Ex 9.2 Class 11 Maths Ncert Solutions

Ex 9.2 class 11 maths ncert solutions | Class 11 rd sharma exercise 9.2 solutions | class 11 maths exercise 9.2 solutions | exercise 9.2 class 11 maths solutions | class 11 ch 9 exercise 9.2 solutions | class 11 chapter 9 exercise 9.2 solution | class 11 maths ncert solutions chapter 9 | ncert solutions for class 11 maths chapter 9 | ncert exemplar class 11 maths | sequences and series class 11 ncert solutions

Looking for Ex 9.2 Class 11 Maths NCERT Solutions? You’re in the right place! This section offers clear and comprehensive step-by-step solutions for all the questions in Exercise 9.2 of Chapter 9 – Sequences and Series. Based on the latest NCERT syllabus, these solutions focus on Arithmetic Progressions (AP) — including finding the general term, sum of n terms, and solving real-life problems using AP concepts. Whether you’re referring to Class 11 Ch 9 Exercise 9.2, practicing from the RD Sharma Exercise 9.2 Solutions, or preparing with the NCERT Exemplar Class 11 Maths, these solutions will help you master the topic with ease. View or download the full Class 11 Maths NCERT Solutions Chapter 9 and solidify your understanding of Sequences and Series Class 11 today!

ex 9.2 class 11 maths ncert solutions
ncert exemplar class 11 maths || class 11 chapter 9 exercise 9.2 solution || class 11 maths exercise 9.2 solutions || exercise 9.2 class 11 maths solutions || Class 11 rd sharma exercise 9.2 solutions || class 11 maths ncert solutions chapter 9 || sequences and series class 11 ncert solutions || class 11 ch 9 exercise 9.2 solutions || ex 9.2 class 11 maths ncert solutions || ncert solutions for class 11 maths chapter 9
Download the Math Ninja App Now

Exercise 9.2

1. Find the sum of odd integers from 1 to 2001.
Answer
The odd integers from 1 to 2001 are \( 1, 3, 5 \ldots 1999,2001 \).
This, sequence forms an A.P.
Here, first tern, \( {a}=1 \)
Common difference, \( d=2 \)
Here, \( a+(n-1) d=2001 \)
\(=1+({n}-1)(2)=2001\)
\(=2 {n}-2=2000\)
\(={n}=1001\)
\({S}_{{n}}=\frac{n}{2}[2 {a}+({n}-1) {d}]\)
\({S}_{{n}}=\frac{1001}{2}[2 \times 1+(1001-1) \times 2]\)
\(=\frac{1001}{2}[2+1000 \times 2]\)
\(=\frac{1001}{2} \times 2002\)
\(=1001 \times 1001\)
\(=1002001\)
Thus, the sum of odd numbers from 1 to 2001 is 1002001.
2. Find the sum of all natural numbers lying between 100 and 1000, which are multiples of 5.
Answer
The natural numbers lying between 100 and 1000, which are multiples of 5, are \( 105,110, \ldots 995 \).
Here, \( {a}=105 \) and \( {d}=5 \)
\({a}+({n}-1) {d}=995\)
\(=105+({n}-1) 5=995\)
\(=({n}-1) 5=995-105=890\)
\(={n}-1=178\)
\(={n}=179\)
\({S}_{{n}}=\frac{179}{2}[2(105)+(179-1)(5)]\)
\(=\frac{179}{2}[2(105)+(178)(5)]\)
\(=(179)(105+445)\)
\(=(179)(550)\)
\(=98450\)
Thus, the sum of all natural numbers lying between 100 and 1000, which are multiples of 5, is 98450.
ncert exemplar class 11 maths || class 11 chapter 9 exercise 9.2 solution || class 11 maths exercise 9.2 solutions || exercise 9.2 class 11 maths solutions || Class 11 rd sharma exercise 9.2 solutions || class 11 maths ncert solutions chapter 9 || sequences and series class 11 ncert solutions || class 11 ch 9 exercise 9.2 solutions || ex 9.2 class 11 maths ncert solutions || ncert solutions for class 11 maths chapter 9
Download the Math Ninja App Now
3. In an A.P, the first term is 2 and the sum of the first five terms is one-fourth of the next five terms. Show that \( 20^{\text {th}} \) term is \(-112 \).
