Ex 7.9 Class 12 Maths Ncert Solutions

Ex 7.9 class 12 maths ncert solutions | class 12 maths exercise 7.9 | class 12 maths ncert solutions chapter 7 exercise 7.9 | exercise 7.9 class 12 maths ncert solutions | integrals class 12 ncert solutions

Exercise 7.9 Class 12 Maths NCERT Solutions offers a transformative learning experience for students aiming to excel in integration techniques. This class 12 maths exercise 7.9 is part of Chapter 7, which focuses on the application of integrals and helps strengthen analytical skills. With clear explanations and step-by-step guidance, the class 12 maths NCERT solutions chapter 7 exercise 7.9 simplify complex problems, making them easier to understand. These integrals class 12 NCERT solutions are an essential tool for scoring well in board exams and gaining confidence in calculus.

ex 7.9 class 12 maths ncert solutions
exercise 7.9 class 12 maths ncert solutions || class 12 maths exercise 7.9 || class 12 maths ncert solutions chapter 7 exercise 7.9 || ex 7.9 class 12 maths ncert solutions || integrals class 12 ncert solutions
Download the Math Ninja App Now

Exercise 7.9

1. Evaluate \( \int_{-1}^{1}(x+1) d x \)
Answer
\(\text { Let } \mathrm{I}=\int_{-1}^{1}(x+1) d x\)
\(\therefore \mathrm{I}=\int_{-1}^{1}(x+1) d x\)
\(\Rightarrow \mathrm{I}=\int_{-1}^{1} x d x+\int_{-1}^{1} 1 \times d x\left[\int x^{n} d x=\frac{x^{n+1}}{n+1}\right]\)
\(\Rightarrow \mathrm{I}=\left[\frac{x^{2}}{2}\right]_{-1}^{1}+[x]_{-1}^{1}\)
\(\Rightarrow \mathrm{I}=\left[\frac{1^{2}}{2}-\frac{(-1)^{2}}{2}\right]+[1-(-1)]\)
\(\Rightarrow \mathrm{I}=\left[\frac{1}{2}-\frac{1}{2}\right]+[1+1]=0+2\)
\(\Rightarrow \mathrm{I}=2\)
\(\therefore \int_{-1}^{1}(x+1) d x=2\)
2. Evaluate \( \int_{2}^{3} \frac{1}{x} d x \)
Answer
Let \( \mathrm{I}=\int_{2}^{3} \frac{1}{x} d x \)
\(\Rightarrow \mathrm{I}=\int_{2}^{3} \frac{1}{x} d x\left[\int {\frac{1}{x}} d x=\log x\right]\)
\(\Rightarrow \mathrm{I}=[\log |x|]_{2}^{3}\)
\(\Rightarrow \mathrm{I}=\log |3|-\log |2|\)
\(\Rightarrow \mathrm{I}=\log \frac{ 3 }{ 2 }\)
\(\therefore \int_{2}^{3} \frac{1}{x} d x=\log \frac{3}{2}\)
3. Evaluate \( \int_{1}^{2}\left(4 x^{3}-5 x^{2}+6 x+9\right) d x \)
Answer
\(\text {Let } \mathrm{I}=\int_{1}^{2}\left(4 x^{3}-5 x^{2}+6 x+9\right) d x\)
\(\Rightarrow \mathrm{I}=\int_{1}^{2}\left(4 x^{3}-5 x^{2}+6 x+9\right) d x\)
\(\Rightarrow \mathrm{I}=\int_{1}^{2} 4 x^{3} d x-\int_{1}^{2} 5 x^{2} d x+\int_{1}^{2} 6 x d x+\int_{1}^{2} 9 d x\)
\(\Rightarrow \mathrm{I}=4 \int_{1}^{2} x^{3} d x-5 \int_{1}^{2} x^{2} d x+6 \int_{1}^{2} x d x+9 \int_{1}^{2} d x\)
\(\Rightarrow \mathrm{I}=4 \times\left[\frac{x^{3+1}}{3+1}\right]_{1}^{2}-5 \times\left[\frac{x^{2+1}}{2+1}\right]_{1}^{2}+6 \times\left[\frac{x^{1+1}}{1+1}\right]_{1}^{2}+9 \times\left[\frac{x^{0+1}}{0+1}\right]_{1}^{2}\)\(\left[x^{n} d x=\frac{x^{n+1}}{n+1}\right]\)
