Ex 7.8 Class 12 Maths Ncert Solutions

Ex 7.8 class 12 maths ncert solutions | class 12 maths exercise 7.8 | class 12 maths ncert solutions chapter 7 exercise 7.8 | exercise 7.8 class 12 maths ncert solutions | integrals class 12 ncert solutions

Exercise 7.7 Class 12 Maths NCERT Solutions focuses on definite integrals, introducing students to the concept of evaluating integrals within given limits. The problems in Class 12 Maths Exercise 7.7 help strengthen understanding of how integration applies to real numerical intervals. Our Class 12 Maths NCERT Solutions Chapter 7 Exercise 7.7 are designed to explain each question clearly and step-by-step. These Exercise 7.7 Class 12 Maths NCERT Solutions are based on the CBSE syllabus and form a key part of the Integrals Class 12 NCERT Solutions, which are crucial for board and entrance exam preparation.

ex 7.8 class 12 maths ncert solutions
integrals class 12 ncert solutions || class 12 maths exercise 7.8 || ex 7.8 class 12 maths ncert solutions || exercise 7.8 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.8
Download the Math Ninja App Now

Exercise 7.8

1. Evaluate using limit of sums \( \int_{a}^{b} x\mathrm{d}x \)
Answer
\( f(x) \) is continuous in \( [a, b] \)
\( \int_{a}^{b} \mathrm{f}(x) \mathrm{d}x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} \mathrm{f}(\mathrm{a}+r h) \), where \( \mathrm{h}=\frac{b-a}{n} \)
here \( \mathrm{h}=\mathrm{b}-\frac{ \mathrm{a} }{ \mathrm{n} } \)
\(\int_{a}^{b}(x) \mathrm{d}x=\lim _{n \rightarrow \infty}\left(\frac{b-a}{n}\right) \sum_{r=0}^{n-1} \mathrm{f}\left(\mathrm{a}+\frac{(b-a) r}{n}\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{b-a}{n}\right) \sum_{r=0}^{n-1} \mathrm{f}\left(\frac{(b-a) r}{n}\right)+\mathrm{a}\)
\(=\lim _{n \rightarrow \infty}\left(\frac{b-a}{n}\right)\left(\frac{(b-a)(n-1)(n)}{2 n}+a(n-1)\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{b-a}{n}\right) \cdot \frac{(b-a)\left(n^{2}-n\right)+2 a n^{2}-2 a n}{2 n}\)
\(=\lim _{n \rightarrow \infty}\left(\frac{b-a}{n}\right) \cdot \frac{(b+a) n^{2}-(b+a) n}{2 n}\)
\(=\lim _{n \rightarrow \infty} \frac{(b+a)(b-a) n^{2}-(b+a)(b-a) n}{2 n^{2}}\)
\(=\lim _{n \rightarrow \infty}\left(\frac{(b+a)(b-a)}{2}-\frac{(b+a)(b-a)}{n}\right)\)
\(=\frac{(b+a)(b-a)}{2}\)
\(=\frac{b^{2}-a^{2}}{2}\)
2. Evaluate using limit of sums \( \int_{0}^{5}(x+1) d x \)
Answer
\( \mathrm{f}(x) \) is continuous in \( [0,5] \)
\( \int_{a}^{b} \mathrm{f}(x) \mathrm{d}x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} \mathrm{f}(\mathrm{a}+\mathrm{rh}) \), where \( \mathrm{h}=\frac{b-a}{n} \)
here \( \mathrm{h=}\frac{ 5 }{ \mathrm{n} } \)
\(\int_{0}^{5}(x+1) \mathrm{d}x=\lim _{n \rightarrow \infty}\left(\frac{5}{n}\right) \sum_{r=0}^{n-1} \mathrm{f}\left(\frac{5 \mathrm{r}}{\mathrm{n}}\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{5}{n}\right) \sum_{r=0}^{n-1} \mathrm{f}\left(\frac{5 \mathrm{r}}{\mathrm{n}}\right)+1\)