Answer
First term \( =2 \)
Let \( d \) be the common difference of the A.P.
Therefore, the A.P. is \( 2,2+{d}, 2+2 {d}, 2+3 {d} \)
Sum of the first five terms \( =10+10 {d} \)
Sum of the next five terms \( =10+35 {d} \)
According to given condition
\(10+10 d=\frac{1}{4}(10+5 d)\)
\(=40+40 {d}=10+5 d\)
\(=30=-5 {d}\)
\(=d=-6\)
\(a_{20}=a+(20-1) d=2+(19)(-6)=2-114=-112\)
thus, the \( 20^{\text {th}} \) term of the A.P. is \(-112\)
4. How many terms of the A.P. \( -6,-\frac{11}{2},-5 \ldots \) are needed to give the sum \(-25 \)?
Answer
Let, the sum of \( n \) terms of the given A.P. be \(-25\)
It is known that
\({S}_{{n}}=\frac{n}{2}[2 {a}+({n}-1) {d}]\)
Where \( {n}= \) number of terms, \( {a}= \) first term, and \( {d}= \) common difference
Here, \( a=-6 \)
\(d=\frac{11}{2}+6=\frac{-11+12}{2}=\frac{1}{2}\)
therefore, we obtain
\(-25=\frac{n}{2}\left[2 \times(-6)+({n}-1) \frac{1}{2}\right]\)
\(=-50={n}\left[-12+\frac{n}{2}-\frac{1}{2}\right]\)
\(=-50={n}\left[-\frac{25}{2}+\frac{n}{2}\right]\)
\(=-100={n}(-25+{n})\)
\(=n^{2}-5 n-20 n+100=0\)
\(=n(n-5)-20(n-5)=0\)
\(n=20 \text { or } 5\)
ncert exemplar class 11 maths || class 11 chapter 9 exercise 9.2 solution || class 11 maths exercise 9.2 solutions || exercise 9.2 class 11 maths solutions || Class 11 rd sharma exercise 9.2 solutions || class 11 maths ncert solutions chapter 9 || sequences and series class 11 ncert solutions || class 11 ch 9 exercise 9.2 solutions || ex 9.2 class 11 maths ncert solutions || ncert solutions for class 11 maths chapter 9
Download the Math Ninja App Now
5. In an A.P., if \( p \) th term is \( \frac{ 1 }{ {q} } \) and \( q \) th term is \( \frac{ 1 }{ p } \), prove that the sum of first \( {p} q \) terms is \( \frac{ 1 }{ 2 }({pq}+1) \), where \( {p} \neq {q} \).
Answer
It is known that the general term of an A.P. is an \( ={a}+({n}-1) {d} \)
According to the given information
\(p\) th term \( =a p=a+(p-1) d=\frac{1}{q} \ldots(1) \)
\( q \) th term \( =a q={a}+({q}-1) {d}=\frac{1}{p} \ldots (2)\)
subtracting (2) from (1), we obtain
\(({p}-1) {d}-({q}-1) {d}=\frac{1}{q}-\frac{1}{p}\)
\(=({p}-1-{q}+1) {d}=\frac{p-q}{p q}\)
\(=({p}-{q}) {d}=\frac{p-q}{p q}\)
\(={d}=\frac{1}{p q}\)
Putting the value of din (1), we obtain
\({a}+({p}-1) \frac{1}{p q}=\frac{1}{q}\)
\(={a}=\frac{1}{q}-\frac{1}{q}+\frac{1}{p q}=\frac{1}{p q}\)
\({S}_{{n}}=\frac{p q}{2}[2 {a}+({pq}-1) {d}]\)
\(=\frac{p q}{2}\left[\frac{2}{p q}+({pq}-1) \frac{1}{p q}\right]\)
\(=1+\frac{1}{2}(p q-1)\)
\(=\frac{1}{2} {pq}+1-\frac{1}{2}\)
\(=\frac{1}{2} {pq}+\frac{1}{2}\)
\(=\frac{1}{2}({pq}+1)\)
6. If the sum of a certain number of terms of the A.P. \( 25, 22, 19, \ldots \) is \(116 \). Find the last term
Answer
Let the sum of \( n \) terms of the given A.P. be \(116 \).
