}\)
Answer
Let \( \tan x=\mathrm{t} \)
\(\Rightarrow \sec ^{2} x\mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4}} d x=\int \frac{d t}{\sqrt{t^{2}+2^{2}}}\)
\(\Rightarrow\log \left|t+\sqrt{t^{2}+4}\right|+C\)
\(\Rightarrow\log \left|\tan x+\sqrt{\tan ^{2} x+4}\right|+C\)
10. Integrate the functions.
\(\frac{1}{\sqrt{x^{2}+2 x+2}}\)
\(\frac{1}{\sqrt{x^{2}+2 x+2}}\)
Answer
\(\int \frac{1}{\sqrt{x^{2}+2 x+2}} d x=\int \frac{1}{\sqrt{(x+1)^{2}+(1)^{2}}} d x\)
Let \( x+1=\mathrm{t} \)
\(\Rightarrow \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{1}{\sqrt{(x+1)^{2}+(1)^{2}}} d x=\int \frac{1}{\sqrt{t^{2}+1}} d t\)
\(\Rightarrow\log \left|t+\sqrt{t^{2}+1}\right|+C\)
\(\Rightarrow\log \left|(x+1)+\sqrt{(x+1)^{2}+1}\right|+C\)
\(\Rightarrow\log \left|(x+1)+\sqrt{x^{2}+2 x+2}\right|+C\)
11. Integrate the functions.
\(\frac{1}{9 x^{2}+6 x+5}\)
\(\frac{1}{9 x^{2}+6 x+5}\)
Answer
\(\Rightarrow \int \frac{1}{9 x^{2}+6 x+5} d x=\int \frac{1}{(3 x+1)^{2}+\left(2^{2}\right)} d x\)
Let \( 3 x+1=\mathrm{t} \)
\(\Rightarrow 3 \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{1}{(3 x+1)^{2}+(2)^{2}} d x=\frac{1}{3} \int \frac{1}{t^{2}+2^{2}} d t\)
\(\Rightarrow\frac{1}{3}\left[\frac{1}{2} \tan ^{-1}\left(\frac{t}{2}\right)\right]+C\)
\(\Rightarrow\frac{1}{6} \tan ^{-1}\left(\frac{3 x+1}{2}\right)+C\)
class 12 maths ncert solutions chapter 7 exercise 7.4 || integrals class 12 ncert solutions || ex 7.4 class 12 maths ncert solutions || exercise 7.4 class 12 maths ncert solutions || class 12 maths exercise 7.4
12. Integrate the functions.
\(\frac{1}{\sqrt{7-6 x-x^{2}}}\)
\(\frac{1}{\sqrt{7-6 x-x^{2}}}\)
Answer
\(\int \frac{1}{\sqrt{7-6 x-x^{2}}} d x=\int \frac{1}{\sqrt{(4)^{2}-(x+3)^{2}}} d x\)
Let \(x+3=\mathrm{t} \)
\(\Rightarrow \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{1}{\sqrt{(x+1)^{2}+(1)^{2}}} d x=\int \frac{1}{\sqrt{(4)^{2-} t^{2}}}\)
\(\Rightarrow\sin ^{-1}\left(\frac{t}{4}\right)+C\)
\(\Rightarrow\sin ^{-1}\left(\frac{x+3}{4}\right)+C\)
13. Integrate the functions.
\(\frac{1}{\sqrt{(x-1)(x-2)}}\)
\(\frac{1}{\sqrt{(x-1)(x-2)}}\)
Answer
\(\int \frac{1}{\sqrt{(x-1)(x-2)}} d x=\int \frac{1}{\sqrt{x^{2}-3 x+2}} d x=\int \frac{1}{\sqrt{\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} d x\)
Let \( x-\frac{3}{2}=\mathrm{t} \)
\(\Rightarrow \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{1}{\sqrt{\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} d x=\int \frac{1}{\sqrt{(t)^{2}-\left(\frac{1}{2}\right)^{2}}} d t\)
\(\Rightarrow\log \left|t+\sqrt{(t)^{2}-\left(\frac{1}{2}\right)^{2}}\right|+C\)
\(\Rightarrow\log \left|\left(x-\frac{3}{2}\right)+\sqrt{x^{2}-3 x+2}\right|+C\)