\(=\lim _{n \rightarrow \infty}\left(\frac{5}{n}\right)\left(\frac{5(n-1)(n)}{2 n}+(n-1)\right)\)
\(=\lim _{n \rightarrow \infty} \frac{5}{n} \cdot \frac{5 n^{2}-5 n+2 n^{2}-2 n}{2 n}\)
\(=\lim _{n \rightarrow \infty} \frac{5}{n} \cdot \frac{7 n^{2}-7 n}{2 n}\)
\(=\lim _{n \rightarrow \infty} \frac{35 n^{2}-35 n}{2 n^{2}}\)
\(=\lim _{n \rightarrow \infty} \frac{35}{2}-\left(\frac{35}{2 n}\right)\)
\(=\frac{35}{2}\)
integrals class 12 ncert solutions || class 12 maths exercise 7.8 || ex 7.8 class 12 maths ncert solutions || exercise 7.8 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.8
Download the Math Ninja App Now
3. Evaluate using limit of sums \( \int_{2}^{3} x^{2} \mathrm{d}x \)
Answer
\( f(x) \) is continuous in [2,3]
\( \int_{a}^{b} \mathrm{f}(x) \mathrm{d}x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} \mathrm{f}(\mathrm{a}+\mathrm{rh}) \), where \( \mathrm{h}=\frac{b-a}{n} \)
here \(\mathrm{h=} \frac{ 1 }{ \mathrm{n} } \)
\(\int_{2}^{3} x^{2} \mathrm{d}x=\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right) \sum_{r=0}^{n-1} \mathrm{f}\left(2+\left(\frac{\mathrm{r}}{\mathrm{n}}\right)\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right) \sum_{r=0}^{n-1}\left(2+\left(\frac{\mathrm{r}}{\mathrm{n}}\right)\right)^{2}\)
\(=\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right) \sum_{r=0}^{n-1}\left(\frac{r^{2}}{n^{2}}+4+\frac{4 r}{n}\right)\)
\(=\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{(n-1)(n)(2 n-1)}{6 n^{2}}+4 n+\frac{4(n-1)(n)}{2 n}\right)\)
\(=\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{\left(n^{2}-n\right)(2 n-1)}{6 n^{2}}+4 n+\frac{2\left(n^{2}-n\right)}{n}\right)\)
\(=\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{\left(2 n^{3}-2 n^{2}-n^{2}+n\right)}{6 n^{2}}+4 n+\frac{2\left(n^{2}-n\right)}{n}\right)\)
\(=\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{\left(2 n^{3}-3 n^{2}+n\right)+\left(24 n^{3}\right)+\left(12 n^{3}-12 n^{2}\right)}{6 n^{2}}\right)\)
\(=\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{38 n^{3}-15 n^{2}+n}{6 n^{2}}\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{38 n^{3}-15 n^{2}+n}{6 n^{2}}\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{38}{6}\right)-\left(\frac{15}{6 n}\right)+\left(\frac{1}{6 n^{2}}\right)\)
\(=\frac{38}{6}\)
\(=\frac{19}{3}\)
4. Evaluate using limit of sums \( \int_{1}^{4}\left(x^{2}-x\right) d x \)
Answer
\( \mathrm{f}(x) \) is continuous in [1,4]
\( \int_{a}^{b} \mathrm{f}(x) \mathrm{d}x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} \mathrm{f}(\mathrm{a}+\mathrm{rh}) \), where \( \mathrm{h}=\frac{b-a}{n} \)
here \(\mathrm{h=} \frac{ 3 }{ \mathrm{n} } \)
