Ex 9.5 Class 12 Maths Ncert Solutions

Ex 9.5 class 12 maths ncert solutions | class 12 maths exercise 9.5 | class 12 maths ncert solutions chapter 9 exercise 9.5 | exercise 9.5 class 12 maths ncert solutions | chapter 9 class 12 maths ncert solutions | differential equations class 12 ncert solutions

Understanding differential equations becomes easier with our detailed Class 12 Maths NCERT Solutions Chapter 9 Exercise 9.5. This part of the chapter focuses on solving linear differential equations with precision and clarity. Our simplified approach in the Exercise 9.5 Class 12 Maths NCERT Solutions helps students build a strong foundation in this topic. Whether you’re revising for exams or strengthening your conceptual base, these Class 12 Maths Exercise 9.5 solutions are perfect for you. With these step-by-step guides, mastering the methods in Ex 9.5 Class 12 Maths NCERT Solutions becomes simple. Explore the complete Differential Equations Class 12 NCERT Solutions to boost your confidence and score higher in maths.

ex 9.5 class 12 maths ncert solutions
class 12 maths ncert solutions chapter 9 exercise 9.5 || chapter 9 class 12 maths ncert solutions || class 12 maths exercise 9.5 || differential equations class 12 ncert solutions || exercise 9.5 class 12 maths ncert solutions || ex 9.5 class 12 maths ncert solutions
Download the Math Ninja App Now

EXERCISE 9.5

1. In each of the question, show that the given differential equation is homogeneous and solve each of them.
\(\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x\)
Answer
\(\frac{d y}{d x}=\frac{x^{2}+y^{2}}{x^{2}+x y}\)
Let \( {f}(x, {y})=\frac{x^{2}+y^{2}}{x^{2}+x y} \)
Here, putting \( x={kx} \) and \( {y}={ky} \)
\({F}({kx}, {ky})=\frac{(k x)^{2}+(k y)^{2}}{(k x)^{2}+k x \cdot k y}\)
\(=\frac{k^{2}}{k^{2}} \cdot \frac{x^{2}+y^{2}}{x^{2}+x y}\)
\(={k}^{0} \cdot {f}(x, {y})\)
Therefore, the given differential equation is homogeneous.
\(\left(x^{2}+{xy}\right) {dy}=\left(x^{2}+{y}^{2}\right) {dx}\)
\(\frac{d y}{d x}=\frac{x^{2}+y^{2}}{x^{2}+x y}\)
To solve it we make the substitution.
\(y=v x\)
Differentiating eq. with respect to \( x \), we get
\(\frac{d y}{d x}=v+x \frac{d v}{d x}\)
\(v+x \frac{d v}{d x}=\frac{x^{2}+(v x)^{2}}{x^{2}+x \cdot v x}\)
\(v+x \frac{d v}{d x}=\frac{x^{2}\left(1+v^{2}\right)}{x^{2}(1+v)}\)
\(v+x \frac{d v}{d x}=\frac{1+v^{2}}{1+v}\)
\(x \frac{d v}{d x}=\frac{1+v^{2}}{1+v}-v=\frac{1+v^{2}-v-v^{2}}{1+v}\)
\(x \frac{d v}{d x}=\frac{1-v}{1+v}\)
\(\frac{1+v}{1-v} d v=\frac{1}{x} d x\)
Integrating on both side,
\(\int \frac{1+{v}}{1-{v}} {dv}=\int \frac{1}{x} {dx}\)
\(\int\left(-1+\frac{2}{1-{v}}\right) {dv}=\int \frac{1}{x} {dx}\)
\(-{v}-2 \log |1-{v}|=\log |x|+\log C\)
\(-\frac{y}{x}-2 \log \left|1-\frac{y}{x}\right|=\log |x|+\log C\)
\(-\frac{y}{x}=2 \log \left|1-\frac{y}{x}\right|+\log |x|+\log C\)
\(-\frac{y}{x}=\log \frac{(x-y)^{2}}{x^{2}}+\log |x|+\log C\)
\(-\frac{y}{x}=\log \frac{(x-y)^{2}}{x^{2}} \cdot C x\)
\(-\frac{y}{x}=\log \frac{(x-y)^{2}}{x} C\)
\(\frac{C(x-y)^{2}}{x}=e^{-\frac{y }{ x}}\)
\(C(x-y)^{2}=x e^{-\frac{y }{ x}}\)
\((x-y)^{2}=k x e^{-\frac{y }{ x}}\)
The required solution of the differential equation.
2. In each of the question, show that the given differential equation is homogeneous and solve each of them.
\(y^{\prime}=\frac{x+y}{x}\)
Answer
\(y^{\prime}=\frac{x+y}{x}\)
\(\frac{d y}{d x}=\frac{x+y}{x}\)
Let \( {f}(x, {y})=\frac{x+y}{x} \)
Here, putting \( x={kx} \) and \( {y}={ky} \)
\({f}({kx}, {ky})=\frac{k x+k y}{k x}\)
\(=\frac{k}{k} \cdot \frac{x+y}{x}\)
\(={k}^{0} \cdot {f}(x, {y})\)
Therefore, the given differential equation is homogeneous.