14. Integrate the functions.
\(\frac{1}{\sqrt{8+3 x-x^{2}}}\)
\(\frac{1}{\sqrt{8+3 x-x^{2}}}\)
Answer
\(\int \frac{1}{\sqrt{8+3 x-x^{2}}}=\int \frac{1}{\sqrt{\frac{41}{4}-\left(x-\frac{3}{2}\right)^{2}}} d x\)
Let \( x-\frac{3}{2}=\mathrm{t} \)
\(\Rightarrow \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{1}{\sqrt{\frac{41}{4}-\left(x-\frac{3}{2}\right)^{2}}} d x=\int \frac{1}{\sqrt{\left(\frac{41}{2}\right)^{2}-(t)^{2}}} d t\)
\(\Rightarrow\sin ^{-1}\left(\frac{t}{\frac{\sqrt{41}}{2}}\right)+C\)
\(\Rightarrow\sin ^{-1}\left(\frac{2 x-3}{\sqrt{41}}\right)+C\)
class 12 maths ncert solutions chapter 7 exercise 7.4 || integrals class 12 ncert solutions || ex 7.4 class 12 maths ncert solutions || exercise 7.4 class 12 maths ncert solutions || class 12 maths exercise 7.4
15. Integrate the functions.
\(\frac{1}{\sqrt{(x-a)(x-b)}}\)
\(\frac{1}{\sqrt{(x-a)(x-b)}}\)
Answer
\((x-1)(x-b)\) can be written as \( x^{2}-(a+b) x+a b \).
Then, \( x^{2}-(\mathrm{a}+\mathrm{b}) x+\mathrm{ab}=x^{2}-(\mathrm{a}+\mathrm{b}) x+\frac{(a+b)^{2}}{4}-\frac{(a+b)^{2}}{4}+a b \)
\(\Rightarrow\left[x-\left(\frac{a+b}{2}\right)\right]^{2}-\frac{(a-b)^{2}}{4}\)
\(\Rightarrow \therefore \int \frac{1}{\sqrt{(x-a)(x-b)}} d x=\int \frac{1}{\left\{x-\left(\frac{a+b}{2}\right)\right\}^{2}-\frac{(a-b)^{2}}{4}} d x\)
Let \( x=\left(\frac{a+b}{2}\right)=t \)
\(\Rightarrow \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{1}{\left\{x-\left(\frac{a+b}{2}\right)\right\}^{2}-\frac{(a-b)^{2}}{4}} d x=\int \frac{1}{\sqrt{t^{2}-\frac{(a-b)^{2}}{4}}}\)
\(\Rightarrow\log \left|t+\sqrt{t^{2}-\frac{(a-b)^{2}}{4}}\right|+C\)
\(\Rightarrow\log \left|\left\{x-\left(\frac{a+b}{2}\right)\right\}+\sqrt{(x-a)(x-b)}\right|+C\)
16. Integrate the functions.
\(\frac{4 x+1}{\sqrt{2 x^{2}+x-3}}\)
\(\frac{4 x+1}{\sqrt{2 x^{2}+x-3}}\)
Answer
Let \( 4 x+1=\mathrm{A} \frac{\mathrm{d}}{\mathrm{d}x}\left(2 x^{2}+x-3\right)+\mathrm{B} \)
\(\Rightarrow 4 x+1=A(4 x+1)+B\)
\(\Rightarrow 4 x+1=4 A x+A+B\)
Now, equating the coefficients of \( x \) and constant term on both sides, we get,
\(4 \mathrm{A}=4\)
\(\Rightarrow \mathrm{A}=1\)
\(\mathrm{A}+\mathrm{B}=1\)
\(\Rightarrow \mathrm{B}=0\)
Let \( 2 x^{2}+x-3=\mathrm{t} \)
\(\Rightarrow(4 x+1) \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{4 x+1}{\sqrt{2 x^{2}+x-3}} d x=\int \frac{1}{\sqrt{t}} d t\)
\(\Rightarrow2 \sqrt{t}+\mathrm{C}\)
\(\Rightarrow \sqrt[2]{2 x^{2}+x-3}+\mathrm{C}\)