\(\int_{1}^{4}\left(x^{2}-x\right) \mathrm{d}x=\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1} \mathrm{f}\left(\left(1+\frac{3 \mathrm{r}}{\mathrm{n}}\right)\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1}\left(\left(1+\frac{3 \mathrm{r}}{\mathrm{n}}\right)^{2}-\left(1+\frac{3 \mathrm{r}}{\mathrm{n}}\right)\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1}\left(1+\frac{9 r^{2}}{n^{2}}+\frac{6 r}{n}-1-\frac{3 r}{n}\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{3}{n}\right) \sum_{r=0}^{n-1}\left(\frac{9 r^{2}}{n^{2}}+\frac{3 r}{n}\right)\)
\(=\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{9(n-1)(n)(2 n-1)}{6 n^{2}}+\frac{3 n(n-1)}{2 n}\right)\)
\(=\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{9\left(n^{2}-n\right)(2 n-1)}{6 n^{2}}+\frac{3 n(n-1)}{2 n}\right)\)
\(=\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{9\left(2 n^{3}-2 n^{2}-n^{2}+n\right)}{6 n^{2}}+\frac{3 n(n-1)}{2 n}\right)\)
\(=\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{\left(18 n^{3}-27 n^{2}+9 n\right)+\left(9 n^{3}-9 n^{2}\right)}{6 n^{2}}\right)\)
\(=\lim _{n \rightarrow \infty} \frac{3}{n}\left(\frac{27 n^{3}-36 n^{2}+9 n}{6 n^{2}}\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{81 n^{3}-108 n^{2}+27 n}{6 n^{3}}\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{81}{6}\right)-\left(\frac{108}{6 n}\right)+\left(\frac{27}{6 n^{2}}\right)\)
\(=\frac{27}{2}\)
5. Evaluate using limit of sums \( \int_{-1}^{1} \mathrm{e}^{x} \mathrm{d}x \)
Answer
\( \mathrm{f}(x) \) is continuous in \( [1,4] \)
\( \int_{a}^{b} \mathrm{f}(x) \mathrm{d}x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} \mathrm{f}(\mathrm{a}+\mathrm{rh}) \), where \( \mathrm{h}=\frac{b-a}{n} \)
here \(\mathrm{h=}\frac{ 2 }{ \mathrm{n} } \)
\(=\int_{0}^{2}\left(\mathrm{e}^{x}\right) \mathrm{d}x=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1} \mathrm{f}\left(-1+\frac{2 \mathrm{r}}{\mathrm{n}}\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right) \sum_{r=0}^{n-1} \mathrm{e}^{\frac{2 r}{n}-1}\)
\(=\lim _{n \rightarrow \infty}\left(\frac{2}{n}\right)\left(e^{0}+e^{h}+e^{2 h}+\ldots \ldots \ldots .+e^{n h}\right)\)
\(\text {Sum of }=e^{0}+e^{h}+e^{2 h}+\ldots \ldots \ldots .+e^{n h}\)
Which is g.p with common ratio \( \frac{ \mathrm{e^{1}} }{ \mathrm{n} } \).
\(\text { Whose sum is }=\frac{e^{h}\left(1-e^{n h}\right)}{1-e^{h}}\)
\(=\lim _{n \rightarrow \infty}\left(\frac{2}{n e}\right)\left(\frac{e^{h}\left(1-e^{n h}\right)}{1-e^{h}}\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{2}{n e}\right) \cdot \frac{e^{h}\left(1-e^{n h}\right)}{\frac{1-e^{h} \cdot h}{h}}\)
\(=-1\)
\(=\lim _{n \rightarrow \infty}\left(\frac{2}{n e}\right) \cdot\left(\frac{e^{h}\left(1-e^{n h}\right)}{h}\right)\)
As \( \frac{ \mathrm{h}=2 }{ \mathrm{n} } \)
\(=\lim _{n \rightarrow \infty}\left(\frac{2}{n e}\right) \cdot\left(\frac{e^{\left(\frac{2}{n}\right)\left(1-e^{n \times\left(\frac{2}{n}\right)}\right)}}{-\frac{2}{n}}\right)\)
\(=\frac{e^{2}-1}{e}\)
\(=\mathrm{e}-\mathrm{e}^{-1}\)
6. Evaluate using limit of sums \( \int_{0}^{4}\left(x+\mathrm{e}^{2 x}\right) \mathrm{d} x\)
Answer