\(\Rightarrow \mathrm{I}=4 \times\left[\frac{x^{4}}{4}\right]_{1}^{2}-5 \times\left[\frac{x^{2}}{3}\right]_{1}^{2}+6 \times\left[\frac{x^{2}}{2}\right]_{1}^{2}+9 \times[x]_{1}^{2}\)
\(=2^{4}-1^{4}-5\left[\frac{2^{3}}{3}-\frac{1^{3}}{3}\right]+6\left[\frac{2^{2}}{2}-\frac{1^{2}}{2}\right]+9 \times[2-1]\)
\(=16-1-5\left[\frac{7}{3}\right]+3(3)+9\)
\(=33-\frac{35}{3}\)
\(=\frac{99-35}{3}=\frac{64}{3}\)
exercise 7.9 class 12 maths ncert solutions || class 12 maths exercise 7.9 || class 12 maths ncert solutions chapter 7 exercise 7.9 || ex 7.9 class 12 maths ncert solutions || integrals class 12 ncert solutions
Download the Math Ninja App Now
4. Evaluate \( \int_{0}^{\frac{\pi}{4}} \sin 2 x d x \)
Answer
Let \( \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \sin 2 x d x \)
\(\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \sin 2 x d x\)
\(\Rightarrow \mathrm{I}=\left[-\frac{\cos 2 x}{2}\right]_{0}^{\frac{\pi}{4}}\left[\int \sin x d x=-\cos x\right]\)
\(\Rightarrow \mathrm{I}=-\frac{(cos 2 \times \frac{ \pi }{ 4 } – cos 0)}{2}\)
\(\Rightarrow \mathrm{I}=- \frac{(\cos\frac{ \pi }{ 2 }-\cos 0)}{2}=-\frac{ (0-1) }{ 2 }\)
\(\Rightarrow \mathrm{I}=\frac{ 1 }{ 2 }\)
\(\therefore \int_{0}^{\frac{\pi}{4}} \sin 2 x d x=\frac{ 1 }{ 2 }\)
5. Evaluate \( \int_{0}^{\frac{\pi}{2}} \cos 2 x d x \)
Answer
\(\text { Let } \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \cos 2 x d x\)
\(\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \cos 2 x d x\)
\(\Rightarrow \mathrm{I}=\left[\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}}\left[\int \cos x d x=\sin x+c\right]\)
\(\Rightarrow \mathrm{I}=\frac{1}{2}\left(\sin 2 \times \frac{\pi}{2}-\sin 2 \times 0\right)\)
\(\Rightarrow \mathrm{I}=\frac{1}{2}(\sin \pi-\sin \theta)\)
\(\Rightarrow \mathrm{I}=\frac{ 1 }{ 2 } \times(0-0)=0\)
\(\therefore \int_{0}^{\frac{\pi}{2}} \cos 2 x d x=0\)
6. Evaluate \( \int_{4}^{5} e^{x} d x \)
Answer
\(\text {Let } \mathrm{I}=\int_{4}^{5} e^{x} d x\)
\(\Rightarrow \mathrm{I}=\int_{4}^{5} e^{x} d x\)
\(\Rightarrow \mathrm{I}=\left[e^{x}\right]_{4}^{5}=\mathrm{e}^{5}-\mathrm{e}^{4}\left[e^{x} d x=e^{x}+c\right]\)
\(\Rightarrow \mathrm{I}=\mathrm{e}^{4}(\mathrm{e}-1)\)
\(\therefore \int_{4}^{5} e^{x} d x=\mathrm{e}^{4}(\mathrm{e}-1)\)
7. Evaluate \( \int_{0}^{\frac{\pi}{4}} \tan x d x \)
Answer
\(\text { Let } \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \tan x d x\)
\(\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{4}} \tan x d x\left[\int \tan x d x=-\log |\cos x|+c\right]\)
\(\Rightarrow \mathrm{I}=[-\log |\cos x|]_{0}^{\frac{\pi}{4}}=-\left(\log \left|\cos \frac{\pi}{4}\right|-\log |\cos \theta|\right)\)