17. Integrate the functions.
\(\frac{x+2}{\sqrt{x^{2}-1}}\)
\(\frac{x+2}{\sqrt{x^{2}-1}}\)
Answer
Let \( x+2=A \frac{d}{d x}(-1)+B \)
\(\Rightarrow x+2=\mathrm{A}(2 x)+\mathrm{B}\)
Now, equating the coefficients of \(x\) and constant term on both sides, we get,
\( 2 \mathrm{A}=1 \)
\( \Rightarrow \mathrm{A}=\frac{1}{2} \)
\( B=2 \)
\( \Rightarrow x+2=\frac{1}{2}(2 x)+2 \)
\( \Rightarrow \int \frac{x+2}{\sqrt{x^{2}-1}} d x=\int \frac{\frac{1}{2}(2 x)+2}{\sqrt{x^{2}-1}} \)
\( \Rightarrow\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}-1}} d x+2 \int \frac{1}{\sqrt{x^{2}-1}} d x \)
Now, \( \frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}-1}} d x \)
Let \( x^{2}-1=\mathrm{t} \)
\(\Rightarrow(2 x) \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}-1}} d x=\frac{1}{2} \int \frac{d t}{\sqrt{t}}=\frac{1}{2}[2 \sqrt{t}]\)
\(\Rightarrow\sqrt{t}=\sqrt{x^{2}-1}\)
And \( 2 \int \frac{1}{\sqrt{x^{2}-1}} d x=2 \log \left|x+\sqrt{x^{2}-1}\right| \)
\(\Rightarrow \int \frac{x+2}{\sqrt{x^{2}-1}} d x=\sqrt{x^{2}-1}+2 \log \left|x+\sqrt{x^{2}-1}\right|+C\)
18. Integrate the functions.
\(\frac{5 x-2}{1+2 x+3 x^{2}}\)
\(\frac{5 x-2}{1+2 x+3 x^{2}}\)
Answer
Let \( 5 x-2= \)
\(\Rightarrow 5 x-2=\mathrm{A}(2+6 x)+\mathrm{B}\)
Now, equating the coefficients of \(x\) and constant term on both sides, we get,
\(6 \mathrm{A}=5\)
\(\Rightarrow \mathrm{A}=\frac{5}{6}\)
\(2 \mathrm{A}+\mathrm{B}=-2\)
\(\Rightarrow \mathrm{B}=-\frac{11}{3}\)
\(\Rightarrow 5 x-2=\frac{5}{6}(2+6 x)+\left(-\frac{11}{3}\right)\)
\(\Rightarrow \int \frac{5 x-2}{1+2 x+3 x^{2}} d x=\int \frac{\frac{5}{6}(2+6 x)-\frac{11}{3}}{1+2 x+3 x^{2}} d x\)
\(\Rightarrow\frac{5}{6} \int \frac{2+6 x}{1+2 x+3 x^{2}} d x-\frac{11}{3} \int \frac{1}{1+2 x+3 x^{2}} d x\)
Now, \( \int \frac{2+6 x}{1+2 x+3 x^{2}} d x \)
Let \( 1+2 x+3 x^{2}=\mathrm{t} \)
\(\Rightarrow(2+6 x) \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{2+6 x}{1+2 x+3 x^{2}} d x=\int \frac{d t}{t}=\log |t|\)
\(=\log \left|1+2 x+3 x^{2}\right| \ldots \text { (1) }\)
And \( \int \frac{1}{1+2 x+3 x^{2}} d x \)
\(1+2 x+3 x^{2}=1+3\left(x^{2}+\frac{2}{3} x\right)\)
\(\Rightarrow3\left[\left(x+\frac{1}{3}\right)^{2}+\left(\frac{\sqrt{2}}{3}\right)^{2}\right]\)
\(\Rightarrow \int \frac{1}{1+2 x+3 x^{2}} d x=\frac{1}{3} \int \frac{1}{\left[\left(x+\frac{1}{3}\right)^{2}+\left(\frac{\sqrt{2}}{3}\right)^{2}\right]} d x\)