\({S}_{{n}}=\frac{n}{2}[2 {a}+({n}-1) {d}]\)
Here, \( {a}=25 \) and \( {d}-22-25=-3 \)
\(S_{n}=\frac{n}{2}[2 \times 25+(n-1)(-3)]\)
\(=116=\frac{n}{2}[50-3 n+3]\)
\(=232=n(53-3 n)=53 n-3 n^{2}\)
\(=3 n^{2}-53 n+232=0\)
\(=3 n^{2}-24 n-29 n+232=0\)
\(=3 n(n-8)-29(n-8)=0\)
\(=(n-8)(3 n-29)=0\)
\(=n=8, \text { or } n=\frac{29}{3}\)
However,
\(n\) cannot be equal to \( \frac{29}{3} \)
therefore, \( {n}=8 \)
\(a_{8}=\text {last term}=a+(n-1) d=25+(8-1)(-3)\)
\(=25+(7)(-3)=25-21\)
\(=4\)
Thus, the last term of the A.P. is \(4 \).
7. Find the sum to n terms of the A.P., whose \( {k}^{\text {th}} \) term is \( 5 {k}+ 1 \).
Answer
It is given that the \({k}^{\text {th}}\) term of the A.P. is \( 5 {k}+1 \).
\({k}^{\text {th}} \text { term}=a k=a+(k-1) d\)
\(={a}+({k}-1) {d}=5 {k}+1 {a}+{kd}-{d}=5 {k}+1\)
Comparing the coefficient of \( k \), we obtain \( d=5 a-d=1 \)
\(={a}-5=1\)
\(={a}=6\)
\({S}_{{n}}=\frac{n}{2}[2 {a}+({n}-1) {d}]\)
\(=\frac{n}{2}[2(6)+({n}-1)(5)]\)
\(=\frac{n}{2}[12+5 n-5]\)
\(=\frac{n}{2}[5 n+7]\)
8. If the sum of n terms of an A.P. is \( (p n+q n^{2}) \), where p and q are constants, find the common difference.
Answer
It is known that:
\({S}_{{n}}=\frac{n}{2}[2 {a}+({n}-1) {d}]\)
According to the given condition,
\(\frac{n}{2}[2 {a}+({n}-1) {d}]={pn}+{qn}^{2}\)
\(=\frac{n}{2}[2 {a}+{nd}-{d}]={pn}+{qn}^{2}\)
\(={na}+{n}^{2} \frac{d}{2}-{n} \frac{d}{2}={pn}+{qn}^{2}\)
Comparing the coefficient if \( {n}^{2} \) on both sides, we obtain
\(\frac{d}{2}=q\)
\(=d=2 q\)
Thus, the common difference of the A.P. is \(2 q \).
9. The sums of \( n \) terms of two arithmetic progressions are in the ratio \( 5 n+4: 9 n+6 \). Find the ratio of their \( 18^{\text {th}} \) terms.
Answer
Let, \( a_{1}, a_{2} \), and \( d_{1} d_{2} \) be the first - terms and the common difference of the first and second arithmetic progression respectively.
