Ex 9.4 Class 12 Maths Ncert Solutions

Ex 9.4 class 12 maths ncert solutions | class 12 maths exercise 9.4 | class 12 maths ncert solutions chapter 9 exercise 9.4 | exercise 9.4 class 12 maths ncert solutions | chapter 9 class 12 maths ncert solutions | differential equations class 12 ncert solutions

If you’re looking for detailed and accurate Class 12 Maths NCERT Solutions Chapter 9 Exercise 9.4, you’re in the right place. This section covers the important topic of Differential Equations in a clear and easy-to-understand way. Our step-by-step Exercise 9.4 Class 12 Maths NCERT Solutions help students grasp the method of solving differential equations by using the concept of variable separable. Whether you’re preparing for board exams or competitive tests, our Class 12 Maths Exercise 9.4 guide ensures thorough understanding. Explore our complete Ex 9.4 Class 12 Maths NCERT Solutions and master the concepts with confidence.

ex 9.4 class 12 maths ncert solutions
exercise 9.4 class 12 maths ncert solutions || ex 9.4 class 12 maths ncert solutions || differential equations class 12 ncert solutions || class 12 maths exercise 9.4 || chapter 9 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 9 exercise 9.4
Download the Math Ninja App Now

EXERCISE 9.4

1. For each of the differential equations in question, find the general solution:
\(\frac{d y}{d x}=\frac{1-\cos x}{1+\cos x}\)
Answer
\(\Rightarrow \frac{d y}{d x}=\frac{1-\cos x}{1+\cos x}\)
\(\Rightarrow \frac{d y}{d x}=\frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\)
\(\Rightarrow \frac{d y}{d x}=\tan ^{2} \frac{x}{2}\)
\(\Rightarrow \frac{d y}{d x}=\left(\sec ^{2} \frac{x}{2}-1\right)\)
\(\Rightarrow d y=\left(\sec ^{2} \frac{x}{2}-1\right) d x\)
\(\Rightarrow \int d y=\int \sec ^{2} \frac{x}{2} d x-\int d x\)
\(\Rightarrow y=2 \tan ^{1} \frac{x}{2}-x+c\)
2. For each of the differential equations in question, find the general solution:
\(\frac{d y}{d x}=\sqrt{4-y^{2}}(-2 < y < 2)\)
Answer
\(\Rightarrow \frac{d y}{d x}=\sqrt{4-y^{2}}\)
\(\Rightarrow \frac{d y}{\sqrt{4-y^{2}}}=d x\)
\(\Rightarrow \int \frac{d y}{\sqrt{4-y^{2}}}=\int d x\)
\(\Rightarrow \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}\)
\(\Rightarrow \sin ^{-1} \frac{y}{2}=x+c\)
3. For each of the differential equations in question, find the general solution:
\(\frac{d y}{d x}+y=1(y \neq 1)\)
Answer
\(\Rightarrow \frac{d y}{d x}+y=1\)
\(\Rightarrow d y=(1-y) d x\)
Separating variables
\(\Rightarrow \frac{d y}{1-y}=d x\)
\(\Rightarrow \int \frac{d y}{1-y}=\int d x\)
\(\Rightarrow-\log (1-{y})=x+\log {c}\)
\(\Rightarrow-\log (1-{y})-\log {c}=x\)
\(\Rightarrow \log (1-{y}) {c}=-x\)
\(\Rightarrow(1-y) c=e^{-x}\)
Or
\(\Rightarrow(1-y)=\frac{1}{c} e^{-x}\)
\(\Rightarrow y=1+\frac{1}{c} e^{-x}\)
4. For each of the differential equations in question, find the general solution:
\( \sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y \)
Answer
\( \sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y \)
Dividing both sides by \( (\tan x)(\tan {y}) \)
\( \therefore \frac{\sec ^{2} x \tan y d x}{\tan x \tan y}+\frac{\sec ^{2} y \tan x d y}{\tan x \tan y}=0 \)
\( \Rightarrow \frac{\sec ^{2} x d x}{\tan x}+\frac{\sec ^{2} y d y}{\tan y}=0 \)