\(\Rightarrow \mathrm{I}=-\left(\log \left|\frac{1}{\sqrt{2}}\right|-\log |1|\right)=-\log (2)^{-\frac{1}{2}}+0\)
\(\Rightarrow \mathrm{I}=\frac{1}{2} \log 2\)
\(\therefore\int_{0}^{\frac{\pi}{4}} \tan x d x=\frac{1}{2} \log 2\)
8. Evaluate \( \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x \)
Answer
Let \( \mathrm{I}=\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x \)
\(\Rightarrow \mathrm{I}=[\log |\operatorname{cosec} x-\cot x|]_{\frac{\pi}{6}}^{\frac{\pi}{4}}[\operatorname{cosec} x d x=\log |\operatorname{cosec} x-\cot x|+c]\)
\(\Rightarrow \mathrm{I}=\log |\operatorname{cosec} \frac{ \pi }{ 4 }-\cot \frac{ \pi }{ 4 }|-\log |\operatorname{cosec} \frac{ \pi }{ 6 }-\cot\frac{ \pi }{ 6 }|\)
\(\Rightarrow \mathrm{I}=\log |\sqrt{2}-1|-\log |2-\sqrt{3}|\)
\(\Rightarrow \mathrm{I}=\log \left|\frac{\sqrt{2}-1}{2-\sqrt{3}}\right|\)
\(\therefore \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x=\log \left(\frac{\sqrt{2}-1}{2-\sqrt{3}}\right)\)
9. Evaluate \( \int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}} \)
Answer
Let \( \mathrm{I}=\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}} \)
\(\Rightarrow \mathrm{I}=\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}\left[\frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1} \frac{x}{a}+c\right]\)
\(\Rightarrow \mathrm{I}=\left[\sin ^{-1} x\right]_{0}^{1}\)
\(\Rightarrow \mathrm{I}=\sin ^{-1}(1)-\sin ^{-1}(0)=\frac{ \pi }{ 2-0 }\)
\(\Rightarrow \mathrm{I}=\frac{ \pi }{ 2 }\)
\(\therefore \int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}=\frac{\pi}{2}\)
10. Evaluate \( \int_{0}^{1} \frac{d x}{1+x^{2}} \)
Answer
Let \( \mathrm{I}=\int_{0}^{1} \frac{d x}{1+x^{2}} \)
\(\Rightarrow \mathrm{I}=\int_{0}^{1} \frac{d x}{1+x^{2}}\)
We know that,
\(\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c\)
Therefore,
\(\Rightarrow \mathrm{I}=\left[\tan ^{-1} x\right]_{0}^{1}\)
\(\Rightarrow \mathrm{I}=\tan ^{-1}(1)-\tan ^{-1}(0)=\frac{ \pi }{ 4-0 }\)
\(\Rightarrow \mathrm{I}=\frac{ \pi }{ 4 }\)
\(\therefore \int_{0}^{1} \frac{d x}{1+x^{2}}=\frac{ \pi }{ 4 }\)
11. Evaluate \( \int_{2}^{3} \frac{d x}{x^{2}-1} \)
Answer
\(\text { Let } \mathrm{I}=\int_{2}^{3} \frac{d x}{x^{2}-1}\)
\(\Rightarrow \mathrm{I}=\int_{2}^{3} \frac{d x}{x^{2}-1}\left[\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \frac{x-a}{x+a}+c\right]\)
\(\Rightarrow \mathrm{I}=\left[\frac{1}{2} \log \left|\frac{x-1}{x+1}\right|\right]_{2}^{3}=\frac{1}{2}\left(\log \left|\frac{3-1}{3+1}\right|-\log \left|\frac{2-1}{2+1}\right|\right)\)
\(\Rightarrow \mathrm{I}=\left(\log \left|\frac{2}{4}\right|-\log \left|\frac{1}{3}\right|\right)=\frac{1}{2} \log \frac{\frac{1}{2}}{\frac{1}{3}}\)
\(\Rightarrow \mathrm{I}=\frac{1}{2} \log \frac{ 3 }{ 2 }\)
