Ex 9.2 class 11 maths ncert solutions | Class 11 rd sharma exercise 9.2 solutions | class 11 maths exercise 9.2 solutions | exercise 9.2 class 11 maths solutions | class 11 ch 9 exercise 9.2 solutions | class 11 chapter 9 exercise 9.2 solution | class 11 maths ncert solutions chapter 9 | ncert solutions for class 11 maths chapter 9 | ncert exemplar class 11 maths | sequences and series class 11 ncert solutions
Looking for Ex 9.2 Class 11 Maths NCERT Solutions? You’re in the right place! This section offers clear and comprehensive step-by-step solutions for all the questions in Exercise 9.2 of Chapter 9 – Sequences and Series. Based on the latest NCERT syllabus, these solutions focus on Arithmetic Progressions (AP) — including finding the general term, sum of n terms, and solving real-life problems using AP concepts. Whether you’re referring to Class 11 Ch 9 Exercise 9.2, practicing from the RD Sharma Exercise 9.2 Solutions, or preparing with the NCERT Exemplar Class 11 Maths, these solutions will help you master the topic with ease. View or download the full Class 11 Maths NCERT Solutions Chapter 9 and solidify your understanding of Sequences and Series Class 11 today!

ncert exemplar class 11 maths || class 11 chapter 9 exercise 9.2 solution || class 11 maths exercise 9.2 solutions || exercise 9.2 class 11 maths solutions || Class 11 rd sharma exercise 9.2 solutions || class 11 maths ncert solutions chapter 9 || sequences and series class 11 ncert solutions || class 11 ch 9 exercise 9.2 solutions || ex 9.2 class 11 maths ncert solutions || ncert solutions for class 11 maths chapter 9
Exercise 9.2
This, sequence forms an A.P.
Here, first tern, \( {a}=1 \)
Common difference, \( d=2 \)
Here, \( a+(n-1) d=2001 \)
\(=1+({n}-1)(2)=2001\)
\(=2 {n}-2=2000\)
\(={n}=1001\)
\({S}_{{n}}=\frac{n}{2}[2 {a}+({n}-1) {d}]\)
\({S}_{{n}}=\frac{1001}{2}[2 \times 1+(1001-1) \times 2]\)
\(=\frac{1001}{2}[2+1000 \times 2]\)
\(=\frac{1001}{2} \times 2002\)
\(=1001 \times 1001\)
\(=1002001\)
Thus, the sum of odd numbers from 1 to 2001 is 1002001.
Here, \( {a}=105 \) and \( {d}=5 \)
\({a}+({n}-1) {d}=995\)
\(=105+({n}-1) 5=995\)
\(=({n}-1) 5=995-105=890\)
\(={n}-1=178\)
\(={n}=179\)
\({S}_{{n}}=\frac{179}{2}[2(105)+(179-1)(5)]\)
\(=\frac{179}{2}[2(105)+(178)(5)]\)
\(=(179)(105+445)\)
\(=(179)(550)\)
\(=98450\)
Thus, the sum of all natural numbers lying between 100 and 1000, which are multiples of 5, is 98450.
ncert exemplar class 11 maths || class 11 chapter 9 exercise 9.2 solution || class 11 maths exercise 9.2 solutions || exercise 9.2 class 11 maths solutions || Class 11 rd sharma exercise 9.2 solutions || class 11 maths ncert solutions chapter 9 || sequences and series class 11 ncert solutions || class 11 ch 9 exercise 9.2 solutions || ex 9.2 class 11 maths ncert solutions || ncert solutions for class 11 maths chapter 9
Let \( d \) be the common difference of the A.P.