\(y^{\prime}=\frac{x+y}{x}\)
\(\frac{d y}{d x}=\frac{x+y}{x}\)
To solve it we make the substitution.
\(y=v x\)
Differentiating eq. with respect to \( x \), we get
\(\frac{d y}{d x}={v}+x \frac{{dv}}{{dx}}\)
\({v}+x \frac{{dv}}{{dx}}=\frac{x+{vx}}{x}\)
\({v}+x \frac{{dv}}{{dx}}=1+{v}\)
\(x \frac{{dv}}{{dx}}=1\)
\({dv}=\frac{1}{x} {dx}\)
\(\int d v=\int \frac{1}{x} {dx}\)
\({v}=\log x+{C}\)
\(\frac{y}{x}=\log x+C\)
\({y}=x \log x+{Cx}
\)
The required solution of the differential equation.
class 12 maths ncert solutions chapter 9 exercise 9.5 || chapter 9 class 12 maths ncert solutions || class 12 maths exercise 9.5 || differential equations class 12 ncert solutions || exercise 9.5 class 12 maths ncert solutions || ex 9.5 class 12 maths ncert solutions
Download the Math Ninja App Now
3. In each of the question, show that the given differential equation is homogeneous and solve each of them.
\((x-y) d y-(x+y) d x=0\)
Answer
\((x-{y}) {dy}=(x+{y}) {dx}\)
\(\frac{d y}{d x}=\frac{x+y}{x-y}\)
Let \( {f}(x, {y})=\frac{x+y}{x-y} \)
Here, putting \( x={kx} \) and \( {y}={ky} \)
\({f}({kx}, {ky})=\frac{k x+k y}{k x-k y}\)
\({f}({kx}, {ky})=\frac{x+y}{x}\)
\(={k}^{0} . {f}(x, {y})\)
Therefore, the given differential equation is homogeneous.
\((x-y) d y-(x+y) d x=0\)
\(\frac{d y}{d x}=\frac{x+y}{x-y}\)
To make it we make the substitution.
\(y=v x\)
Differentiating eq. with respect to \(x \), we get
\(\frac{d y}{d x}={v}+x \frac{{dv}}{{dx}}\)
\({v}+x \frac{{dv}}{{dx}}=\frac{x+{vx}}{x-{vx}}\)
\({v}+x \frac{{dv}}{{dx}}=\frac{1+{v}}{1-{v}}\)
\(x \frac{{dv}}{{dx}}=\frac{1+{v}}{1-{v}}-{v}\)
\(x \frac{{dv}}{{dx}}=\frac{1+{v}-{v}+{v}^{2}}{1-{v}}\)
\(x \frac{{dv}}{{dx}}=\frac{1+{v}^{2}}{1-{v}}\)
\(\frac{1-{v}}{1+{v}^{2}} {dv}=\frac{1}{x} {dx}\)
Integrating both sides we get,
\(\int \frac{1-v}{1+v^{2}} d v=\int \frac{1}{x} d x\)
\(\int \frac{1}{1+v^{2}} d v-\int \frac{v}{1+v^{2}} d v=\int \frac{1}{x} d x\quad \ldots\ldots\text{(i)}\)
Let \( {I}_{1}=\int \frac{{v}}{1+{v}^{2}} {dv} \)
Put \( 1+{v}^{2}={t} \)
\(2 {vdv}={dt}\)
\({vdv}=\frac{1}{2} d t\)
\(\frac{1}{2} \int \frac{1}{t} d t\)
\(\frac{1}{2} \log t\)
\(\frac{1}{2} \log \left(1+v^{2}\right)\)
\(\therefore \tan ^{-1} {v}-\frac{1}{2} \log \left(1+{v}^{2}\right)=\log x+C \quad(\therefore \text {From }({i}))\)
\(\tan ^{-1} \frac{y}{x}=\log x+\frac{1}{2} \log \left(\frac{x^{2}+y^{2}}{x^{2}}\right)+C\)
\(\tan ^{-1} \frac{y}{x}=\frac{1}{2}\left(\log \left(\frac{x^{2}+y^{2}}{x^{2}} \times x^{2}\right)\right)+C\)
\(\tan ^{-1} \frac{y}{x}=\frac{1}{2}\left(\log x^{2}+y^{2}\right)+C\)
The required solution of the differential equation.