Integrating both sides,
\( \Rightarrow \int \frac{\sec ^{2} x d x}{\tan x}=\int \frac{\sec ^{2} y d y}{\tan y} \)
\( \Rightarrow \) let \( \tan x={t} \ \& \ \tan {y}={u} \)
\( \therefore \sec ^{2} x d x=d t \ \& \ \sec ^{2} y d y=d u \)
\( \therefore \int \frac{d t}{t}=-\int \frac{d u}{u n} \)
\( \Rightarrow \log {t}=-\log {u}+\log {c} \)
Or,
\( \Rightarrow \log (\tan x)=-\log (\tan {y})+\log {c} \)
\( \Rightarrow \log \tan x=\log \frac{c}{\tan y} \)
Or
\(\Rightarrow(\tan x)(\tan {y})={c}\)
exercise 9.4 class 12 maths ncert solutions || ex 9.4 class 12 maths ncert solutions || differential equations class 12 ncert solutions || class 12 maths exercise 9.4 || chapter 9 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 9 exercise 9.4
Download the Math Ninja App Now
5. For each of the differential equations in question, find the general solution:
\(\left(e^{x}+e^{-x}\right) d y-\left(e^{x}-e^{-x}\right) d x=0\)
Answer
\(\Rightarrow\left({e}^{x}+{e}^{-x}\right) {dy}-\left({e}^{x}-{e}^{-x}\right) {dx}=0\)
\(\Rightarrow d y=\frac{\left(e^{x}-e^{-x}\right) d x}{e^{x}+e^{-x}}\)
Let \( \left(e^{x}+e^{-x}\right)={t} \)
Then, \( \left(e^{x}-e^{-x}\right) d x=d t \)
\(\therefore y=\int \frac{d t}{t}\)
\(\because \int \frac{d x}{x}=\log x\)
So,
\(\Rightarrow {y}=\log {t}\)
Or,
\(\Rightarrow y=\log \left(e^{x}-e^{-x}\right)+c\)
6. For each of the differential equations in question, find the general solution:
\(\frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right)\)
Answer
\(\Rightarrow \frac{d y}{d x}=\left(1+x^{2}\right)\left(1+y^{2}\right)\)
Separating variables,
\(\Rightarrow \frac{d y}{1+y^{2}}=d x\left(1+x^{2}\right)\)
Integrating both sides,
\(\Rightarrow \int \frac{d y}{1+y^{2}}=\int d x+\int x^{2} d x\)
\(\Rightarrow \tan ^{-1} y=x+\frac{x^{3}}{3}+c\)
7. For each of the differential equations in question, find the general solution:
\(y \log y d x-x d y=0\)
Answer
\(y \log y d x-x d y=0\)
\(\Rightarrow(y \log y) d x=x d y\)
Separating variables,
\(\Rightarrow \frac{d x}{x}=\frac{d y}{y \log y}\)
\(\Rightarrow \operatorname{let} \log {y}={t}\)
\(\Rightarrow \frac{1}{y} d y=d t\)
\(\Rightarrow \log x=\int \frac{d t}{t}\)
\(\Rightarrow \log x+\log {c}=\log {t}\)
\(\text {Or, }\)
\(\Rightarrow \log x+\log {c}=\log (\log {y})\)
\(\Rightarrow \log {cx}=\log {y}\)
\(\text { Or, }\)
\(\Rightarrow \log {y}={cx}\)
\(\Rightarrow y=e^{c x}\)
8. For each of the differential equations in question, find the general solution:
\(x^{5} \frac{d y}{d x}=-y^{5}\)
Answer
\(\Rightarrow x^{5} \frac{d y}{d x}=-y^{5}\)
Separating variables,
\(\Rightarrow \frac{d y}{y^{5}}=\frac{-d x}{x^{5}}\)
Or,
\(\Rightarrow \frac{d y}{y^{5}}=\frac{-d x}{x^{5}}=0\)
Let "\( a \)" be a constant,
\(\Rightarrow \int y^{-5} d y+\int x^{-5} d x=a\)
\(\Rightarrow-4 y^{-4}-4 x y^{-4}+c=a\)
Or,
\(\Rightarrow-x^{-4}-y^{-4}=c\)
Or,
\(\Rightarrow \frac{1}{x^{4}}+\frac{1}{x^{4}}=c\)
9. For each of the differential equations in question, find the general solution:
\(\frac{d y}{d x}=\sin ^{-1} x\)
Answer
\(\Rightarrow \frac{d y}{d x}=\sin ^{-1} x\)
Separating variables,
\(\Rightarrow d y=\sin ^{-1} x d x\)
Integrating both sides,
\(\Rightarrow \int d y=\int \sin ^{-1} x d x\)
Now to integrate \( \sin ^{-1} x \) we have to multiply it by 1 because,