Therefore, the A.P. is \( 2,2+{d}, 2+2 {d}, 2+3 {d} \)
Sum of the first five terms \( =10+10 {d} \)
Sum of the next five terms \( =10+35 {d} \)
According to given condition
\(10+10 d=\frac{1}{4}(10+5 d)\)
\(=40+40 {d}=10+5 d\)
\(=30=-5 {d}\)
\(=d=-6\)
\(a_{20}=a+(20-1) d=2+(19)(-6)=2-114=-112\)
thus, the \( 20^{\text {th}} \) term of the A.P. is \(-112\)
It is known that
\({S}_{{n}}=\frac{n}{2}[2 {a}+({n}-1) {d}]\)
Where \( {n}= \) number of terms, \( {a}= \) first term, and \( {d}= \) common difference
Here, \( a=-6 \)
\(d=\frac{11}{2}+6=\frac{-11+12}{2}=\frac{1}{2}\)
therefore, we obtain
\(-25=\frac{n}{2}\left[2 \times(-6)+({n}-1) \frac{1}{2}\right]\)
\(=-50={n}\left[-12+\frac{n}{2}-\frac{1}{2}\right]\)
\(=-50={n}\left[-\frac{25}{2}+\frac{n}{2}\right]\)
\(=-100={n}(-25+{n})\)
\(=n^{2}-5 n-20 n+100=0\)
\(=n(n-5)-20(n-5)=0\)
\(n=20 \text { or } 5\)
ncert exemplar class 11 maths || class 11 chapter 9 exercise 9.2 solution || class 11 maths exercise 9.2 solutions || exercise 9.2 class 11 maths solutions || Class 11 rd sharma exercise 9.2 solutions || class 11 maths ncert solutions chapter 9 || sequences and series class 11 ncert solutions || class 11 ch 9 exercise 9.2 solutions || ex 9.2 class 11 maths ncert solutions || ncert solutions for class 11 maths chapter 9
According to the given information
\(p\) th term \( =a p=a+(p-1) d=\frac{1}{q} \ldots(1) \)
\( q \) th term \( =a q={a}+({q}-1) {d}=\frac{1}{p} \ldots (2)\)
subtracting (2) from (1), we obtain
\(({p}-1) {d}-({q}-1) {d}=\frac{1}{q}-\frac{1}{p}\)
\(=({p}-1-{q}+1) {d}=\frac{p-q}{p q}\)
\(=({p}-{q}) {d}=\frac{p-q}{p q}\)
\(={d}=\frac{1}{p q}\)
Putting the value of din (1), we obtain
\({a}+({p}-1) \frac{1}{p q}=\frac{1}{q}\)
\(={a}=\frac{1}{q}-\frac{1}{q}+\frac{1}{p q}=\frac{1}{p q}\)
\({S}_{{n}}=\frac{p q}{2}[2 {a}+({pq}-1) {d}]\)
\(=\frac{p q}{2}\left[\frac{2}{p q}+({pq}-1) \frac{1}{p q}\right]\)
\(=1+\frac{1}{2}(p q-1)\)
\(=\frac{1}{2} {pq}+1-\frac{1}{2}\)
\(=\frac{1}{2} {pq}+\frac{1}{2}\)
\(=\frac{1}{2}({pq}+1)\)
\({S}_{{n}}=\frac{n}{2}[2 {a}+({n}-1) {d}]\)
Here, \( {a}=25 \) and \( {d}-22-25=-3 \)
\(S_{n}=\frac{n}{2}[2 \times 25+(n-1)(-3)]\)
\(=116=\frac{n}{2}[50-3 n+3]\)
\(=232=n(53-3 n)=53 n-3 n^{2}\)
\(=3 n^{2}-53 n+232=0\)
\(=3 n^{2}-24 n-29 n+232=0\)
\(=3 n(n-8)-29(n-8)=0\)
\(=(n-8)(3 n-29)=0\)
\(=n=8, \text { or } n=\frac{29}{3}\)
However,
\(n\) cannot be equal to \( \frac{29}{3} \)
therefore, \( {n}=8 \)
\(a_{8}=\text {last term}=a+(n-1) d=25+(8-1)(-3)\)
\(=25+(7)(-3)=25-21\)
\(=4\)
Thus, the last term of the A.P. is \(4 \).
\({k}^{\text {th}} \text { term}=a k=a+(k-1) d\)
\(={a}+({k}-1) {d}=5 {k}+1 {a}+{kd}-{d}=5 {k}+1\)
Comparing the coefficient of \( k \), we obtain \( d=5 a-d=1 \)
\(={a}-5=1\)
\(={a}=6\)
\({S}_{{n}}=\frac{n}{2}[2 {a}+({n}-1) {d}]\)
\(=\frac{n}{2}[2(6)+({n}-1)(5)]\)
\(=\frac{n}{2}[12+5 n-5]\)
\(=\frac{n}{2}[5 n+7]\)
\({S}_{{n}}=\frac{n}{2}[2 {a}+({n}-1) {d}]\)
According to the given condition,
\(\frac{n}{2}[2 {a}+({n}-1) {d}]={pn}+{qn}^{2}\)
\(=\frac{n}{2}[2 {a}+{nd}-{d}]={pn}+{qn}^{2}\)
\(={na}+{n}^{2} \frac{d}{2}-{n} \frac{d}{2}={pn}+{qn}^{2}\)
Comparing the coefficient if \( {n}^{2} \) on both sides, we obtain
\(\frac{d}{2}=q\)
\(=d=2 q\)
Thus, the common difference of the A.P. is \(2 q \).