According to the given condition,
\( \frac{\text { sum of } n \text { terns of first A.P. }}{\text { sum of } n \text { terms of second A.P. }}=\frac{5 n+4}{9 n+6} \)
\( =\frac{\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{2}+(n-1) d_{2}\right]}=\frac{5 n+4}{9 n+6} \)
\( =\frac{2 a_{1}(n-1) d_{1}}{2 a_{2}+(n-1) d_{2}}=\frac{5 n+4}{9 n+6} \ldots(1) \)
Substituting \( {n}=35 \) in (1), we obtain
\(\frac{2 a_{1}+34 d_{1}}{2 a_{2}+34 d_{2}}=\frac{5(35)+4}{9(35)+5}\)
\(=\frac{a_{1}+17 d_{1}}{a_{2}+17 d_{2}}=\frac{179}{321} \ldots(2)\)
\(\frac{18^{\text {th}} \text { term of first A.P. }}{18^{\text {th}} \text { term of second A.P. }}=\frac{a_{1}+17 d_{1}}{a_{2}+17 d_{2}} \ldots (3)\)
\(\frac{18_{\text {th}} \text { term of first A.P. }}{18_{\text {th}} \text { term of second A.P. }}=\frac{179}{321}\)
Thus, the ration of \( 18^{\text {th}} \) term of both the A.P. is \( 179: 321 \).
10. If the sum of first \( p \) terms of an A.P. is equal to the sum of the first \( q \) terms, then find the sum of the first \( (p+q) \) terms.
Answer
Let, \( a \) and \( d \) be the first term and the common difference of the A.P. respectively.
Here,
\(S p=\frac{p}{2}[2 {a}+({p}-1) {d}]\)
\(S q=\frac{q}{2}[2 {a}+({q}-1) {d}]\)
According to the given condition,
\(\frac{p}{2}[2 {a}+({p}-1) {d}]=\frac{q}{2}[2 {a}+({q}-1) {d}]\)
\(={p}[2 {a}+({p}-1) {d}]={q}[2 {a}+({q}-1) {d}]\)
\(=2 {ap}+p d(p-1)=2 {aq}+q d(q-1)\)
\(=2 {a}({p}-{q})+{d}[{p}({p}-1)-{q}({q}-1)]=0\)
\(=2 {a}({p}-{q})+{d}\left[{p}_{2}-{p}-{q}^{2}+q\right]=0\)
\(=2 {a}({p}-{q})+{d}[({p}-{q})({p}+{q})-({p}-{q})]=0\)
\(=2 {a}({p}-{q})+{d}[({p}-{q})({p}+{q}-1)]=0\)
\(=2 {a}+{d}({p}+{q}-1)=0\)
\(={d}=\frac{-2 a}{p+q-1} \ldots(1)\)
\(S_{{p}+{q}}=\frac{p+q}{2}[2 {a}+({p}+{q}-1) \cdot {d}]\)
\(=S_{{p}+{q}}=\frac{p+q}{2}\left(2 a+(p+q-1)\left(\frac{-2 a}{p+q-1}\right)\right)\quad[\text {from (1)] }\)
\(=\frac{p+q}{2}[2 {a}-2 {a}]\)
\(=0\)
Thus, the sum of first \( (p+q) \) terms pf the A.P. is \(0\).
11. Sum of the first \( p, q \) and \( r \) terms of an A.P. are \( a, b \) and \( c \), respectively.
Prove that \( \frac{a}{p}({q}-{r})+\frac{b}{q}({r}-{p})+\frac{c}{r}({p}-{q})=0 \)
Answer
Let, \( a_{1} \) and \( d \) be the first term and the common difference of the A.P. respectively.