\(\because\left\{\int u . v d x=u \int v d x-\int\left(\frac{d}{d x} u\right)\left(\int v d x\right) d x\right\} \quad \ldots\ldots\text{(i)}\)
So,
\(\Rightarrow y=\int 1 \cdot \sin ^{-1} x d x\)
According to (i)
Let \(u\) be \( \sin ^{-1} x \) and \(v\) be \(1\)
We can take the values of \(u\) and \(v\) from the formula (I.L.A.T.E)
\(\therefore {y}=\left\{\sin ^{-1} x \int 1 . {dx}-\int\left(\frac{{d}}{{dx}} \sin ^{-1} x\right)\left(\int 1 . {dx}\right) {dx}\right\}\)
So,
\(\Rightarrow y=x \sin ^{-1} x-\int \frac{x}{\sqrt{1-x^{2}}} d x\)
\(\Rightarrow \text {let } 1-x^{2}={t}\)
\(\Rightarrow-2 x {dx}={dt}\)
\(\Rightarrow x {dx}=-\frac{d t}{2}\)
\(\Rightarrow y=x \sin ^{-1} x+\int \frac{1}{2 \sqrt{t}} d t\)
Or,
\(\Rightarrow y=x \sin ^{-1} x+\frac{1}{2} \int t^{-\frac{1}{2}} d t\)
\(\Rightarrow y=x \sin ^{-1} x+\frac{1}{2} \sqrt{t}+c\)
putting the value of \( t \),
\(\Rightarrow y=x^{-1} x+\sqrt{1+x^{2}}+c\)
10. For each of the differential equations in question, find the general solution:
\(e^{x} \tan y \ d x+1\left(1-e^{x}\right) \sec ^{2} y \ d y=0\)
Answer
\(e^{x} \tan y \ d x+1\left(1-e^{x}\right) \sec ^{2} y \ d y=0\)
\(\Rightarrow\left(1-e^{x}\right) \sec ^{2} y \ d y=-e^{x} \tan y \ d y=0\)
Separating the variables,
\(\Rightarrow \frac{\sec ^{2} y}{\tan y} d y=-\frac{e^{x}}{1-e^{x}} d x\)
Let \( \tan y=t \& 1-e^{x}=u \)
Then,
\(\left(\sec ^{2} y \ d y=d t\right) \&\left(e^{x} {dx}={du}\right)\)
Then,
\(\therefore \int \frac{d t}{t}=\int \frac{d u}{u}\)
Or,
\(\Rightarrow \log {t}=\log {u}+\log {c}\)
Substituting the values of \( t \) and \( u \) on above equation.
\(\Rightarrow \log (\tan y)=\log \left(1-e^{x}\right)+\log c\)
\(\Rightarrow \log \tan y=\log c\left(1-e^{x}\right)\)
Or,
\(\Rightarrow \tan y=c\left(1-e^{x}\right)\)
11. For each of the differential equations in question, find a particular solution satisfying the given condition:
\(\left(x^{3}+x^{2}+x+1\right) \frac{d y }{ d x}=2 x^{2}+x, y=1 \text { when } x=0\)
Answer
\(\Rightarrow\left(x^{3}+x^{2}+x+1\right) \frac{d y}{d x}=2 x^{2}+x\)
Separating variables,
\(\Rightarrow d y=\frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)} d x\)
Integrating both sides,
\(\Rightarrow \int d y=\int \frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)} d x\quad \ldots\ldots\text{(i)}\)
Integrating it partially,
\(\Rightarrow \frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+1}\)
\(\Rightarrow \frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)}=\frac{A x^{2}+A(B x+C)(x+1)}{(x+1)\left(x^{2}+1\right)}\)
\(\Rightarrow 2 x^{2}+x=A x^{2}+A+B x+C x+C\)
\(\Rightarrow 2 x^{2}+x=(A+B) x^{2}+(B+C) x+A+C\)
Now comparing the coefficients of
\(\Rightarrow A+B=2\)
\(\Rightarrow B+C=1\)
\(\Rightarrow A+C=0\)
Solving them we will get the values of \( {A}, {B}, {C} \)
\({A}=\frac{1}{2}, {~B}=\frac{3}{2}, {C}=-\frac{1}{2}\)
Putting the values of \( {A}, {B}, {C} \) in \(\quad \ldots\ldots\text{(i)}\)
\(\Rightarrow \frac{2 x^{2}+x}{(x+1)\left(x^{2}+1\right)}=\frac{1}{2} \frac{1}{(x+1)}+\frac{1}{2} \frac{3 x-1}{x^{2}+1} d x\)
So,
\(\Rightarrow \int d y=\frac{1}{2} \int \frac{1}{x+1} d x+\frac{1}{2} \int \frac{3 x-1}{x^{2}+1} d x\)