4. In each of the question, show that the given differential equation is homogeneous and solve each of them.
\(\left(x^{2}-y^{2}\right) d x+2 x y d y=0\)
Answer
\(2 {xy} {dy}=-\left(x^{2}-{y}^{2}\right) {dx}\)
\(\frac{d y}{d x}=-\frac{x^{2}-y^{2}}{2 x y}\)
Let \( {f}(x, {y})=-\frac{x^{2}-y^{2}}{2 x y} \)
Here, putting \( x={kx} \) and \( {y}={ky} \)
\({f}({kx}, {ky})=\frac{k^{2} x^{2}-k^{2} y^{2}}{2 k^{2} x y}\)
\({f}({kx}, {ky})=\frac{k^{2}}{k^{2}} \cdot \frac{x^{2}-y^{2}}{2 x y}\)
\(={k}^{0} \cdot {f}(x, {y})\)
Therefore, the given differential equation is homogeneous.
\(\left(x^{2}-y^{2}\right) d x+2 x y d y=0\)
\(2 x y d y=-\left(x^{2}-y^{2}\right) d x\)
\(\frac{d y}{d x}=-\frac{x^{2}-y^{2}}{2 x y}\)
To solve it we make the substitution.
\(y=v x\)
Differentiating eq. with respect to \( x \), we get
\(\frac{d y}{d x}=v+x \frac{d v}{d x}\)
\(v+x \frac{d v}{d x}=-\frac{x^{2}-v^{2} x^{2}}{2 x \cdot {vx}}\)
\({v}+x \frac{{dv}}{{dx}}=-\frac{x^{2}\left(1-{v}^{2}\right)}{2 {vx}^{2}}\)
\(x \frac{{dv}}{{dx}}=-\frac{1-{v}^{2}}{2 {v}}-{v}\)
\(x \frac{{dv}}{{dx}}=\frac{-1+{v}^{2}-2 {v}^{2}}{2 {v}}\)
\(x \frac{{dv}}{{dx}}=\frac{-1+{v}^{2}}{2 {v}}\)
\(-\frac{2 {v}}{1+{v}^{2}} {dv}=\frac{1}{x} {dx}\)
\(\frac{2 {v}}{1+{v}^{2}} {dv}=-\frac{1}{x} {dx}\)
Integrating both sides, we get
\( \int \frac{2 {v}}{1+{v}^{2}} {dv}=\int \frac{1}{x} {dx}\quad \ldots\ldots\text{(i)} \)
Let \( {I}_{1}=\int \frac{2 {v}}{1+{v}^{2}} {d} v \)
Put \( 1+{v}^{2}={t} \)
\(2 {vdv}={dt}\)
\({vdv}=\frac{1}{2} {dt}\)
\(\int \frac{1}{t} {dt}\)
\(\log ({t})\)
\(\therefore \log \left(1+{v}^{2}\right)=-\log x+\log C\quad\) (\(\therefore\) From (i) eq.)
\(\log \left(1+\left(\frac{y}{x}\right)^{2}\right)=-\log x+\log C\)
\(\log \left(\frac{x^{2}+y^{2}}{x^{2}}\right)=\log \frac{C}{x}\)
\(x^{2}+y^{2}=C x\)
The required solution of the differential equation.
5. In each of the question, show that the given differential equation is homogeneous and solve each of them.
\(x^{2} \frac{d y}{d x}=x^{2}-2 y^{2}+x y\)
Answer
\(\frac{d y}{d x}=\frac{x^{2}-2 y^{2}+x y}{x^{2}}\)
Let \( {f}(x, {y})=\frac{x^{2}-2 y^{2}+x y}{x^{2}} \)
Here, putting \( x={kx} \) and \( {y}={ky} \)
\({f}({kx}, {ky})=\frac{k^{2} x^{2}-2 k^{2} y^{2}+k x k y}{k^{2} x^{2}}\)
\({f}({kx}, {ky})=\frac{k^{2}}{k^{2}} \cdot \frac{x^{2}-2 y^{2}+x y}{x^{2}}\)
\(={k}^{0} \cdot {f}(x, {y})\)
Therefore, the given differential equation is homogeneous.
\(x^{2} \frac{d y}{d x}=x^{2}-2 y^{2}+x y\)
\(\frac{d y}{d x}=\frac{x^{2}-2 y^{2}+x y}{x^{2}}\)
To solve it we make the substitution.
\(y=v x\)
Differentiating eq. with respect to \( x \), we get
\(\frac{d y}{d x}={v}+x \frac{{dv}}{{dx}}\)
\({v}+x \frac{{dv}}{{dx}}=\frac{x^{2}-2 {v}^{2} x^{2}+x \cdot {vx}}{x^{2}}\)
\({v}+x \frac{{dv}}{{dx}}=\frac{1-2 {v}^{2}+{v}}{1}\)
\(x \frac{{dv}}{{dx}}=1-2 {v}^{2}+{v}\)
\(x \frac{{dv}}{{dx}}=1-2 {v}^{2}\)
\(x \frac{{dv}}{{dx}}=\frac{-1+{v}^{2}}{2 {v}}\)
\(\frac{1}{1-2 {v}^{2}} {dv}=\frac{1}{x} {dx}\)
Integrating both sides, we get
\(\int \frac{1}{1-2 v^{2}} d v=\int \frac{1}{x} d x\)
\(\int \frac{1}{1-(\sqrt{2} v)^{2}} d v=\int \frac{1}{x} d x\)
\(\int \frac{1}{1^{2}-(\sqrt{2} v)^{2}} d v=\int \frac{1}{x} d x\)
\(\frac{1}{\sqrt{2}} \cdot \frac{1}{2.1} \log \left|\frac{1+\sqrt{2} v}{1-\sqrt{2} v}\right|=\log |x|+C\)
\(\frac{1}{2 \sqrt{2}} \log \left|\frac{1+\sqrt{2} \frac{y}{x}}{1-\sqrt{2} \frac{y}{x}}\right|=\log |x|+C\)
\(\frac{1}{2 \sqrt{2}} \log \left|\frac{x+\sqrt{2} \frac{y}{x}}{x-\sqrt{2} \frac{y}{x}}\right|=\log |x|+C\)
The required solution of the differential equation.