According to the given information,
\(S_{{p}}=\frac{p}{2}\left[2 {a}_{1}+({p}-1) {d}\right]={a}\)
\(=2 {a}_{1}+({p}-1) {d}=\frac{2 a}{p} \ldots(1)\)
\(S_{q}=\frac{q}{2}\left[2 {a}_{1}+({q}-1) {d}\right]={b}\)
\(=2 {a}_{1}+({q}-1) {d}=\frac{2 b}{q} \ldots(2)\)
\(S_{{r}}=\frac{r}{2}\left[2 {a}_{1}+({r}-1) {d}\right]={c}\)
\(=2 {a}_{1}+({r}-1) {d}=\frac{2 c}{r} \ldots(3)\)
Subtracting (2) from (1), we obtain
\(({p}-1) {d}-({q}-1) {d}=\frac{2 a}{p}-\frac{2 b}{q}\)
\(={d}({p}-1-{q}+1)=\frac{2 a q-2 b p}{p q}\)
\(={d}({p}-{q})=\frac{2 a q-2 b p}{p q}\)
\(={d}=\frac{2(a q-b p)}{p q(p-q)}\ldots(4)\)
Subtracting (3) from (2), we obtain
\(({q}-1) {d}-({r}-1) {d}=\frac{2 b}{q}-\frac{2 c}{r}\)
\(={d}({q}-1-{r}+1)=\frac{2 b}{q}-\frac{2 c}{r}\)
\(={d}({q}-{r})=\frac{2 b r-2 c q}{q r}\)
\(={d}=\frac{2(b r-q c)}{q r(q-r)} \ldots(5)\)
Equating both the value of \( d \) obtained in (4) and (5), we obtain
\(\frac{a q-b p}{p q(p-q)}=\frac{b r-q c}{q r(q-r)}\)
\(=q r(q-r) (a q-b p)=p q(p-a)(b r-q c)\)
\( =r(a q-b p)(q-r)=p(b r-q c)(p-a)\)
\(=(a q r-b p r)(q-r)=(b p r-p q c)(p-q)\)
Dividing both sides by \( p q r \), we obtain
\(\left(\frac{a}{p}-\frac{b}{q}\right)({q}-{r})=\left(\frac{b}{q}-\frac{c}{r}\right)({p}-{q})\)
\(\left(\frac{a}{p}-\frac{b}{q}\right)(q-r)=\left(\frac{b}{q}-\frac{c}{r}\right)(p-q)\)
\(=\frac{a}{p}(q-r)-\frac{b}{q}(q-r+p+q)+\frac{c}{r}(p-q)=0\)
\(=\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0\)
Thus, the given result is proved.
12. The ratio of the sums of \( m \) and \( n \) terms of an A.P. is \( m^{2}: n^{2} \). Show that the ratio of \( m^{\text {th}} \) and \( n^{\text {th}} \) term is \( (2 m-1) : (2 n-1) \).
Answer
Let, \( a \) and \( d \) be the first term and the common difference of the A.P. respectively.
According to the given information,
\(\frac{\text { sum of } m \text { terms }}{\text { sum of } n \text { terms }}=\frac{m^{2}}{n^{2}}\)
\(=\frac{\frac{m}{2}[2 a+(m-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{m^{2}}{n^{2}}\)
\(=\frac{2 a+(m-1) d}{2 a+(n-1) d}=\frac{m}{n} \ldots(1)\)
Putting \( {m}=2 {m}-1 \) and \( {n}=2 {n}-1 \) in (1), we obtain
\( \frac{2 a+(2 m-2) d}{2 a+(2 n-2) d}=\frac{2 m-1}{2 n-1} \)
\( =\frac{a+(m-1) d}{a+(n-1) d}=\frac{2 m-1}{2 n-1} \ldots (2)\)
\( \frac{m^{\text {th}} \text { term of A.P. }}{n_{\text {th}} \text { term of A.P. }}=\frac{a+(m-1) d}{a+(n-1) d} \ldots(3)\)
From (2) and (3), we obtain
\( \frac{m^{\text {th}} \text { term of A.P. }}{n^{\text {th}} \text { term of A.P. }}=\frac{2 m-1}{2 n-1} \)
Thus, the given result is proved.
13. If the sum of \( n \) terms of an A.P. is \( 2 n^{2}+5 n \) and its \( m^{\text {th}} \) term is \(164 \), find the value of \( m \).
Answer
Let, \( a \) and \( d \) be the first term and the common difference of the A.P. respectively.