\(\Rightarrow y=\frac{1}{2} \log (x+1)+\frac{3}{2} \int \frac{x}{x^{2}+1} d x-\frac{1}{2} \int \frac{d x}{x^{2}+1}\)
\(\Rightarrow y=\frac{1}{2} \log (x+1)+\frac{3}{4} \int \frac{2 x}{x^{2}+1} d x-\frac{1}{2} \tan ^{-1} x\)
Let \( x^{2}+1=t \)
Then, \( 2 {xdx}={dt} \)
\(\therefore \frac{3}{4} \int \frac{2 x}{x^{2}+1} d x=\frac{3}{4} \int \frac{d t}{t}\)
So, \( {I}=\frac{3}{4} \log t \)
Or,
\({I}=\frac{3}{4} \log \left(x^{2}+1\right)\)
\(\Rightarrow y=\frac{1}{2} \log (x+1)+\frac{3}{4} \log \left(x^{2}+1\right)-\frac{1}{2} \tan ^{-1} x+c\)
Or,
\(\Rightarrow y=\frac{1}{4}\left[2 \log (x+1)+3 \log \left(x^{2}+1\right)-\frac{1}{2} \tan ^{-1} x+c\right]\)
\(\Rightarrow y=\frac{1}{4}\left[\log \left\{(x+1)^{2}\left(x^{2}+1\right)\right\}\right]-\frac{1}{2} \tan ^{-1} x+c\quad \ldots\ldots\text{(ii)}\)
Now, we are given that \( {y}=1 \) when \( x=0 \)
\(\therefore 1=\frac{1}{4}\left[\log \left\{(0+1)^{2}\left(0^{2}+1\right)\right\}\right]-\frac{1}{2} \tan ^{-1} 0+c\)
\({I}=\frac{1}{4} \times 0-\frac{1}{2} \times 0+c\)
So,
\({C}=1\)
Putting the value of \(c\) in (ii)
\(y=\frac{1}{4}\left[\log \left\{(x+1)^{2}\left(x^{2}+1\right)\right\}\right]-\frac{1}{2} \tan ^{-1} x+1\)
12. For each of the differential equations in question, find a particular solution satisfying the given condition:
\( x\left(x^{2}-1\right) \frac{ d y }{ d x }=1 ; y=0 \) when \( x=0 \)
Answer
\(x\left(x^{2}-1\right) \frac{d y}{d x}=1\)
Separating variables,
\(\Rightarrow d y=\frac{d x}{x\left(x^{2}+1\right)}\)
Or,
\(\Rightarrow d y=\frac{d x}{x(x+1)(x-1)}\)
Integrating both sides,
\(\Rightarrow \int d y=\int \frac{d x}{x(x+1)(x-1)}\quad \ldots\ldots\text{(i)}\)
Now let,
\(\Rightarrow \frac{1}{x(x+1)(x-1)}=\frac{A}{x}+\frac{B}{x+1}+\frac{C}{x-1}\quad \ldots\ldots\text{(ii)}\)
\(\Rightarrow \frac{1}{x(x+1)(x-1)}=\frac{A(x-1)(x+1)+B(x)(x-1)+C(x)(x+1)}{x(x+1)(x-1)}\)
Or,
\(\Rightarrow \frac{1}{x(x+1)(x-1)}=\frac{(A+B+C) x^{2}+(B-C) x-A}{x(x+1)(x-1)}\)
Now comparing the values of \( \mathrm{A}, \mathrm{B}, \mathrm{C} \)
\( A+B+C=0 \)
\( B-C=0 \)
\( \mathrm{A}=-1 \)
Solving these we will get that \( B=\frac{1}{2} \) and \( C=\frac{1}{2} \)
Now putting the values of \( A, B, C \) in \(\quad \ldots\ldots\text{(ii)}\)
\(\Rightarrow \frac{1}{x(x+1)(x-1)}=-\frac{1}{x}+\frac{1}{2}\left(\frac{1}{x+1}\right)+\frac{1}{2}\left(\frac{1}{x-1}\right)\)
Now integrating it,
\(\Rightarrow \int d y=-\int \frac{1}{x} d x+\frac{1}{2} \int\left(\frac{1}{x+1}\right) d x+\frac{1}{2} \int\left(\frac{1}{x-1}\right) d x\)
\(\Rightarrow y=-\log x+\frac{1}{2} \log (x+1)+\frac{1}{2} \log (x-1)+\log c\)
\(\Rightarrow y=\frac{1}{2} \log \left[\frac{c^{2}(x-1)(x+1)}{x^{2}}\right]\quad \ldots\ldots\text{(iii)}\)
Now we are given that \( y=0 \) when \( x=2 \)
\(0=\frac{1}{2} \log \left[\frac{c^{2}(2-1)(2+1)}{4}\right]\)
\(\Rightarrow \log \frac{3 c^{2}}{4}=0\)
Or,
\(\Rightarrow \frac{3 c^{2}}{4}=1\)
\(\Rightarrow 3 c^{2}=4\)
\(\Rightarrow c^{2}=\frac{ 4 }{ 3 }\)
Now putting the value of \( c^{2} \) in \(\quad \ldots\ldots\text{(iii)}\)
Then,
\(\Rightarrow y=\frac{1}{2} \log \left[\frac{4(x-1)(x+1)}{3 x^{2}}\right]\)
\(\Rightarrow y=\frac{1}{2} \log \left[\frac{4\left(x^{2}-1\right)}{3 x^{2}}\right]\)
13. For each of the differential equations in question, find a particular solution satisfying the given condition:
\( \cos \frac{ d y }{ d x }=a ; y=2 \) when \( x=0 \)
Answer
\(\Rightarrow \cos \frac{d y}{d x}=a\)
\(\Rightarrow \frac{d y}{d x}=\cos ^{-1} a\)
Separating variables,
\(\Rightarrow d y=\cos ^{-1} a d x\)
Integrating both sides,
\(\Rightarrow \int d y=\cos ^{-1} a \int d x\)
\(\Rightarrow y=x \cos ^{-1} a+c\quad \ldots\ldots\text{(i)}\)
Now \( y=2 \) when \( x=0 \)
\(\Rightarrow 2=0+\mathrm{c}\)
\(\Rightarrow c=2\)
Putting the value of \(\quad \ldots\ldots\text{(ii)}\)
\(\Rightarrow y=x \cos ^{-1} a+2\)
14. For each of the differential equations in question, find a particular solution satisfying the given condition:
\( \frac{ d y }{ d x }=y \tan x ; y=1 \) when \( x=0 \)
Answer
\(\frac{d y}{d x}=y \tan x\)
Separating variables,
\(\Rightarrow \frac{d y}{y}=\tan x d x\)
Integrating both sides,
\(\Rightarrow \int \frac{d y}{y}=\int \tan x d x\)
\(\Rightarrow \log {y}=-\log (\cos x)+\log {c}\)
Or,
\(\Rightarrow \log {y}=\log (\sec x)+\log {c}\)
\(\Rightarrow \log {y}=\log {c}(\sec x)\)
\(\Rightarrow {y}={c}(\sec x)-{i})\)
Now we are given that \( {y}=1 \) when \( x=0 \)
\(\Rightarrow 1={c}(\sec 0)\)
\(\Rightarrow 1={c} \times 1\)
\(\Rightarrow {c}=1\)
Putting the value of \( c \) in (i)
\(\Rightarrow y=\sec x\)
15. Find the equation of a curve passing through the point \(( 0 , 0 )\) and whose differential equation is \( y^{\prime}=e^{x} \sin x \)
Answer
To find the equation of a curve that passes through point \( (0,0) \) and has differential equation \( y^{\prime}=e^{x} \sin x \).
So, we need to find the general solution of the given differential equation and the put the given point in to find the value of constant.
So, \( \Rightarrow \frac{d y}{d x}={e}^{x} \sin x \).
Separating variables,
\(\Rightarrow d y={e}^{x} \sin {xdx}\)
Integrating both sides,
\(\Rightarrow \int d y=\int e^{x} \sin x d x\quad \ldots\ldots\text{(i)}\)
\( \left\{ \text{Using the formula, }\int u \cdot v d x=u \int v d x-\int\left\{\frac{d}{d x} u \int v d x\right\} d x\right\} \)
Now let \( I=\int e^{x} \sin x d x \)
\(\Rightarrow {I}=\sin x \int e^{x} d x-\int\left(\frac{d}{d x} \sin x \iint e^{x} d x\right) d x\)
\(\Rightarrow {I}=e^{x} \sin x-\int \cos x e^{x} d x\)
Now integrating \( \int e^{x} \cos x d x \) same way as integrating for \( \int e^{x} \sin x d x \)
\(\Rightarrow {I}=e^{x} \sin x d x-\left[\cos x \int e^{x} d x+\int \sin x e^{x} d x\right]\)
\( \Rightarrow {I}=e^{x} \sin x-e^{x} \cos x-{I} \quad \) (from i)
Or,
\(\Rightarrow 2 {I}=e^{x} \sin x-e^{x} \cos x\)
\(\Rightarrow 2 {I}=e^{x}(\sin x-\cos x)\)
\(\Rightarrow {I}=e^{x} \frac{(\sin x-\cos x)}{2}\)
Or,
\(\Rightarrow y=e^{x} \frac{(\sin x-\cos x)}{2}+c\quad \ldots\ldots\text{(ii)}\)
Now we are given that the curve passes through point \( (0,0) \)
\(\therefore 0=e^{0} \frac{(\sin 0-\cos 0)}{2}+c\)
\(\Rightarrow 0=\frac{1(0-1)}{2}+c\)
\(\Rightarrow c=\frac{1}{2}\)
Putting the value of C in (ii)
So,
\(\Rightarrow y=e^{x} \frac{(\sin x-\cos x)}{2}+\frac{1}{2}\)
\(\Rightarrow 2 y=e^{x}(\sin x-\cos x)+1\)
So the required equations become,
\(\Rightarrow 2 y-1=e^{x}(\sin x-\cos x)\)
16. For the differential equation \( x y \frac{d y}{d x}=(x+2)(y+2) \) find the solution curve passing through the point \( (1,-1) \).