6. In each of the question, show that the given differential equation is homogeneous and solve each of them.
\(x d y-y d x=\sqrt{x^{2}+y^{2}} d x\)
Answer
\(x d y=\left(\sqrt{x^{2}+y^{2}}+y\right) d x\)
\(\frac{d y}{d x}=\frac{\left(\sqrt{x^{2}+y^{2}}+y\right)}{x}\)
Let \( {f}(x, {y})=\frac{\left(\sqrt{x^{2}+y^{2}}+y\right)}{x} \)
Here, putting \( x={kx} \) and \( {y}={ky} \)
\({f}({kx}, {ky})=\frac{\sqrt{k^{2} x^{2}+k^{2} y^{2}}+k y}{k x}\)
\({f}({kx}, {ky})=\frac{k}{k} \cdot \frac{\sqrt{x^{2}+y^{2}}+y}{x}\)
\(={k}^{0} . {f}(x, {y})\)
Therefore, the given differential equation is homogeneous.
\(x d y-y d x=\sqrt{x^{2}+y^{2}} d x\)
\(x d y=\left(\sqrt{x^{2}+y^{2}}+y\right) d x\)
\(\frac{d y}{d x}=\frac{\left(\sqrt{x^{2}+y^{2}}+y\right)}{x}\)
To solve it we make the substitution.
\(y=v x\)
Differentiating eq. with respect to \( x \), we get
\(\frac{d y}{d x}=v+x \frac{d v}{d x}\)
\(v+x \frac{d v}{d x}=\frac{\sqrt{x^{2}+x^{2} v^{2}}+v x}{x}\)
\(v+x \frac{d v}{d x}=\frac{x \sqrt{1+v^{2}}+v x}{x}\)
\(v+x \frac{d v}{d x}=\sqrt{1+v^{2}}+v\)
\(x \frac{d v}{d x}=\sqrt{1+v^{2}}\)
\(x \frac{d v}{d x}=\frac{-1+v^{2}}{2 v}\)
\(\frac{1}{\sqrt{1+v^{2}}} d v=\frac{1}{x} d x\)
Integrating both sides, we get
\(\int \frac{1}{\sqrt{1+{v}^{2}}} {dv}=\int \frac{1}{x} {dx}\)
\(\log \left({v}+\sqrt{1+{v}^{2}}\right)=\log x+\log C \quad\left(\therefore \int \frac{1}{\sqrt{x^{2}+{a}^{2}}}=\log \left(x+\sqrt{x^{2}+{a}^{2}}\right)\right)\)
\(\log \left(\frac{y}{x}+\sqrt{1+\frac{y^{2}}{x^{2}}}\right)=\log C x\)
\(\frac{y}{x}+\sqrt{1+\frac{y^{2}}{x^{2}}}=C x\)
\(\frac{y}{x}+\sqrt{\frac{x^{2}+y^{2}}{x^{2}}}=C x\)
\(\frac{y}{x}+\sqrt{\frac{x^{2}+y^{2}}{x}}=C x\)
\(\frac{y}{x}+\sqrt{x^{2}+y^{2}}=C x^{2}\)
The required solution of the differential equation.
7. In each of the question, show that the given differential equation is homogeneous and solve each of them.
\(\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y d x=\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x d y\)
Answer
\(\frac{d y}{d x}=\frac{\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y}{\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x}\)
Let \( {f}(x, {y})=\frac{\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y}{\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x} \)
Here, putting \( x={kx} \) and \( {y}={ky} \)
\({f}({kx}, {ky})=\frac{\left\{k x \cos \left(\frac{k y}{k x}\right)+k y \sin \left(\frac{k y}{k x}\right)\right\} k y}{\left\{k y \sin \left(\frac{k y}{k x}\right)-k x \cos \left(\frac{k y}{k x}\right)\right\} k x}\)
\({f}({kx}, {ky})=\frac{k^{2}}{k^{2}} \cdot \frac{\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y}{\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x}\)
\(={k}^{0} \cdot {f}(x, {y})\)
Therefore, the given differential equation is homogeneous.