\(a_{m}=a+(m-1) d=164 \ldots(1)\)
sum of n terms:
\(s_{{n}}=\frac{n}{2}[2 {a}+({n}-1) {d}]\)
here,
\(=\frac{n}{2}[2 {a}+{nd}-{d}]=3 {n}^{2}+5 {n}\)
\(=n {a}+{n}^{2} \cdot \frac{d}{2}=3 {n}^{2}+5 {n}\)
Comparing the coefficient of \( {n}^{2} \) on both sides, we obtain
\(\frac{d}{2}=3\)
\(=d=6\)
Comparing the coefficient of \( n \) on both sides, we obtain
\(={a}-\frac{d}{2}=5\)
\(={a}-3=5\)
\(={a}=8\)
Therefore, from (1), we obtain
\(8+({m}-1) 6=164\)
\(=({m}-1) 6=164-8=156\)
\(={m}-1=26\)
\(={m}=27\)
Thus, the value of \( m \) is \(27 \).
ncert exemplar class 11 maths || class 11 chapter 9 exercise 9.2 solution || class 11 maths exercise 9.2 solutions || exercise 9.2 class 11 maths solutions || Class 11 rd sharma exercise 9.2 solutions || class 11 maths ncert solutions chapter 9 || sequences and series class 11 ncert solutions || class 11 ch 9 exercise 9.2 solutions || ex 9.2 class 11 maths ncert solutions || ncert solutions for class 11 maths chapter 9
Download the Math Ninja App Now
14. Insert five numbers between 8 and 26 such that the resulting sequence is an A.P.
Answer
Let, \( A_{1}, A_{2}, A_{3}, A_{4} \), and \( A_{5} \) be five numbers between 8 and 26 such that \( 8, {A}_{1}, {A}_{2}, {A}_{3}, {A}_{4}, {A}_{5}, 26 \) is an A.P.
Here, \( a=8 b=26, n=7 \)
Therefore, \( 26=8+(7-1) {d} \)
\(=6 {d}=26-8=18\)
\(={d}=3\)
\({A}_{1}={a}+{d}=8+3=11\)
\({A}_{2}={a}+2 {d}=8+2 \times 3=8+6=14\)
\({A}_{3}={a}+3 {d}=8+3 \times 3=8+9=17\)
\({A}_{4}={a}+4 {d}=8+4 \times 3=8+12=20\)
\({A}_{5}={a}+5 {d}=8+5 \times 3=8+15=23\)
Thus, the required five numbers between 8 and 26 are \( 11,14,17,20 \), and \(23\).
15. If \( \frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}} \) is the A.M. between \(a\) and \(b \), then find the value of \( n \).
Answer
A.M. of a and \( {b}=\frac{a+b}{2} \)
According to the given condition,
\(\frac{a+b}{2}=\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}\)
\(=(a+b)\left(a^{n-1}+b^{n-1}\right)=2\left(a^{n}+b^{n}\right)\)
\(=a^{{n}}+{a}^{{n}-1}+{ba}^{{n}-1}+b^{{n}}=2 {a}^{{n}}+2 {b}^{{n}}\)
\(={a} {b}^{{n}-1}+{a}^{{n}-1} {b}={a}^{{n}}+b^{{n}}\)
\(={ab}^{{n}-1}-b^{{n}}={a}^{{n}}-{a}^{{n}-1} {b}\)
\(={b}^{{n}-1}({a}-{b})={a}^{{n}-1}({a}-{b})\)
\(={b}^{{n}-1}={a}^{{n}-1}\)
\(=\left(\frac{a}{b}\right)^{n-1}=1=\left(\frac{a}{b}\right)^{0}\)
\(={n}-1=0\)
\(={n}=1\)
16. Between 1 and 31, m numbers have been inserted in such a way that the resulting sequence is an A.P. and the ratio of \( 7^{\text {th}} \) and \( (m-1)^{\text {th}} \) numbers is \(5:9\). Find the value of \( m \).