\(\therefore \int_{2}^{3} \frac{d x}{x^{2}-1}= \frac{1}{2}\log \frac{ 3 }{ 2 }\)
exercise 7.9 class 12 maths ncert solutions || class 12 maths exercise 7.9 || class 12 maths ncert solutions chapter 7 exercise 7.9 || ex 7.9 class 12 maths ncert solutions || integrals class 12 ncert solutions
Download the Math Ninja App Now
12. Evaluate \( \int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x \)
Answer
Let \( \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x \)
\( \cos 2 x=2 \cos ^{2} x-1 \)
\( \cos ^{2} x=\frac{1+\cos 2 x}{2} \)
putting the value \( \cos ^{2} x\) in I
\(\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{1+\cos 2 x}{2} d x=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} d x+\int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x\)\(\left[\int \cos x d x=\sin x+c\right]\)
\(\Rightarrow \mathrm{I}=[x]_{0}^{\frac{\pi}{2}}+\frac{1}{2}\left[\frac{\sin 2 x}{2}\right]_{0}^{\frac{\pi}{2}}=\frac{1}{2}\left(\frac{\pi}{2}-0\right)+\frac{1}{4}\left(\sin 2 \times \frac{\pi}{2}-\sin 2 \times 0\right)\)
\(\Rightarrow \mathrm{I}=\frac{\pi}{4}+\frac{1}{4}=\frac{ \pi }{ 4 }\)
\(\therefore \int_{0}^{\frac{\pi}{2}} \cos ^{2} x d x=\frac{ \pi }{ 4 }\)
13. Evaluate \( \int_{2}^{3} \frac{x d x}{x^{2}+1} \)
Answer
Let \( \mathrm{I}=\int_{2}^{3} \frac{x d x}{x^{2}+1} \)
Let \( x^{2}+1=\mathrm{t} \ldots \) (i)
\(\therefore \mathrm{d}\left(x^{2}+1\right)=\mathrm{dt}\)
\(\Rightarrow 2 x \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow x\mathrm{d}x=\frac{ \mathrm{dt} }{ 2 }\)
When \( x=2 ; \mathrm{t}=2^{2}+1=5 \)
When \( x=3 ; \mathrm{t}=3^{2}+1=10 \)
Substituting \( x^{2}+1 \) and \(xdx\) in I
\(\Rightarrow \mathrm{I}=\int_{5}^{10} \frac{d t}{2 t}=\frac{1}{2} \int_{5}^{10} \frac{d t}{t}\left[\int \frac{1}{x} d x=\log x\right]\)
\(\Rightarrow \mathrm{I}=\frac{1}{2}[\log t]_{5}^{10}=\frac{1}{2}(\log 10-\log 5)=\frac{1}{2} \log \frac{10}{5}\)
\(\Rightarrow \mathrm{I}=\frac{ 1 }{ 2 }\log 2\)
\(\int_{2}^{3} \frac{x d x}{x^{2}+1}=\frac{ 1 }{ 2 }\log 2\)
14. Evaluate \( \int_{0}^{1} \frac{2 x+3}{5 x^{2}+1} d x \)
Answer
Let \( \mathrm{I}=\int_{0}^{1} \frac{2 x+3}{5 x^{2}+1} \)
Multiplying by 5 in numerator and denominator
\(\Rightarrow \mathrm{I}=\frac{1}{5} \int_{0}^{1} \frac{5(2 x+3)}{5 x^{2}+1} d x=\frac{1}{5} \int_{0}^{1} \frac{10 x+15}{5 x^{2}+1} d x\)
\(\Rightarrow \mathrm{I}=\frac{1}{5} \int_{0}^{1} \frac{10 x}{5 x^{2}+1} d x+3 \int_{0}^{1} \frac{1}{5 x^{2}+1}\)
\(\Rightarrow \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}\)
\(\mathrm{I}_{1}=\frac{1}{5} \int_{0}^{1} \frac{10 x}{5 x^{2}+1} d x\)
Let \( 5 x^{2}+1=\mathrm{t} \ldots \) (i)
\( \mathrm{d}\left(5 x^{2}+1\right)=\mathrm{dt} \)
\( 10 x \mathrm{dx}=\mathrm{dt} \quad\ldots \text{(ii)}\)