Answer
For this question, we need to find the particular solution at point \( (1,-1) \) for the given differential equation.
Given differential equation is
\(\Rightarrow x y \frac{d y}{d x}=(x+2)(y+2)\)
Separating variables,
\(\Rightarrow \frac{y}{y+2} d y=\frac{(x+2) d x}{x}\)
Or,
\(\Rightarrow\left(1-\frac{2}{y+2}\right) d y=\left(1+\frac{2}{x}\right) d x\)
Integrating both sides,
\(\Rightarrow \int\left(1-\frac{2}{y+2}\right) d y=\int\left(1+\frac{2}{x}\right) d x\)
\(\Rightarrow \int d y-2 \int \frac{1}{y+2} d y=\int d x+2 \int \frac{1}{x} d x\)
\(\Rightarrow y-2 \log (y+2)=x+2 \log x+c\)
Now separating like terms on each side,
\(\Rightarrow y-x-c=2 \log x+2 \log (y+2)\)
\(\Rightarrow y-x-c=\log x^{2}+\log (y+2)^{2}\)
Or,
\(\Rightarrow y-x-c=\log \left\{x^{2}(y+2)^{2}\right\}\quad \ldots\ldots\text{(i)}\)
Now we are given that, the curve passes through \( (1,-1) \)
\( \therefore \) putting the values of \( x \& \mathrm{y} \), to find the value of \(c \).
\(\Rightarrow-1-1-c=\log \left\{1(-1+2)^{2}\right\}\)
\(\Rightarrow-2-c=\log (1)\)
\(\Rightarrow \mathrm{c}=-2+0\quad (\because \log (1)=0)\)
So \( \mathrm{c}=-2 \)
Putting the value of \(c\) in
\(y-x-c=\log \left\{x^{2}(y+2)^{2}\right\}\)
\(y-x-2=\log \left\{x^{2}(y+2)^{2}\right\}\)
17. Find the equation of a curve passing through the point \( ( 0,- 2)\) given that at any point \( ( x, y ) \) on the curve, the product of the slope of its tangent and \( y \) coordinate of the point is equal to the \( x \) coordinate of the point.
Answer
We know that slope of a tangent is \( =\frac{d y}{d x} \).
So we are given that the product of the slope of its tangent and \( y \) coordinate of the point is equal to the \(x\) coordinate of the point.
\(\therefore y \frac{d y}{d x}=x\)
Now separating variables,
\(\Rightarrow y d y=x d x\)
Integrating both sides,
\(\Rightarrow \int y d y=\int x d x\)
\(\Rightarrow \frac{y^{2}}{2}=\frac{x^{2}}{2}+c\)
\(\Rightarrow y^{2}-x^{2}=2 c\quad \ldots\ldots\text{(i)}\)
Now the curve passes through \( (0,-2) \).
\(\therefore 4-0=2 c\)
\(\Rightarrow \mathrm{c}=2\)
Putting the value of \(c\) in \(\quad \ldots\ldots\text{(i)}\)
\(\Rightarrow y^{2}-x^{2}=4\)
exercise 9.4 class 12 maths ncert solutions || ex 9.4 class 12 maths ncert solutions || differential equations class 12 ncert solutions || class 12 maths exercise 9.4 || chapter 9 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 9 exercise 9.4
Download the Math Ninja App Now
18. At any point \( ( x, y )\) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point \( (-4,-3) \). Find the equation of the curve given that it passes through \( (-2 , 1)\).
Answer
We know that \( (x, {y}) \) is the point of contact of curve and its tangent.
slope \((m_{1})\) for line joining \( (x, y) \) and \( (-4,-3) \) is \( \frac{y+3}{x+4}\quad \ldots\ldots\text{(i)} \)
Also we know that slope of tangent of a curve is \( \frac{d y}{d x} \).