\(\Rightarrow\frac{1}{3}\left[\frac{1}{\frac{\sqrt{2}}{3}} \tan ^{-1}\left(\frac{x+\frac{1}{3}}{\frac{\sqrt{2}}{3}}\right)\right]\)
\(\Rightarrow\frac{1}{3}\left[\frac{3}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)\right]\)
\(=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right) \ldots(2)\)
Thus, from (1) and (2), we get,
\(\Rightarrow \int \frac{5 x-2}{1+2 x+3 x^{2}} d x=\frac{5}{6}\left[\log \left|1+2 x+3 x^{2}\right|\right]-\frac{11}{3}\left[\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)\right]\)\(+C\)
\(\Rightarrow\frac{5}{6}\left[\log \left|1+2 x+3 x^{2}\right|\right]-\frac{11}{3 \sqrt{2}} \tan ^{-1}\left(\frac{3 x+1}{\sqrt{2}}\right)+C\)
19. Integrate the functions.
\(\frac{6 x+7}{\sqrt{(x-5)(x-4)}}\)
\(\frac{6 x+7}{\sqrt{(x-5)(x-4)}}\)
Answer
Let \( 6 x+7=A \frac{d}{d x}\left(x^{2}-9 x+20\right)+B \)
\(\Rightarrow 6 x+7=A(2 x-9)+B\)
Now, equating the coefficients of \( x \) and constant term on both sides, we get,
\(2 A=6\)
\(\Rightarrow A=3\)
\(-9 A+B=7\)
\(\Rightarrow B=34\)
\(\Rightarrow 6 x+7=3(2 x-9)+34\)
\(\Rightarrow \int \frac{6 x+7}{\sqrt{x^{2}-9 x+20}} d x=\int \frac{3(2 x-9)+34}{\sqrt{x^{2}-9 x+20}} d x\)
\(\Rightarrow3 \int \frac{2 x-9}{\sqrt{x^{2}-9 x+20}} d x=\int \frac{1}{\sqrt{x^{2}-9 x+20}} d x\)
Now, \( \int \frac{2 x-9}{\sqrt{x^{2}-9 x+20}} d x \)
Let \( x^{2}-9 x+20=\mathrm{t} \)
\(\Rightarrow(2 x-9) \mathrm{d}x=\mathrm{dt}\)
\(\therefore \int \frac{2 x-9}{\sqrt{x^{2}-9 x+20}} d x=\int \frac{d t}{\sqrt{t}}=2 \sqrt{t}=2 \sqrt{x^{2}-9 x+20}\quad\ldots \text{(1)}\)
And \( \int \frac{1}{\sqrt{x^{2}-9 x+20}} d x \)
\(x^{2}-9 x+20=x^{2}-9 x+20+\frac{81}{4}-\frac{81}{4}\)
\(\Rightarrow\left(x-\frac{9}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}\)
\(\Rightarrow \int \frac{1}{\sqrt{x^{2}-9 x+20}} d x=\int \frac{1}{\left(x-\frac{9}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}} d x\)
\(=\log \left|\left(x-\frac{9}{2}\right)^{2}+\sqrt{x^{2}-9 x+20}\right|\quad \ldots(2)\)
Thus, from (1) and (2), we get,
\(\Rightarrow \int \frac{6 x+7}{\sqrt{x^{2}-9 x+20}} d x=3\left[2 \sqrt{x^{2}-9 x+20}\right]+34 \log \left[\left(x-\frac{9}{2}\right)^{2}\right.\)\(\left.+\sqrt{x^{2}-9 x+20}\right]+C\)
\(\Rightarrow6 \sqrt{x^{2}-9 x+20}+34 \log \left[\left(x-\frac{9}{2}\right)^{2}+\sqrt{x^{2}-9 x+20}\right]+C\)