When \( x=0 ; \mathrm{t}=5 \times 02+1=1 \)
When \( x=1 ; \mathrm{t}=5 \times 12+1=6 \)
Substituting (i) and (ii) in I1
\(\mathrm{I}_{1}=\frac{1}{5} \int_{1}^{6} \frac{d t}{t}=\frac{1}{5}[\log |t|]_{1}^{6}\left[\frac{1}{x} d x=\log x\right]\)
\(\mathrm{I}_{1}=\frac{1}{5}(\log |6|-\log |1|)=\frac{1}{5}(\log 6-0)\)
\(\mathrm{I}_{1}=\frac{1}{5} \int_{0}^{1} \frac{10 x}{5 x^{2}+1} d x=\frac{\log 6}{5}\)
\(\mathrm{I}_{2}=\frac{3}{5} \times \frac{1}{\frac{1}{\sqrt{5}}}\left[\tan ^{-1} \sqrt{5} x\right]_{0}^{1}=\frac{3}{5} \times \sqrt{5}\left(\tan ^{-1} \sqrt{5} \tan ^{-1} 0\right)\)
\(\mathrm{I}_{2}=\frac{ 3 }{ \sqrt{ 5} } \tan ^{-1} 5\)
\(\because \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}\)
\(\therefore \mathrm{I}=\frac{ 1 }{ 5 }\log 6+\frac{ 3 }{ \sqrt{ } 5 } \tan ^{-1} 5\)
\(\therefore \int_{0}^{1} \frac{2 x+3}{5 x^{2}+1}=\frac{ 1 }{ 5 } \log 6+\frac{ 3 }{ \sqrt{ 5 }} \tan ^{-1} 5\)
15. Evaluate \( \int_{0}^{1} x e^{x^{2}} d x \)
Answer
Let \( \mathrm{I}=\int_{0}^{1} x e^{x^{2}} d x \)
Put \( x^{2}=\mathrm{t} \Rightarrow 2 x\mathrm{d}x=\mathrm{dt} \)
When \( x=0 ; \mathrm{t}=0 \)
When \( x=1 ; \mathrm{t}=1 \)
Substituting \( t \) and dt in I
\(\Rightarrow \mathrm{I}=\int_{0}^{1} \frac{e^{t} d t}{2}=\frac{ 1 }{ 2 }\int_{0}^{1} e^{t} d t\left[\int e^{x} d x=e^{x}+c\right]\)
\(\Rightarrow \mathrm{I}=\frac{1}{2}\left[e^{t}\right]_{0}^{1}=\frac{1}{2}\left(e-e^{0}\right)=\frac{1}{2}(e-1)\)
\(\therefore \int_{0}^{1} x e^{x^{2}} d x=\frac{ 1 }{ 2 }(\mathrm{e}-1)\)
16. Evaluate \( \int_{1}^{2} \frac{5 x^{2}}{x^{2}+4 x+3} \)
Answer
Let \( \mathrm{I}=\int_{1}^{2} \frac{5 x^{2}}{x^{2}+4 x+3} \)
Dividing \( 5 x^{2} \) by \( x^{2}+4 x+3 \) we get 5 as quotient and \( -(20 x+15) \) as remainder
\(\text { So, } \mathrm{I}=\int_{1}^{2}\left(5-\frac{20 x+15}{x^{2}+4 x+3}\right) d x\)
\(\Rightarrow \mathrm{I}=\int_{1}^{2} 5 d x-\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+3}=5[x]_{1}^{2}-\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+3}\)
\(\Rightarrow \mathrm{I}=5(2-1)-\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+3}\)
\(\Rightarrow \mathrm{I}=5-\mathrm{I}_{1}\)
\(\mathrm{I}_{1}=\int_{1}^{2} \frac{20 x+15}{x^{2}+4 x+3}\)
Adding and subtracting 25 in the numerator
\(\mathrm{I}_{1}=\int_{1}^{2} \frac{20 x+15+25-25}{x^{2}+4 x+3} d x=\int_{1}^{2} \frac{20 x+40}{x^{2}+4 x+3} d x-\int_{1}^{2} \frac{25}{x^{2}+4 x+3} d x\)
\(\mathrm{I}_{1}=10 \int_{1}^{2} \frac{20 x+4}{x^{2}+4 x+3} d x-25 \int_{1}^{2} \frac{1}{x^{2}+4 x+3} d x\)
Let \( x^{2}+4 x+3=\mathrm{t} \)
\((2 x+4) \mathrm{d}x=\mathrm{dt}\)
\(\therefore \mathrm{I}_{1}=10 \int \frac{d t}{t}-25 \int_{1}^{2} \frac{1}{x^{2}+4 x+3+1-1} d x=10 \log t+25 \int_{1}^{2} \)\(\frac{1}{x^{2}+4 x+4-1} d x\)