\( \therefore \) slope \( \left({m}_{2}\right) \) of tangent \( =\frac{d y}{d x} \quad \ldots\ldots\text{(ii)}\)
Now, according to the question,
\(({m}_{2})=2({m}_{1})\)
\(\Rightarrow \frac{d y}{d x}=\frac{2(y+3)}{x+4}\)
Separating variables,
\(\Rightarrow \frac{d y}{y+3}=\frac{2 d x}{x+4}\)
Integrating both sides,
\(\Rightarrow \int \frac{d y}{y+3}=2 \int \frac{d x}{x+4}\)
\(\Rightarrow \log (y+3)=2 \log (x+4)+\log {c}\)
\(\Rightarrow \log ({y}+3)=2 \log (x+4)^{2}\)
\(\Rightarrow y+3=c(x+4)^{2}\quad \ldots\ldots\text{(iii)}\)
Now, this equation passes thorough the point \( (-2,1) \).
\(\Rightarrow 1+3=c(-2+4)^{2}\)
\(\Rightarrow 4=4 c\)
Substitute the value of \(c\) in (iii)
\(\Rightarrow y+3=(x+4)^{2}\)
19. The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after \( t \) seconds.
Answer
Let the rate of change of the volume of the balloon be \(k \). (\( k\) is a constant)
\(\therefore \frac{d y}{d t}=k\)
Or,
\(\frac{d}{d t}\left(\frac{4}{3} \pi r^{3}\right)=k\left\{\text {volume of sphere }=\frac{4}{3} \pi r^{3}\right\}\)
\(\Rightarrow \frac{4}{3} \pi 3 r^{2} \frac{d r}{d t}=k\)
\(\Rightarrow 4 \pi r^{2} d r=k d t\)
Integrating both sides,
\(\Rightarrow 4 \pi \int r^{2} d r=k \int d t\)
\(\Rightarrow \frac{4 \pi r^{3}}{3}=k t+c\quad \ldots\ldots\text{(i)}\)
Now, given that
At \( {t}=0, {r}=3 \) :
\(\Rightarrow 4 \pi \times 33=3({k} \times 0+{c})\)
\(\Rightarrow 108 \pi=3 {c}\)
\(\Rightarrow {c}=36 \pi\)
At \( {t}=3, {r}=6 \) :
\(\Rightarrow 4 \pi \times 6^{3}=3(k \times 3+c)\)
\(\Rightarrow {k}=84 \pi\)
Substituting the values of \( k \) and \(c\) in (i)
\(\Rightarrow 4 \pi r^{3}=3(84 \pi t+36 \pi)\)
\(\Rightarrow 4 \pi r^{3}=4 \pi(63 t+27)\)
\(\Rightarrow r^{3}=63 t+27\)
\(\Rightarrow r^{3}=\sqrt[3]{63 t+27}\)
So the radius of balloon after \( t \) seconds is \( \sqrt[3]{63 t+27} \)
20. In a bank, principal increases continuously at the rate of \( r \% \) per year. Find the value of \( r \) if Rs 100 double itself in 10 years (\(\log_{e}2 = \) 0.6931) .
Answer
let \(t\) be time
\(p\) be principal
\( r \) be rate of interest
according the information principal increases at the rate of \( {r} \% \) per year.
\(\therefore \frac{d p}{d t}=\left(\frac{r}{100}\right) p\)
Separating variables,
\(\Rightarrow \frac{d p}{p}=\left(\frac{r}{100}\right) d t\)
Integrating both sides,
\(\Rightarrow \int \frac{d p}{p}=\frac{r}{100} \int d t\)
\(\Rightarrow \log p=\frac{r t}{100}+k\)
\(\Rightarrow p=e^{\frac{r t}{100}+k}\quad \ldots\ldots\text{(i)}\)
Given that \( {t}=0, {p}=100 \).
\(\Rightarrow 100=e^{k}\quad \ldots\ldots\text{(ii)}\)
Now, if \( {t}=10 \), then \( {p}=2 \times 100=200 \)
So,
\(\Rightarrow 200=e^{\frac{r t}{10}+k}\)
\(\Rightarrow 200=e^{\frac{r t}{10}} \cdot e^{k}\)
\(\Rightarrow 200=e^{\frac{r t}{10}} \times 100 \text { from (ii) }\)
\(\Rightarrow e^{\frac{r}{10}}=2\)
\(\Rightarrow \frac{r}{10}=\log 2\)
\(\Rightarrow r=6.93\)
So \( r \) is \( 6.93 \% \).
21. In a bank, principal increases continuously at the rate of \(5\%\) per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years \( \left(\mathrm{e}^{0.5}=1.648\right) \).
Answer
Let \(p\) and \(t\) be principal and time respectively.
Given that principal increases continuously at rate of \( 5 \% \) per year.