\(x d y-y d x=\sqrt{x^{2}+y^{2}} d x\)
\(x d y=\left(\sqrt{x^{2}+y^{2}}+y\right) d x\)
\(\frac{d y}{d x}=\frac{\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y}{\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x}\)
To solve it we make the substitution.
\(y=v x\)
Differentiating eq. with respect to \( x \), we get
\(\frac{d y}{d x}={v}+x \frac{{dv}}{{dx}}\)
\({v}+x \frac{{dv}}{{dx}}=\frac{d y}{d x}=\frac{\{x \cos ({v})+y \sin ({v})\} v x}{\{{vx} \sin ({v})-x \cos ({v})\} x}\)
\({v}+x \frac{{dv}}{{dx}}=\frac{\{\cos ({v})+y \sin ({v})\} {v}}{\{{v} \sin ({v})-\cos ({v})\}}\)
\(x \frac{{dv}}{{dx}}=\frac{\{\cos ({v})+y \sin ({v})\} {v}}{\{{v} \sin ({v})-\cos ({v})\}}-{v}\)
\(x \frac{{dv}}{{dx}}=\frac{{v} \cos ({v})+{v}^{2} \sin ({v})-{v}^{2} \sin ({v})+{v} \cos ({v})}{{v} \sin ({v})-\cos ({v})}\)
\(x \frac{{dv}}{{dx}}=\frac{2 {v} \cos ({v})}{{v} \sin ({v})-\cos ({v})}\)
\(\frac{{v} \sin ({v})-\cos ({v})}{2 {v} \cos ({v})} {dv}=\frac{1}{x} {dx}\)
\(\frac{{v} \sin ({v})}{2 {v} \cos ({v})} {dv}-\frac{-\cos ({v})}{2 {v} \cos ({v})} {dv}=\frac{1}{x} {dx}\)
\(\frac{1}{2} \tan {v} {dv}-\frac{1}{2} \cdot \frac{1}{{v}} {dv}=\frac{1}{x} d x\)
Integrating both sides, we get
\(\frac{1}{2} \int \tan {vdv}-\frac{1}{2} \cdot \int \frac{1}{{v}} {dv}=\int \frac{1}{x} d x\)
\(\frac{1}{2} \log \sec {v}-\frac{1}{2} \log {v}=\log x+\log {k}\)
\(\log \sec {v}-\log {v}=2 \log {kx}\)
\(\log \sec \left(\frac{y}{x}\right)-\log \left(\frac{y}{x}\right)=2 \log k x\)
\(\log \left(\frac{x}{y} \sec \left(\frac{y}{x}\right)\right)-\log (k x)^{2}\)
\(\frac{x}{y} \sec \left(\frac{y}{x}\right)=k^{2} x^{2}\)
\(\frac{1}{x y \cos \left(\frac{y}{x}\right)}=k^{2}\)
\(x y \cos \left(\frac{y}{x}\right)=\frac{1}{k^{2}}\)
\(C=\frac{1}{k^{2}}\)
\(x y \cos \left(\frac{y}{x}\right)=C\)
The required solution of the differential equation.
8. In each of the question, show that the given differential equation is homogeneous and solve each of them.
\(x \frac{d y}{d x}-y+x \sin \left(\frac{y}{x}\right)=0\)
Answer
\(x \frac{d y}{d x}=y-x \sin \left(\frac{y}{x}\right)\)
\(\frac{d y}{d x}=\frac{y-x \sin \left(\frac{y}{x}\right)}{x}\)
Let \( {f}(x, {y})=\frac{y-x \sin \left(\frac{y}{x}\right)}{x} \)
Here, putting \( x={kx} \) and \( {y}={ky} \)
\({f}({kx}, {ky})=\frac{k y-k x \sin \left(\frac{k y}{k x}\right)}{k x}\)
\({f}({kx}, {ky})=\frac{k^{2}}{k^{2}} \cdot \frac{y-x \sin \left(\frac{y}{x}\right)}{x}\)
\(={k}^{0} . {f}(x, {y})\)
Therefore, the given differential equation is homogeneous.
\(x \frac{d y}{d x}=y-x \sin \left(\frac{y}{x}\right)\)
\(\frac{d y}{d x}=\frac{y-x \sin \left(\frac{y}{x}\right)}{x}\)
To solve it we make the substitution.
\(y=v x\)
Differentiating eq. with respect to \( x \), we get
\(\frac{d y}{d x}={v}+x \frac{{dv}}{{dx}}\)
\({v}+x \frac{{dv}}{{dx}}=\frac{{vx}-x \sin \left(\frac{{vx}}{x}\right)}{x}\)
\({v}+x \frac{{dv}}{{dx}}={v}-\sin {v}\)
\(x \frac{{dv}}{{dx}}=-\sin {v}\)
\(x \frac{{dv}}{{dx}}=-\frac{1}{x} {dx}\)
\(\operatorname{cosec} {dv}=-\frac{1}{x} {dx}\)
Integrating both side, we get
\(\int \operatorname{cosec} d v=-\int \frac{1}{x} d x\)
\(\log (\operatorname{cosec} v-\cot v)=-\log x+\log C\)
\(\log \left(\operatorname{cosec} \frac{y}{x}-\cot \frac{y}{x}\right)=\log \frac{c}{x}\)
\(\operatorname{cosec} \frac{y}{x}-\cot \frac{y}{x}=\frac{C}{x}\)
\(\frac{1}{\sin \frac{y}{x}}-\frac{\cos \frac{y}{x}}{\sin \frac{y}{x}}=\frac{C}{x}\)
\(1-\cos \frac{y}{x}=\frac{c}{x} \cdot \sin \frac{y}{x}\)
\(x\left(1-\cos \frac{y}{x}\right)=C \sin \frac{y}{x}\)
The required solution of the differential equation.