\(\mathrm{I}_{1}=10 \log \mathrm{t}-25 \int_{1}^{2} \frac{1}{(x+2)^{2}-1^{2}} d x\left[\int \frac{1}{x} d x=\log x\right]\)
\(\mathrm{I}_{1}=10 \log \mathrm{t}-25\left[\frac{1}{2} \log \left(\frac{x+2-1}{x+2+1}\right)\right]\left[\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \frac{x-a}{x+a}+c\right]\)
\(\mathrm{I}_{1}=10\left[\log \left(x^{2}+4 x+3\right)\right]_{1}^{2}-\frac{25}{2}\left[\log \left(\frac{x+1}{x+3}\right)\right]_{1}^{2}\)
\(\mathrm{I}_{1}=10\left[\log \left(2^{2}+4 \times 2+3\right)-\log \left(1^{2}+4 \times 1+3\right)\right]-\frac{25}{2}\)\(\left[\log \left(\frac{2+1}{2+3}\right)-\log \left(\frac{1+1}{1+3}\right)\right]\)
\(\mathrm{I}_{1}=10[\log 15-\log 8]-\frac{25}{2}\left[\log \frac{3}{5}-\log \frac{2}{4}\right]\)
\(\mathrm{I}_{1}=10[\log (5 \times 3)-\log (4 \times 2)]-\frac{25}{2}[\log 3-\log 5-\log 2+\log 4]\)
\(\mathrm{I}_{1}=10 \log 5+10 \log 3-10 \log 4-10 \log 2 -\frac{25}{2} \log 3+\frac{25}{2} \log 5+\)\(\frac{25}{2} \log 2-\frac{25}{2} \log 4 \)
\(\mathrm{I}_{1}=\left(10+\frac{25}{2}\right) \log 5-\left(10+\frac{25}{2}\right) \log 4+\left(10-\frac{25}{2}\right) \log 3+\)\(\left(-10+\frac{25}{2}\right) \log 2\)
\(\mathrm{I}_{1}=\frac{45}{2} \log 5-\frac{45}{2} \log 4-\frac{5}{2} \log 3+\frac{5}{2} \log 2=\frac{45}{2} \log \frac{5}{4}-\frac{5}{2} \log \frac{3}{2}\)
\(\because \mathrm{I}=5-\mathrm{I}_{1}\)
Substituting \( I_{1} \) in I we get
\(\mathrm{I}=5-\frac{45}{2} \log \frac{5}{4}-\frac{5}{2} \log \frac{3}{2}\)
\(\therefore \int_{1}^{2} \frac{5 x^{2}}{x^{2}+4 x+3}=5-\frac{45}{2} \log \frac{5}{4}-\frac{5}{2} \log \frac{3}{2}\)
17. Evaluate \( \int_{0}^{\frac{\pi}{4}}\left(2 \sec ^{2} x+x^{3}+2\right) d x \)
Answer
Let \( \mathrm{I}=\int_{0}^{\frac{\pi}{4}}\left(2 \sec ^{2} x+x^{3}+2\right) d x \)
\(\Rightarrow \mathrm{I}=\int_{0}^{\frac{\pi}{4}}\left(2 \sec ^{2} x+x^{3}+2\right) d x=2 \int_{0}^{\frac{\pi}{4}} \sec ^{2} x d x+\int_{0}^{\frac{\pi}{4}} x^{3} \)\(d x+2 \int_{0}^{\frac{\pi}{4}} d x\)
\(\Rightarrow \mathrm{I}=2[\tan x]_{0}^{\frac{\pi}{4}}+\left[\frac{x^{4}}{4}\right]_{0}^{\frac{\pi}{4}}+2[x]_{0}^{\frac{\pi}{4}}\left[\int \sec ^{2} x d x=\tan x+c\right]\)
\(\Rightarrow \mathrm{I}=2(\tan \frac{ \pi }{ 4 }-\tan 0)+\left((\frac{ \pi }{ 4 })^{4}-0\right)+2(\frac{ \pi }{ 4-0 })\)
\(\Rightarrow \mathrm{I}=2 \times 1+\frac{1}{4} \times\left(\frac{\pi}{4}\right)^{4}+2 \times \frac{\pi}{4}\)
\(\Rightarrow \mathrm{I}=2+\frac{\pi}{2}+\frac{\pi^{4}}{1024}\)
\(\therefore \int_{0}^{\frac{\pi}{4}}\left(2 \sec ^{2} x+x^{3}+2\right) d x=2+\frac{\pi}{2}+\frac{\pi^{4}}{1024}\)
18. Evaluate \( \int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x \)
Answer
Let \( \mathrm{I}=\int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x \)
We know, \( \cos x=\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2} \)