\(\therefore \frac{d p}{d t}=\left(\frac{5}{100}\right) p\)
Separating variables,
\(\Rightarrow \frac{d p}{p}=\left(\frac{p}{100}\right)\)
Integrating both sides,
\(\Rightarrow \int \frac{d p}{p}=\frac{1}{20} \int d t\)
\(\Rightarrow \log p=e^{\frac{t}{20}+c}\quad \ldots\ldots\text{(i)}\)
When \( {t}=0, {p}=1000 \)
\(\Rightarrow 1000=e^{c}\)
At \( {t}=10 \)
\(\Rightarrow p=e^{\frac{t}{20}+c}\)
\(\Rightarrow p=e^{0.5} \times e^{c}\)
\(\Rightarrow p=1.648 \times 1000\left(e^{0.5}=1.648\right)\)
\(\Rightarrow p=1648\)
So after 10 years the total amount would be Rs. 1648
22. In a culture, the bacteria count is \( 1,00,000 \). The number is increased by \( 10 \% \) in 2 hours. In how many hours will the count reach \( 2,00,000 \), if the rate of growth of bacteria is proportional to the number present?
Answer
let \( y \) be the number of bacteria at any instant \( t \).
Given that the rate of growth of bacteria is proportional to the number present
\(\therefore \frac{d y}{d t} \propto y\)
\(\Rightarrow \frac{d y}{d t}=k y \ ({k} \text { is a constant})\)
Separating variables,
\(\Rightarrow \frac{d y}{d t}=k d t\)
Integrating both sides,
\(\Rightarrow \int \frac{d y}{y}=k \int d t\)
\(\Rightarrow \log {y}={kt}+{c}\quad \ldots\ldots\text{(i)}\)
Let \( y^{\prime} \) be the number of bacteria at \( {t}=0 \).
\(\Rightarrow \log {y}^{\prime}={c}\)
Substituting the value of \(c\) in (i)
\(\Rightarrow \log {y}={kt}+\log {y}^{\prime}\)
\(\Rightarrow \log {y}-\log {y}^{\prime}={kt}\)
\(\Rightarrow \log \frac{y}{y^{\prime}}=k t\quad \ldots\ldots\text{(ii)}\)
Also, given that number of bacteria increases by \( 10 \% \) in 2 hours.
\(\Rightarrow y=\frac{110}{100} y^{\prime}\)
\(\Rightarrow \frac{y}{y^{\prime}}=\frac{11}{10}\quad \ldots\ldots\text{(iii)}\)
Substituting this value in (ii)
\( \Rightarrow k \times 2=\log \frac{11}{10} \)
\( \Rightarrow k=\frac{1}{2} \log \frac{11}{10} \)
So, (ii) becomes
\( \Rightarrow \frac{1}{2} \log \frac{11}{10} \times t=\log \frac{y}{y^{\prime}} \)
\( \Rightarrow t=\frac{2 \log \frac{y}{y^{\prime}}}{\log \frac{11}{10}} \quad \ldots\ldots\text{(iv)}\)
Now, let the time when number of bacteria increase from 100000 to 200000 be \( t^{\prime} \).
\( \Rightarrow y=2 y^{\prime} \) at \( {t}={t}^{\prime} \)
So from (iv)
\( \Rightarrow t^{\prime}=\frac{2 \log \frac{y}{y^{\prime}}}{\log \frac{11}{10}}=\frac{2 \log 2}{\log \frac{11}{10}} \)
So bacteria increases from 100000 to 200000 in \( \frac{2 \log 2}{\log \frac{11}{10}} \) hours.
23. The general solution of the differential equation \( \frac{d y}{d x}= e^{x+y} \) is
A. \( {e}^{x}+{e}^{-{y}}=C \) B. \( {e}^{x}+{e}^{{y}}=C \) C. \( e^{-x}+e^{y}=C \) D. \( e^{-x}+e^{-y}=C \)
Answer
\(\Rightarrow \frac{d y}{d x}=e^{x+y}\)
\(\Rightarrow \frac{d y}{d x}=e^{x} \times e^{y}\)
separating variables
\(\Rightarrow e^{-y} d y=e^{x} d x\)
Integrating both sides
\(\Rightarrow \int e^{-y} d y=\int e^{x} d x\)
\(\Rightarrow-e^{-y}=e^{x}+c\)
\(\Rightarrow e^{x}+e^{-y}=-c\)
Or,
\(e^{x}+e^{-y}=-c \ ({c} \text { is a constant})\)
So the correct option is A.
exercise 9.4 class 12 maths ncert solutions || ex 9.4 class 12 maths ncert solutions || differential equations class 12 ncert solutions || class 12 maths exercise 9.4 || chapter 9 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 9 exercise 9.4
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top