Answer
Let \( A_{1}, A_{2} \ldots A m \) be \( m \) numbers such that \( 1, A_{1}, A_{2}, \ldots A m, 31 \) is an A.P.
Here, \( {a}=1, {b}=31, {n}={m}+2 \)
\(31=1+({m}+2-1) {d}\)
\(=30=({m}+1) {d}\)
\(={d}=\frac{30}{m+1} \ldots(1)\)
\({A}_{1}={a}+{d}\)
\({A}_{2}={a}+2 {d}\)
\({A}_{3}={a}+3 {d}\)
\(\therefore {A}_{7}={a}+7 {d}\)
\({A}_{{m}-1}={a}+({m}-1) {d}\)
According to the given condition,
\(\frac{a+7 d}{a+(m-1) d}=\frac{5}{9}\)
\(=\frac{1+7\left(\frac{30}{m+1}\right)}{1+(m-1)\left(\frac{30}{m-1}\right)}=\frac{5}{9}\quad[\text {from }(1)]\)
\(=\frac{m+1+7(30)}{m+1+30(m-1)}=\frac{5}{9}\)
\(=\frac{m+1+210}{m+1+30 m-30}=\frac{5}{9}\)
\(=\frac{m+211}{31 m-29}=\frac{5}{9}\)
\(=9 {m}+1899=155 {m}-145\)
\(=155 {m}-9 {m}=1899+145\)
\(=146 {m}=2044\)
\(={m}=14\)
Thus, the value of \( m \) is \(14 \).
17. A man starts repaying a loan as first installment of ₹100. If he increases the installment by ₹5 every month, what amount he will pay in the \( 30^{\text {th}} \) installment?
Answer
The first installment of the loan is ₹ 100.
The second installment of the loan is \( ₹ 105 \) and so on.
The amount that the man repays every month forms an A.P.
The A.P. is \( 100,105,110 \ldots \)
First term, \( a=100 \)
Common difference, \( d=5 \)
\(A_{30}=a+(30-1) d\)
\(=100+(29)(5)\)
\(=100+145\)
\(=245\)
Thus, the amount to be paid in the \( 30^{\text {th}} \) installment is ₹ 245.
18. The difference between any two consecutive interior angles of a polygon is \( 5^{\circ} \). If the smallest angle is \( 120^{\circ} \), find the number of the sides of the polygon.
Answer
The angles of the polygon will form an A.P. with common difference d as \( 5^{\circ} \) and first term an as \(120 \).
It is known that the sum of all angles of the polygon with \(n\) sides \( 180^{\circ} ( n -2) \)
\({S}_{{n}}=180^{\circ}({n}-2)\)
\(=\frac{n}{2}[2 {a}+({n}-1) {d}]=180^{\circ}({n}-2)\)
\(=\frac{n}{2}\left[240^{\circ}+({n}-1) 5^{\circ}\right]=180^{\circ}({n}-2)\)
\(={n}[240+({n}-1) 5]=360({n}-2)\)
\(=240 {n}+5 {n}^{2}-5 {n}=360 {n}-720\)
\(=5 {n}^{2}+235 {n}-360 {n}+720=0\)
\(=5 {n}^{2}-125 {n}+720=0\)
\(={n}^{2}-25 {n}+144=0\)
\(={n}^{2}-16 {n}-9 {n}+144=0\)
\(={n}({n}-16)-9({n}-16)=0\)
\(=({n}-9)({n}-16)=0\)
\(={n}=9 \text { or } 16\)
ncert exemplar class 11 maths || class 11 chapter 9 exercise 9.2 solution || class 11 maths exercise 9.2 solutions || exercise 9.2 class 11 maths solutions || Class 11 rd sharma exercise 9.2 solutions || class 11 maths ncert solutions chapter 9 || sequences and series class 11 ncert solutions || class 11 ch 9 exercise 9.2 solutions || ex 9.2 class 11 maths ncert solutions || ncert solutions for class 11 maths chapter 9
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top