Substituting \( \cos x=\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2} \) in I, we get
\(\Rightarrow \mathrm{I}=\int_{0}^{\pi} \cos x d x=[\sin x]_{0}^{\pi} \quad\left[\int \cos x d x=\sin x+c\right]\)
\(\Rightarrow \mathrm{I}=\sin \pi-\sin 0=0-0=0\)
\(\therefore \int_{0}^{\pi}\left(\sin ^{2} \frac{x}{2}-\cos ^{2} \frac{x}{2}\right) d x=0\)
exercise 7.9 class 12 maths ncert solutions || class 12 maths exercise 7.9 || class 12 maths ncert solutions chapter 7 exercise 7.9 || ex 7.9 class 12 maths ncert solutions || integrals class 12 ncert solutions
Download the Math Ninja App Now
19. Evaluate \( \int_{0}^{2} \frac{6 x+3}{x^{2}+4} d x \)
Answer
Let \( \mathrm{I}=\int_{0}^{2} \frac{6 x+3}{x^{2}+4} d x \)
\(\mathrm{I}=3 \int_{0}^{2} \frac{2 x+1}{x^{2}+4}=3 \int_{0}^{2} \frac{2 x}{x^{2}+4} d x+3 \int_{0}^{2} \frac{1}{x^{2}+4} d x\)
\(\therefore \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}\)
\(\mathrm{I}_{1}=3 \int_{0}^{2} \frac{1}{x^{2}+4} d x\)
Let \( x^{2}+4=\mathrm{t} \)
\(2 x\mathrm{d}x=\mathrm{dt}\)
When \( x=0 ; \mathrm{t}=4 \)
When \( x=2 ; \mathrm{t}=2^{2}+4=8 \)
Substituting t and dt in \( \mathrm{I}_{1} \)
\(\Rightarrow \mathrm{I}_{1}=3 \int_{4}^{8} \frac{d t}{t}=3[\log |t|]_{4}^{8} \quad\left[\int \frac{1}{x} d x=\log x\right]\)
\(\Rightarrow \mathrm{I}_{1}=3[\log |8|-\log |4|]=3 \log \frac{ 8 }{ 4 }\)
\(\Rightarrow \mathrm{I}_{1}=3 \log 2=-3 \log 2\)
\(\mathrm{I}_{2}=3 \int_{0}^{2} \frac{1}{x^{2}+4} d x=3 \int_{0}^{2} \frac{1}{x^{2}+2^{2}} d x\left[\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c\right]\)
\(\Rightarrow \mathrm{I}_{2}=3 \times \frac{1}{2}\left[\tan ^{-1} \frac{x}{2}\right]_{0}^{2}=\frac{3}{2}\left[\tan ^{-1} \frac{2}{2}-\tan ^{-1} \frac{0}{2}\right]\)\(=\frac{3}{2}\left[\tan ^{-1} 1-\tan ^{-1} 0\right]\)
\(\Rightarrow \mathrm{I}_{2}=\frac{3}{2} \times \frac{\pi}{4}= \frac{ 3\pi }{ 8 }\)
Now I \( =\mathrm{I}_{1}+\mathrm{I}_{2} \)
\( \mathrm{I}=3 \log 2+ \frac{3 \pi }{ 8 } \)
\(\therefore \int_{0}^{2} \frac{6 x+3}{x^{2}+4} d x=3 \log 2 + \frac{ 3\pi }{ 8 }\)
20. Evaluate \( \int_{0}^{1}\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x \)
Answer
Let \( \mathrm{I}=\int_{0}^{1}\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x \)
\(\Rightarrow \mathrm{I}=\int_{0}^{1} x e^{x} d x+\int_{0}^{1} \sin \frac{\pi x}{4} d x\)
\(\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}\)
\(\mathrm{I}_{1}=x \int e^{x} d x-\int\left\{\left(\frac{d}{d x} x\right) \int e^{x} d x\right\} d x\)
\(\Rightarrow \mathrm{I}_{1}=x e^{x}-\int e^{x} d x \quad\left[\int e^{x} d x=e^{x}+c\right]\)
\(\Rightarrow \mathrm{I}_{1}=\left[x e^{x}-e^{x}\right]_{0}^{1}=\left[\left(1 \times e^{1}-e^{1}\right)-\left(0 \times e^{0}-e^{0}\right)\right]\)