9. In each of the question, show that the given differential equation is homogeneous and solve each of them.
\(y d x+x \log \left(\frac{y}{x}\right) d y-2 x d y=0\)
Answer
\(y d x+x \log \left(\frac{y}{x}\right) d y-2 x d y=0\)
\(x \log \left(\frac{y}{x}\right) d y-2 x d y=-y d x\)
\(\left(x \log \left(\frac{y}{x}\right) d y-2 x\right) d y=-y d x\)
\(\frac{d y}{d x}=\frac{-y}{x \log \left(\frac{y}{x}\right) d y-2 x}\)
\(\frac{d y}{d x}=\frac{-y}{2 x-x \log \left(\frac{y}{x}\right)}\)
Let \( {f}(x, {y})=\frac{y-x \sin \left(\frac{y}{x}\right)}{x} \)
Here, putting \( x={kx} \) and \( {y}={ky} \)
\({f}({kx}, {ky})=\frac{k y}{2 k x-k x \log \left(\frac{k y}{k x}\right)}\)
\({f}({kx}, {ky})=\frac{k^{2}}{k^{2}} \cdot \frac{y}{2 x-x \log \left(\frac{y}{x}\right)}\)
\(={k}^{0} \cdot {f}(x, {y})\)
Therefore, the given differential equation is homogeneous.
\(y d x+x \log \left(\frac{y}{x}\right) d y-2 x d y=0\)
\(x \log \left(\frac{y}{x}\right) d y-2 x d y=-y d x\)
\(\left(x \log \left(\frac{y}{x}\right) d y-2 x\right) d y=-y d x\)
\(\frac{d y}{d x}=\frac{-y}{x \log \left(\frac{y}{x}\right) d y-2 x}\)
\(\frac{d y}{d x}=\frac{-y}{2 x-x \log \left(\frac{y}{x}\right)}\)
To solve it we make the substitution.
\(y=v x\)
Differentiating eq. with respect to \( x \), we get
\(\frac{d y}{d x}={v}+x \frac{{dv}}{{dx}}\)
\({v}+x \frac{{dv}}{{dx}}=\frac{{vx}}{2 x-x \log \left(\frac{y}{x}\right)}\)
\({v}+x \frac{{dv}}{{dx}}=\frac{{v}}{2-\log {v}}\)
\(x \frac{{dv}}{{dx}}=\frac{{v}}{2-\log {v}}-{v}\)
\(x \frac{{dv}}{{dx}}=\frac{{v}-2 {v}+{v} \log {v}}{2-\log {v}}\)
\(x \frac{{dv}}{{dx}}=\frac{-{v}+{v} \log {v}}{2-\log {v}}\)
\(\frac{2-\log v}{v(\log v-1)} d v=\frac{1}{x} d x\)
\(\frac{1-(\log v-1)}{v(\log v-1)} d v=\frac{1}{x} d x\)
\(\frac{1}{v(\log v-1)} d v-\frac{1}{v} d v=\frac{1}{x} d x\)
Integrating both sides, we get
\(\int \frac{1}{v(\log v-1)} d v-\int \frac{1}{v} d v=\int \frac{1}{x} d x\quad \ldots\ldots\text{(i)}\)
Let \( {I}_{1}=\int \frac{1}{{v}(\log {v}-1)} {dv} \)
Put, \( \log {v}-1={t} \)
\(\frac{1}{{v}} {dv}={dt}\)
\(\int \frac{1}{t} {dt}\)
\(\log {t}\)
\(\log (\log {v}-1)\)
\(\therefore \log (\log {v}-1)-\log ({v})=\log (x)+\log ({c})\quad(\text {From (i) eq.})\)
\(\log \left(\frac{\log {v}-1}{{v}}\right)=\log (C x)\)
\(\frac{\log {v}-1}{{v}}=C x\)
\(\frac{\log \left(\frac{{y}}{x}\right)-1}{\frac{{y}}{x}}=C x\)
\(\log \left(\frac{{y}}{x}\right)-1=C y\)
The required solution of the differential equation.