\(h(x)=\int_{0}^{4} x \cdot d x\)
\(g(x)=\int_{0}^{4} e^{2 x} \cdot d x\)
\(F(x)=h(x)+g(x)\)
Solving for \( \mathrm{h}(x) \)
\( \mathrm{h}(x) \) is continuous in [0,4]
\( \int_{a}^{b} \mathrm{f}(x) \mathrm{d}x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} \mathrm{f}(\mathrm{a}+\mathrm{rh}) \), where \( \mathrm{h}=\frac{b-a}{n} \)
here \( h=\frac{ 4 }{ n } \)
\(\int_{0}^{4}(x) \mathrm{dx}=\lim _{n \rightarrow \infty}\left(\frac{4}{n}\right) \sum_{r=0}^{n-1} \mathrm{f}\left(\frac{4 \mathrm{r}}{\mathrm{n}}\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{4}{n}\right) \sum_{r=0}^{n-1}\left(\frac{4 \mathrm{r}}{\mathrm{n}}\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{4}{n}\right)\left(\frac{2(n-1)(n)}{n}\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{4}{n}\right) \cdot \frac{2 n^{2}-2 n}{n}\)
\(=\lim _{n \rightarrow \infty} \frac{4}{n} \cdot\frac{2 n^{2}-2 n}{n}\)
\(=\lim _{n \rightarrow \infty} \frac{8 n^{2}-8 n}{n^{2}}\)
\(=\lim _{n \rightarrow \infty} 8-\left(\frac{8}{n}\right)\)
\(=8\)
Now solving for \( \mathrm{g}(x) \)
\( \mathrm{g}(x) \) is continuous in \( [0,4] \)
\( \int_{a}^{b} \mathrm{f}(x) \mathrm{d}x=\lim _{n \rightarrow \infty} h \sum_{r=0}^{n-1} \mathrm{f}(\mathrm{a}+\mathrm{rh}) \), where \( \mathrm{h}=\frac{b-a}{n} \)
here \(\mathrm{h=}\frac{ 4 }{ \mathrm{n} } \)
\(=\int_{0}^{4}\left(\mathrm{e}^{2 x}\right) \mathrm{d}x=\lim _{n \rightarrow \infty}\left(\frac{4}{n}\right) \sum_{r=0}^{n-1} \mathrm{f}\left(\frac{4 \mathrm{r}}{\mathrm{n}}\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{4}{n}\right) \sum_{r=0}^{n-1} \mathrm{e}^{\frac{4 r}{n}}\)
\(=\lim _{n \rightarrow \infty}\left(\frac{4}{n}\right)\left(e^{0}+e^{h}+e^{2 h}+ \ldots \ldots \ldots \ldots+e^{n h}\right)\)
\(\text {Sum of }=e^{0}+e^{h}+e^{2 h}+ \ldots \ldots \ldots .+e^{n h}\)
Which is g.p with common ratio \( e^{\frac{ 1 }{ n }} \)
\(\text { Whose sum is }=\frac{e^{h}\left(1-e^{n h}\right)}{1-e^{h}}\)
\(=\lim _{n \rightarrow \infty}\left(\frac{4}{n e}\right)\left(\frac{e^{h}\left(1-e^{n h}\right)}{1-e^{h}}\right)\)
\(=\lim _{n \rightarrow \infty}\left(\frac{4}{n e}\right) \cdot \frac{e^{h}\left(1-e^{n h}\right)}{\frac{1-e^{h} \cdot h}{h}}\)
\(=\lim _{n \rightarrow \infty} \frac{1-e^{h}}{h}=-1\)
\(=\lim _{n \rightarrow \infty}\left(\frac{4}{n}\right)\left(\frac{e^{h}\left(1-e^{n h}\right)}{-h}\right)\)
As \( \mathrm{h}=\frac{ 4 }{ \mathrm{n} } \)
\(=\lim _{n \rightarrow \infty}\left(\frac{4}{n}\right) \cdot\left(\frac{e^{\left(\frac{4}{n}\right)\left(1-e^{n \times\left(\frac{4}{n}\right)}\right)}}{-\frac{4}{n}}\right)\)
\(=\left(\mathrm{e}^{8}-1\right)\)
Now for \( \mathrm{f}(x)=\mathrm{h}(x)+\mathrm{g}(x) \)
\(=8+e^{8}-1\)
integrals class 12 ncert solutions || class 12 maths exercise 7.8 || ex 7.8 class 12 maths ncert solutions || exercise 7.8 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.8
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top