According to the given condition,
\( \frac{\text { sum of } n \text { terns of first A.P. }}{\text { sum of } n \text { terms of second A.P. }}=\frac{5 n+4}{9 n+6} \)
\( =\frac{\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{2}+(n-1) d_{2}\right]}=\frac{5 n+4}{9 n+6} \)
\( =\frac{2 a_{1}(n-1) d_{1}}{2 a_{2}+(n-1) d_{2}}=\frac{5 n+4}{9 n+6} \ldots(1) \)
Substituting \( {n}=35 \) in (1), we obtain
\(\frac{2 a_{1}+34 d_{1}}{2 a_{2}+34 d_{2}}=\frac{5(35)+4}{9(35)+5}\)
\(=\frac{a_{1}+17 d_{1}}{a_{2}+17 d_{2}}=\frac{179}{321} \ldots(2)\)
\(\frac{18^{\text {th}} \text { term of first A.P. }}{18^{\text {th}} \text { term of second A.P. }}=\frac{a_{1}+17 d_{1}}{a_{2}+17 d_{2}} \ldots (3)\)
\(\frac{18_{\text {th}} \text { term of first A.P. }}{18_{\text {th}} \text { term of second A.P. }}=\frac{179}{321}\)
Thus, the ration of \( 18^{\text {th}} \) term of both the A.P. is \( 179: 321 \).
Here,
\(S p=\frac{p}{2}[2 {a}+({p}-1) {d}]\)
\(S q=\frac{q}{2}[2 {a}+({q}-1) {d}]\)
According to the given condition,
\(\frac{p}{2}[2 {a}+({p}-1) {d}]=\frac{q}{2}[2 {a}+({q}-1) {d}]\)
\(={p}[2 {a}+({p}-1) {d}]={q}[2 {a}+({q}-1) {d}]\)
\(=2 {ap}+p d(p-1)=2 {aq}+q d(q-1)\)
\(=2 {a}({p}-{q})+{d}[{p}({p}-1)-{q}({q}-1)]=0\)
\(=2 {a}({p}-{q})+{d}\left[{p}_{2}-{p}-{q}^{2}+q\right]=0\)
\(=2 {a}({p}-{q})+{d}[({p}-{q})({p}+{q})-({p}-{q})]=0\)
\(=2 {a}({p}-{q})+{d}[({p}-{q})({p}+{q}-1)]=0\)
\(=2 {a}+{d}({p}+{q}-1)=0\)
\(={d}=\frac{-2 a}{p+q-1} \ldots(1)\)
\(S_{{p}+{q}}=\frac{p+q}{2}[2 {a}+({p}+{q}-1) \cdot {d}]\)
\(=S_{{p}+{q}}=\frac{p+q}{2}\left(2 a+(p+q-1)\left(\frac{-2 a}{p+q-1}\right)\right)\quad[\text {from (1)] }\)
\(=\frac{p+q}{2}[2 {a}-2 {a}]\)
\(=0\)
Thus, the sum of first \( (p+q) \) terms pf the A.P. is \(0\).