20. Integrate the functions.
\(\frac{x+2}{\sqrt{4 x-x^{2}}}\)
\(\frac{x+2}{\sqrt{4 x-x^{2}}}\)
Answer
Let \( x+2=A \frac{d}{d x}\left(4 x-x^{2}\right)+B \)
\(\Rightarrow x+2=\mathrm{A}(4-2 x)+\mathrm{B}\)
Now, equating the coefficients of \( x \) and constant term on both sides, we get,
\(-2 \mathrm{A}=1\)
\(\Rightarrow \mathrm{A}=-\frac{1}{2}\)
\(4 \mathrm{A}+\mathrm{B}=2\)
\(\Rightarrow \mathrm{B}=4\)
\(\Rightarrow x+2=-\frac{1}{2}(4-2 x)+4\)
Now, \( \int \frac{x+2}{\sqrt{4 x-x^{2}}} d x=\int \frac{-\frac{1}{2}(4-2 x)+4}{\sqrt{4 x-x^{2}}} \)
\(\Rightarrow\frac{1}{2} \int \frac{(4-2 x)}{\sqrt{4 x-x^{2}}} d x+4 \int \frac{1}{\sqrt{4 x-x^{2}}} d x\)
Now, let us consider, \( \int \frac{(4-2 x)}{\sqrt{4 x-x^{2}}} d x \)
Let \( 4 x-x^{2}=\mathrm{t} \)
\(\Rightarrow(4-2 x) \mathrm{d}x=\mathrm{dt}\)
\(\therefore \int \frac{(4-2 x)}{\sqrt{4 x-x^{2}}} d x=\int \frac{d t}{\sqrt{t}}=2 \sqrt{t}=2 \sqrt{4 x-x^{2}} \quad\ldots\)(1)
And. Now let us consider,
Then, \( 4 x-x^{2}=-\left(-4 x+x^{2}\right) \)
\(=\left(-4 x+x^{2}+4-4\right)\)
\(=4-(x-2)^{2}\)
\(=(2)^{2}-(x-2)^{2}\)
\(\therefore \int \frac{(4-2 x)}{\sqrt{4 x-x^{2}}} d x=\sin ^{-1}\left(\frac{x-2}{2}\right) \quad\ldots \)(2)
using eq. (1) and (2), we get,
\(\Rightarrow \int \frac{x+2}{\sqrt{4 x-x^{2}}} d x=\sqrt{4 x-x^{2}}+4 \sin ^{-1}\left(\frac{x-2}{2}\right)+C\)
21. Integrate the functions.
\(\frac{x+2}{\sqrt{x^{2}+2 x+3}}\)
\(\frac{x+2}{\sqrt{x^{2}+2 x+3}}\)
Answer
\(\int \frac{x+2}{\sqrt{x^{2}+2 x+3}} d x=\frac{1}{2} \int \frac{2(x+2)}{\sqrt{x^{2}+2 x+3}} d x\)
\(\Rightarrow \frac{1}{2} \int \frac{2 x+4}{\sqrt{x^{2}+2 x+3}} d x\)
\(\Rightarrow \frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x+\frac{1}{2} \int \frac{2}{\sqrt{x^{2}+2 x+3}} d x\)
\(\Rightarrow \frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x+\int \frac{1}{\sqrt{x^{2}+2 x+3}} d x\)
Now. Let us consider \( \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x \)
Let \( x^{2}+2 x+3=\mathrm{t} \)
\(\Rightarrow(2 x+2) \mathrm{d}x=\mathrm{dt}\)
\(\therefore \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x=2 \sqrt{t}=2 \sqrt{x^{2}+2 x+3} \quad\ldots\)(1)
And, now let us consider \( \int \frac{1}{\sqrt{x^{2}+2 x+3}} d x \)
\(\Rightarrow x^{2}+2 x+3=x^{2}+2 x+1+2=(x+1)^{2}+(\sqrt{2})^{2}\)
\(\Rightarrow \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x=\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|\)
Using eq. (1) and (2), we get,
\(\Rightarrow \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x=\frac{1}{2}\left[2 \sqrt{x^{2}+2 x+3}\right]+\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|\)\(+C\)
\(\Rightarrow\sqrt{x^{2}+2 x+3}+\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|+C\)