10. In each of the question, show that the given differential equation is homogeneous and solve each of them.
\(\left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0\)
Answer
\(\left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0\)
\(\left(1+e^{\frac{x}{y}}\right) d x=-e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y\)
\(\frac{d y}{d x}=\frac{-e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)}{\left(1+e^{\frac{x}{y}}\right)}\)
Let \( {f}(x, {y})=\frac{-e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)}{\left(1+e^{\frac{x}{y}}\right)} \)
Here, putting \( x={kx} \) and \( {y}={ky} \)
\({f}({kx}, {ky})=\frac{-e^{\frac{k x}{k y}}\left(1-\frac{k x}{k y}\right)}{\left(1+e^{\frac{k x}{k y}}\right)}\)
\(=\frac{-e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)}{\left(1+e^{\frac{x}{y}}\right)}\)
\(={k}^{0} . {f}(x, {y})\)
Therefore, the given differential equation is homogeneous.
\(\left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0\)
\(\left(1+e^{\frac{x}{y}}\right) d x=-e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y\)
\(\frac{d x}{d y}=\frac{-e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)}{\left(1+e^{\frac{x}{y}}\right)}\)
To solve it we make the substitution.
\(y=v x\)
Differentiating eq. with respect to \(x \), we get
\(\frac{d x}{d y}={v}+{y} \frac{{dv}}{{dy}}\)
\({v}+x \frac{{dv}}{{dy}}=\frac{-e^{\frac{-{vy}}{y}}\left(1-\frac{{vy}}{y}\right)}{\left(1+e^{\frac{{vy}}{y}}\right)}\)
\(x \frac{{dv}}{{dy}}=\frac{-e^{{v}}(1-{v})}{1+e^{{v}}}\)
\(\frac{-e^{{v}}(1-{v})}{1+e^{{v}}} {dv}=\frac{1}{y} {dy}\)
Integrating both sides, we get
\(\int \frac{-e^{{v}}(1-{v})}{1+e^{{v}}} {dv}=\int \frac{1}{y} {dy}\quad \ldots\ldots\text{(i)}\)
Let \( {I}_{1}=\int \frac{-e^{{v}}(1-{v})}{1+e^{{v}}} {dv} \)
Put \( e^{v}+v=t \)
\(\left(e^{v}+1\right) d v=d t\)
\(e^{v}+1=\frac{d t}{d v}\)
\(d v=\frac{d t}{e^{v}+1}\)
\(\int \frac{1}{t} {dt}\)
\(\log {t}\)
\(\log \left({e}^{{v}}+{v}\right)\)
\(\therefore \log \left({e}^{{v}}+{v}\right)=-\log {y}+\log {C}\quad(\therefore \text {From (i) eq.})\)
\(\log \left({e}^{\frac{x }{ {y}}}+\frac{x}{y}\right)=-\log {y}+\log {C}\)
\(\log \left({e}^{\frac{x }{ {y}}}+\frac{x}{y}\right)=\log \frac{C}{y}\)
\({e}^{\frac{x }{ {y}}}+\frac{x}{y}=\frac{C}{y}\)
Multiply by \(y\) on both side, we get
\(y e^{\frac{x }{ y}}+x=C\)
\(x+y e^{\frac{x }{ y}}=C\)
The required solution of the differential equation.
class 12 maths ncert solutions chapter 9 exercise 9.5 || chapter 9 class 12 maths ncert solutions || class 12 maths exercise 9.5 || differential equations class 12 ncert solutions || exercise 9.5 class 12 maths ncert solutions || ex 9.5 class 12 maths ncert solutions
Download the Math Ninja App Now
11. For each of the differential equations in question, find the particular solution satisfying the given condition:
\((x+y) d y+(x-y) d x=0 ; y=1 \text { when } x=1\)
Answer
\((x+y) d y+(x-y) d x=0\)
\(\frac{d y}{d x}=-\frac{(x-y)}{(x+y)}\)
Let \( {f}(x, {y})=-\frac{(x-y)}{(x+y)} \)
Here, putting \( x={kx} \) and \( {y}={ky} \)
\({f}({kx}, {ky})=-\frac{(k x-k y)}{(k x+k y)}\)
\({f}({kx}, {ky})=\frac{k}{k} \cdot-\frac{(x-y)}{(x+y)}\)
\(={k}^{0} \cdot {f}(x, {y})\)
Therefore, the given differential equation is homogeneous.
\((x+y) d y+(x-y) d x=0\)
\(\frac{d y}{d x}=-\frac{(x-y)}{(x+y)}\)
To solve it we make the substitution.