Prove that \( \frac{a}{p}({q}-{r})+\frac{b}{q}({r}-{p})+\frac{c}{r}({p}-{q})=0 \)
According to the given information,
\(S_{{p}}=\frac{p}{2}\left[2 {a}_{1}+({p}-1) {d}\right]={a}\)
\(=2 {a}_{1}+({p}-1) {d}=\frac{2 a}{p} \ldots(1)\)
\(S_{q}=\frac{q}{2}\left[2 {a}_{1}+({q}-1) {d}\right]={b}\)
\(=2 {a}_{1}+({q}-1) {d}=\frac{2 b}{q} \ldots(2)\)
\(S_{{r}}=\frac{r}{2}\left[2 {a}_{1}+({r}-1) {d}\right]={c}\)
\(=2 {a}_{1}+({r}-1) {d}=\frac{2 c}{r} \ldots(3)\)
Subtracting (2) from (1), we obtain
\(({p}-1) {d}-({q}-1) {d}=\frac{2 a}{p}-\frac{2 b}{q}\)
\(={d}({p}-1-{q}+1)=\frac{2 a q-2 b p}{p q}\)
\(={d}({p}-{q})=\frac{2 a q-2 b p}{p q}\)
\(={d}=\frac{2(a q-b p)}{p q(p-q)}\ldots(4)\)
Subtracting (3) from (2), we obtain
\(({q}-1) {d}-({r}-1) {d}=\frac{2 b}{q}-\frac{2 c}{r}\)
\(={d}({q}-1-{r}+1)=\frac{2 b}{q}-\frac{2 c}{r}\)
\(={d}({q}-{r})=\frac{2 b r-2 c q}{q r}\)
\(={d}=\frac{2(b r-q c)}{q r(q-r)} \ldots(5)\)
Equating both the value of \( d \) obtained in (4) and (5), we obtain
\(\frac{a q-b p}{p q(p-q)}=\frac{b r-q c}{q r(q-r)}\)
\(=q r(q-r) (a q-b p)=p q(p-a)(b r-q c)\)
\( =r(a q-b p)(q-r)=p(b r-q c)(p-a)\)
\(=(a q r-b p r)(q-r)=(b p r-p q c)(p-q)\)
Dividing both sides by \( p q r \), we obtain
\(\left(\frac{a}{p}-\frac{b}{q}\right)({q}-{r})=\left(\frac{b}{q}-\frac{c}{r}\right)({p}-{q})\)
\(\left(\frac{a}{p}-\frac{b}{q}\right)(q-r)=\left(\frac{b}{q}-\frac{c}{r}\right)(p-q)\)
\(=\frac{a}{p}(q-r)-\frac{b}{q}(q-r+p+q)+\frac{c}{r}(p-q)=0\)
\(=\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0\)
Thus, the given result is proved.
According to the given information,
\(\frac{\text { sum of } m \text { terms }}{\text { sum of } n \text { terms }}=\frac{m^{2}}{n^{2}}\)
\(=\frac{\frac{m}{2}[2 a+(m-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{m^{2}}{n^{2}}\)
\(=\frac{2 a+(m-1) d}{2 a+(n-1) d}=\frac{m}{n} \ldots(1)\)
Putting \( {m}=2 {m}-1 \) and \( {n}=2 {n}-1 \) in (1), we obtain
\( \frac{2 a+(2 m-2) d}{2 a+(2 n-2) d}=\frac{2 m-1}{2 n-1} \)
\( =\frac{a+(m-1) d}{a+(n-1) d}=\frac{2 m-1}{2 n-1} \ldots (2)\)
\( \frac{m^{\text {th}} \text { term of A.P. }}{n_{\text {th}} \text { term of A.P. }}=\frac{a+(m-1) d}{a+(n-1) d} \ldots(3)\)
From (2) and (3), we obtain
\( \frac{m^{\text {th}} \text { term of A.P. }}{n^{\text {th}} \text { term of A.P. }}=\frac{2 m-1}{2 n-1} \)
Thus, the given result is proved.
\(a_{m}=a+(m-1) d=164 \ldots(1)\)
sum of n terms:
\(s_{{n}}=\frac{n}{2}[2 {a}+({n}-1) {d}]\)
here,
\(=\frac{n}{2}[2 {a}+{nd}-{d}]=3 {n}^{2}+5 {n}\)
\(=n {a}+{n}^{2} \cdot \frac{d}{2}=3 {n}^{2}+5 {n}\)
Comparing the coefficient of \( {n}^{2} \) on both sides, we obtain
\(\frac{d}{2}=3\)
\(=d=6\)
Comparing the coefficient of \( n \) on both sides, we obtain
\(={a}-\frac{d}{2}=5\)
\(={a}-3=5\)
\(={a}=8\)
Therefore, from (1), we obtain
\(8+({m}-1) 6=164\)
\(=({m}-1) 6=164-8=156\)
\(={m}-1=26\)
\(={m}=27\)
Thus, the value of \( m \) is \(27 \).