22. Integrate the functions.
\(\frac{x+3}{x^{2}-2 x-5}\)
\(\frac{x+3}{x^{2}-2 x-5}\)
Answer
Let \( x+3=\mathrm{A} \frac{d}{d x}\left(x^{2}-2 x-5\right)+\mathrm{B} \)
\(\Rightarrow x+3=\mathrm{A}(2 x-2)+\mathrm{B}\)
Now, equating the coefficients of \( x \) and constant term on both sides, we get,
\(2 \mathrm{A}=1\)
\(\Rightarrow \mathrm{A}=\frac{1}{2}\)
\(-2 \mathrm{A}+\mathrm{B}=3\)
\(\Rightarrow \mathrm{B}=4\)
\(\Rightarrow x+3=\frac{1}{2}(2 x-2)+4\)
Now, \( \int \frac{x+3}{x^{2}-2 x-5} d x=\int \frac{\frac{1}{2}(2 x-2)+4}{x^{2}-2 x-5} d x \)
\(\Rightarrow\frac{1}{2} \int \frac{2 x-2}{x^{2}-2 x-5} d x+4 \int \frac{1}{x^{2}-2 x-5} d x\)
Now, let us consider \( \int \frac{2 x-2}{x^{2}-2 x-5} d x \)
Let \( x^{2}-2 x-5=\mathrm{t} \)
\(\Rightarrow(2 x-2) \mathrm{d}x=\mathrm{dt}\)
\(\therefore \int \frac{2 x-2}{x^{2}-2 x-5} d x=\int \frac{d t}{t}=\log |t|=\log \left|x^{2}-2 x-5\right|\quad\ldots\)(1)
And, now let us consider, \( \int \frac{1}{x^{2}-2 x-5} d x \)
\(\Rightarrow\int \frac{1}{\left(x^{2}-2 x+1\right)-6} d x\)
\(\Rightarrow\int \frac{1}{(x-1)^{2}+(\sqrt{6})^{2}} d x\)
\(=\frac{1}{2 \sqrt{6}} \log \left(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right) \quad\ldots\) (2)
Using eq. (1) and (2), we get,
\(\Rightarrow \int \frac{x+3}{x^{2}-2 x-5} d x=\frac{1}{2} \log \left|x^{2}-2 x-5\right|+\frac{4}{2 \sqrt{6}} \log \left(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right)+C\)
\(\Rightarrow \int \frac{x+3}{x^{2}-2 x-5} d x=\frac{1}{2} \log \left|x^{2}-2 x-5\right|+\frac{2}{\sqrt{6}} \log \left(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}\right)+C\)
23. Integrate the functions.
\(\frac{5 x+3}{\sqrt{x^{2}+4 x+10}}\)
\(\frac{5 x+3}{\sqrt{x^{2}+4 x+10}}\)
Answer
Let \( 5 x+3=\mathrm{A} \frac{d}{d x}\left(x^{2}+4 x+10\right)+\mathrm{B} \)
\(\Rightarrow 5 x+3=A(2 x+4)+B\)
Now, equating the coefficients of \( x \) and constant term on both sides, we get,
\(2 \mathrm{A}=5\)
\(\Rightarrow \mathrm{A}=\frac{5}{2}\)
\(4 \mathrm{A}+\mathrm{B}=3\)
\(\Rightarrow \mathrm{B}=-7\)
\(\Rightarrow 5 x+3=\frac{5}{2}(2 x+4)-7\)
Now, \( \int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x=\int \frac{\frac{5}{2}(2 x+4)-7}{\sqrt{x^{2}+4 x+10}} \)
\(\Rightarrow\frac{5}{2} \int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x-7 \int \frac{1}{\sqrt{x^{2}+4 x+10}} d x\)
Now, let us consider, \( \int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x \)
Let \( x^{2}+4 x+10=\mathrm{t} \)
\(\Rightarrow(2 x+4) \mathrm{d}x=\mathrm{dt}\)