\(\Rightarrow \mathrm{I}_{1}=\mathrm{e}-\mathrm{e}-0+1\)
\(\Rightarrow \mathrm{I}_{1}=1\)
\(\mathrm{I}_{2}=\int_{0}^{1} \sin \frac{\pi x}{4} d x\)
\(\Rightarrow \mathrm{I}_{2}=\left[-\frac{\cos \frac{\pi x}{4}}{\frac{\pi}{4}}\right]_{0}^{1}=\frac{4}{\pi}\left[\cos \frac{\pi}{4} \times 1-\cos \frac{\pi}{4} \times 0\right]=\frac{4}{\pi}\)\(\left[\cos \frac{\pi}{4} \times \cos 0\right]\)
\(\Rightarrow \mathrm{I}_{2}=\frac{4}{\pi}\left(1-\frac{1}{\sqrt{2}}\right)=\frac{4}{\pi}-\frac{2 \sqrt{2}}{\pi}\)
Since, \( I=I_{1}+I_{2} \)
\(\therefore \mathrm{I}=1+\frac{4}{\pi}-\frac{2 \sqrt{2}}{\pi}\)
\(\therefore \int_{0}^{1}\left(x e^{x}+\sin \frac{\pi x}{4}\right) d x=1+\frac{4}{\pi}-\frac{2 \sqrt{2}}{\pi}\)
21. \( \int_{1}^{\sqrt{3}} \frac{d x}{x^{2}+1} \) equals
A. \( \frac{ \pi }{ 3 } \) B. \( \frac{ 2 \pi }{ 3 } \) C. \( \frac{ \pi }{ 6 }\) D. \( \frac{ \pi }{ 12 } \).
Answer
Let \( \mathrm{I}=\int_{1}^{\sqrt{3}} \frac{d x}{x^{2}+1} \)
\(\Rightarrow \mathrm{I}=\int_{1}^{\sqrt{3}} \frac{d x}{x^{2}+1}\)
\(\Rightarrow \mathrm{I}=\left[\tan ^{-1} x\right]_{1}^{\sqrt{3}}=\left[\tan ^{-1} \sqrt{3} \tan ^{-1} 1\right]=\frac{\pi}{3}-\frac{\pi}{4}\)\(\left[\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c\right]\)
\(\Rightarrow \mathrm{I}=\frac{4 \pi-3 \pi}{12} \frac{ \pi }{ 12 }\)
\(\therefore \int_{1}^{\sqrt{3}} \frac{d x}{x^{2}+1}=\frac{ \pi }{ 12 }\)
22. \( \int_{0}^{3} \frac{d x}{4+9 x^{2}} \) equals
A. \( \frac{ \pi }{ 6 } \) B. \( \frac{ \pi }{ 12 } \) C. \( \frac{ \pi }{ 24 } \) D. \( \frac{ \pi }{ 4 } \)
Answer
Let \( \mathrm{I}=\int_{0}^{\frac{2}{3}} \frac{d x}{4+9 x^{2}} \)
\(\Rightarrow \mathrm{I}=\int_{0}^{3} \frac{d x}{4+9 x^{2}}\)
Taking 9 common from Denominator in I
\(\Rightarrow \mathrm{I}=\frac{1}{9} \int_{0}^{\frac{2}{3}} \frac{d x}{\frac{4}{9}+x^{2}}=\frac{1}{9} \int_{0}^{\frac{2}{3}} \frac{d x}{\left(\frac{2}{3}\right)^{2}+x^{2}}\left[\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c\right]\)
\(\Rightarrow \mathrm{I}=\frac{1}{9} \times \frac{3}{2}\left[\tan ^{-1} \frac{x}{\frac{2}{3}}\right]_{0}^{\frac{2}{3}}=\frac{1}{9} \times \frac{3}{2}\left[\tan ^{-1} \frac{3 x}{2}\right]_{0}^{\frac{2}{3}}\)
\(\Rightarrow \mathrm{I}=\frac{1}{6}\left[\tan ^{-1} \frac{3}{2} \times \frac{2}{3}-\tan ^{-1} 0\right]=\frac{1}{6}\left[\tan ^{-1} 1-\tan ^{-1} 0\right]\)
\(\Rightarrow \mathrm{I}=\frac{1}{6} \times\left(\frac{\pi}{4}-0\right)=\frac{ \pi }{ 24 }\)
\(\therefore \int_{0}^{3} \frac{d x}{4+9 x^{2}}=\frac{ \pi }{ 24 }\)
exercise 7.9 class 12 maths ncert solutions || class 12 maths exercise 7.9 || class 12 maths ncert solutions chapter 7 exercise 7.9 || ex 7.9 class 12 maths ncert solutions || integrals class 12 ncert solutions
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top