ncert exemplar class 11 maths || class 11 chapter 9 exercise 9.2 solution || class 11 maths exercise 9.2 solutions || exercise 9.2 class 11 maths solutions || Class 11 rd sharma exercise 9.2 solutions || class 11 maths ncert solutions chapter 9 || sequences and series class 11 ncert solutions || class 11 ch 9 exercise 9.2 solutions || ex 9.2 class 11 maths ncert solutions || ncert solutions for class 11 maths chapter 9
Here, \( a=8 b=26, n=7 \)
Therefore, \( 26=8+(7-1) {d} \)
\(=6 {d}=26-8=18\)
\(={d}=3\)
\({A}_{1}={a}+{d}=8+3=11\)
\({A}_{2}={a}+2 {d}=8+2 \times 3=8+6=14\)
\({A}_{3}={a}+3 {d}=8+3 \times 3=8+9=17\)
\({A}_{4}={a}+4 {d}=8+4 \times 3=8+12=20\)
\({A}_{5}={a}+5 {d}=8+5 \times 3=8+15=23\)
Thus, the required five numbers between 8 and 26 are \( 11,14,17,20 \), and \(23\).
According to the given condition,
\(\frac{a+b}{2}=\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}\)
\(=(a+b)\left(a^{n-1}+b^{n-1}\right)=2\left(a^{n}+b^{n}\right)\)
\(=a^{{n}}+{a}^{{n}-1}+{ba}^{{n}-1}+b^{{n}}=2 {a}^{{n}}+2 {b}^{{n}}\)
\(={a} {b}^{{n}-1}+{a}^{{n}-1} {b}={a}^{{n}}+b^{{n}}\)
\(={ab}^{{n}-1}-b^{{n}}={a}^{{n}}-{a}^{{n}-1} {b}\)
\(={b}^{{n}-1}({a}-{b})={a}^{{n}-1}({a}-{b})\)
\(={b}^{{n}-1}={a}^{{n}-1}\)
\(=\left(\frac{a}{b}\right)^{n-1}=1=\left(\frac{a}{b}\right)^{0}\)
\(={n}-1=0\)
\(={n}=1\)
Here, \( {a}=1, {b}=31, {n}={m}+2 \)
\(31=1+({m}+2-1) {d}\)
\(=30=({m}+1) {d}\)
\(={d}=\frac{30}{m+1} \ldots(1)\)
\({A}_{1}={a}+{d}\)
\({A}_{2}={a}+2 {d}\)
\({A}_{3}={a}+3 {d}\)
\(\therefore {A}_{7}={a}+7 {d}\)
\({A}_{{m}-1}={a}+({m}-1) {d}\)
According to the given condition,
\(\frac{a+7 d}{a+(m-1) d}=\frac{5}{9}\)
\(=\frac{1+7\left(\frac{30}{m+1}\right)}{1+(m-1)\left(\frac{30}{m-1}\right)}=\frac{5}{9}\quad[\text {from }(1)]\)
\(=\frac{m+1+7(30)}{m+1+30(m-1)}=\frac{5}{9}\)
\(=\frac{m+1+210}{m+1+30 m-30}=\frac{5}{9}\)
\(=\frac{m+211}{31 m-29}=\frac{5}{9}\)
\(=9 {m}+1899=155 {m}-145\)
\(=155 {m}-9 {m}=1899+145\)
\(=146 {m}=2044\)
\(={m}=14\)
Thus, the value of \( m \) is \(14 \).
The second installment of the loan is \( ₹ 105 \) and so on.
The amount that the man repays every month forms an A.P.
The A.P. is \( 100,105,110 \ldots \)
First term, \( a=100 \)
Common difference, \( d=5 \)
\(A_{30}=a+(30-1) d\)
\(=100+(29)(5)\)
\(=100+145\)
\(=245\)
Thus, the amount to be paid in the \( 30^{\text {th}} \) installment is ₹ 245.
It is known that the sum of all angles of the polygon with \(n\) sides \( 180^{\circ} ( n -2) \)
\({S}_{{n}}=180^{\circ}({n}-2)\)
\(=\frac{n}{2}[2 {a}+({n}-1) {d}]=180^{\circ}({n}-2)\)
\(=\frac{n}{2}\left[240^{\circ}+({n}-1) 5^{\circ}\right]=180^{\circ}({n}-2)\)
\(={n}[240+({n}-1) 5]=360({n}-2)\)
\(=240 {n}+5 {n}^{2}-5 {n}=360 {n}-720\)
\(=5 {n}^{2}+235 {n}-360 {n}+720=0\)
\(=5 {n}^{2}-125 {n}+720=0\)
\(={n}^{2}-25 {n}+144=0\)
\(={n}^{2}-16 {n}-9 {n}+144=0\)
\(={n}({n}-16)-9({n}-16)=0\)
\(=({n}-9)({n}-16)=0\)
\(={n}=9 \text { or } 16\)