\(\therefore \int \frac{2 x+4}{\sqrt{x^{2}+4 x+10}} d x=\int \frac{d t}{t}=2 \sqrt{t}=2 \sqrt{x^{2}+4 x+10} \quad\ldots\)(1)
And, now let us consider, \( \int \frac{1}{\sqrt{x^{2}+4 x+10}} d x \)
\(\Rightarrow \int \frac{1}{\sqrt{x^{2}+4 x+10}} d x=\int \frac{1}{\left(\sqrt{x^{2}+4 x+4}\right)+6} d x\)
\(\Rightarrow\int \frac{1}{(x+2)^{2}+(\sqrt{6})^{2}} d x\)
\(=\log \left|(x+2) \sqrt{x^{2}+4 x+10}\right|\quad \ldots(2)\)
using eq. (1) and (2), we get,
\(\Rightarrow \int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x=\frac{5}{2}\left[2 \sqrt{x^{2}+4 x+10}\right]-7 \log \left|(x+2) \right.\)\(\left.\sqrt{x^{2}+4 x+10}\right|+C\)
\(\Rightarrow \int \frac{5 x+3}{\sqrt{x^{2}+4 x+10}} d x=5 \sqrt{x^{2}+4 x+10}-7 \log \left|(x+2)\right.\)\(\left. \sqrt{x^{2}+4 x+10}\right|+C\)
24. Choose the correct answer: \( \int \frac{d x}{x^{2}+2 x+2} \) equals
A. \( x \tan ^{-1}(x+1)+C \)
B. \( \tan ^{-1}(x+1)+C \)
C. \( (x+1) \tan ^{-1} x+C \)
D. \( \tan ^{-1} x+C \)
A. \( x \tan ^{-1}(x+1)+C \)
B. \( \tan ^{-1}(x+1)+C \)
C. \( (x+1) \tan ^{-1} x+C \)
D. \( \tan ^{-1} x+C \)
Answer
\(\int \frac{d x}{x^{2}+2 x+2}=\int \frac{d x}{\left(x^{2}+2 x+1\right)+1}\)
\(\Rightarrow\int \frac{1}{(x+1)^{2}+(1)^{2}} d x\)
\(\Rightarrow\left[\tan ^{-1}(x+1)\right]+C\)
25. choose the correct Myanswer: \( \int \frac{d x}{\sqrt{9 x}-4 x^{2}} \) equals
A. \( \frac{1}{9} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+C \)
B. \( \frac{1}{2} \sin ^{-1}\left(\frac{8 x-9}{9}\right)+C \)
C. \( \frac{1}{3} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+C \)
D. \( \frac{1}{2} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+C \frac{1}{\left(e^{x}-1\right)}\)
A. \( \frac{1}{9} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+C \)
B. \( \frac{1}{2} \sin ^{-1}\left(\frac{8 x-9}{9}\right)+C \)
C. \( \frac{1}{3} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+C \)
D. \( \frac{1}{2} \sin ^{-1}\left(\frac{9 x-8}{8}\right)+C \frac{1}{\left(e^{x}-1\right)}\)
Answer
\(\int \frac{d x}{\sqrt{9 x}-4 x^{2}}=\int \frac{d x}{\sqrt{-4\left(x^{2}-\frac{9}{4} x\right)}}\)
\(\Rightarrow\int \frac{d x}{\sqrt{-4\left(x^{2}-\frac{9}{4} x+\frac{81}{64}-\frac{81}{64}\right)}}\)
\(\Rightarrow\int \frac{d x}{\sqrt{-4\left[\left(x-\frac{9}{8}\right)^{2}-\left(\frac{9}{8}\right)^{2}\right]}}\)
\(\Rightarrow\frac{1}{2}\left[\sin ^{-1}\left(\frac{x-\frac{9}{8}}{\frac{9}{8}}\right)\right]+C\)
\(\Rightarrow\frac{1}{2}\left[\sin ^{-1}\left(\frac{8 x-9}{9}\right)\right]+C\)