\(y=v x\)
Differentiating eq. with respect to \( x \), we get
\(\frac{d y}{d x}=v+x \frac{d v}{d x}\)
\(v+x \frac{d v}{d x}=-\frac{(x-v x)}{(x+v x)}\)
\(v+x \frac{d v}{d x}=-\frac{(1-v)}{(1+v)}\)
\(x \frac{d v}{d x}=-\frac{(1-v)}{(1+v)}-v\)
\(x \frac{d v}{d x}=\frac{-1+v-v-v^{2}}{(1+v)}\)
\(x \frac{d v}{d x}=\frac{-\left(1+v^{2}\right)}{(1+v)}\)
\(\frac{1+v}{1+v^{2}} d v=-\frac{1}{x} d x\)
Integrating both sides, we get
\( \int \frac{1+v}{1+v^{2}} d v=-\int \frac{1}{x} d x \)
\( \int \frac{1+v}{1+{v}^{2}} {dv}+\int \frac{{v}}{1+{v}^{2}} {dv}=-\int \frac{1}{x} {dx} \)
\(\tan ^{-1} {v}+\frac{1}{2} \log \left(1+{v}^{2}\right)=-\log x+C\)
\(\tan ^{-1} \frac{{y}}{x}+\frac{1}{2} \log \left(1+\left(\frac{{y}}{x}\right)^{2}\right)=-\log x+C\)
\({y}=1 \text { when } x=1\)
\(\tan ^{-1} \frac{1}{1}+\frac{1}{2} \log \left(1+\left(\frac{1}{1}\right)^{2}\right)=-\log 1+C\)
\(\frac{\pi}{4}+\frac{1}{2} \log 2=0+C\)
\({C}=\frac{\pi}{4}+\frac{1}{2} \log 2\)
\(\therefore \tan ^{-1} \frac{{y}}{x}+\frac{1}{2} \log \left(1+\left(\frac{{y}}{x}\right)^{2}\right)=-\log x+C\)
Where, \( C=\frac{\pi}{4}+\frac{1}{2} \log 2 \)
\(\therefore \tan ^{-1} \frac{{y}}{x}+\frac{1}{2} \log \left(1+\left(\frac{{y}}{x}\right)^{2}\right)\)
\(=-\log x+\frac{\pi}{4}+\frac{1}{2} \log 2\)
\(2 \tan ^{-1} \frac{{y}}{x}+\log \left(\frac{x^{2}+y^{2}}{x^{2}}\right)\)
\(=-2 \log x+\frac{\pi}{2}+\log 2\)
\(2 \tan ^{-1} \frac{{y}}{x}+\log \left(\frac{x^{2}+y^{2}}{x^{2}}\right)+\log x^{2}+\frac{\pi}{2}+\log 2\)
\(2 \tan ^{-1} \frac{{y}}{x}+\log \left(x^{2}+y^{2}\right)=\frac{\pi}{2}+\log 2\)
The required solution of the differential equation.
12. For each of the differential equations in question, find the particular solution satisfying the given condition:
\( x^{2} d y+\left(x y+y^{2}\right) d x=0 ; y=1 \) when \( x=1 \)
Answer
\(x^{2} d y+\left(x y+y^{2}\right) d x=0\)
\(\frac{d y}{d x}=-\frac{\left(x y+y^{2}\right)}{x^{2}}\)
Let \( {f}(x, {y})=-\frac{\left(x y+y^{2}\right)}{x^{2}} \)
Here, putting \( x={kx} \) and \( {y}={ky} \)
\({f}({kx}, {ky})=-\frac{\left(k x k y+k^{2} y^{2}\right)}{k^{2} x^{2}}\)
\({f}({kx}, {ky})=\frac{k^{2}}{k^{2}} \cdot-\frac{\left(x y+y^{2}\right)}{x^{2}}\)
\(={k}^{0} . {f}(x, {y})\)
Therefore, the given differential equation is homogeneous.
\(x^{2} d y+\left(x y+y^{2}\right) d x=0\)
\(\frac{d y}{d x}=-\frac{\left(x y+y^{2}\right)}{x^{2}}\)
To solve it we make the substitution.
\(y=v x\)
Differentiating eq. with respect to \( x \), we get
\(\frac{d y}{d x}={v}+x \frac{{dv}}{{dx}}\)
\({v}+x \frac{{dv}}{{dx}}=-\frac{\left(x . {vx}+{v}^{2} x^{2}\right)}{x^{2}}\)
\({v}+x \frac{{dv}}{{dx}}=-{v}-{v}^{2}\)
\({v}+x \frac{{dv}}{{dx}}=-{v}-{v}^{2}-{v}\)
\(x \frac{d v}{d x}=-v(v+2)\)
\(\frac{1}{v(v+2)} d v=-\frac{1}{x} d x\)
Integrating both sides, we get
\(\int \frac{1}{v(v+2)} d v=-\int \frac{1}{x} d x\)
\(\frac{1}{2} \int \frac{2}{v(v+2)} d v=-\int \frac{1}{x} d x\)
\(\frac{1}{2} \int \frac{2+v-v}{v(v+2)} d v=-\int \frac{1}{x} d x\)
\(\frac{1}{2} \int \frac{2}{v(v+2)} d v=-\int \frac{1}{x} d x\)
\(\frac{1}{2} \int\left(\frac{2}{v(v+2)}-\frac{v}{v(v+2)}\right) d v=-\int \frac{1}{x} d x\)
\(\frac{1}{2} \int\left(\frac{1}{v}-\frac{1}{v+2}\right) d v=-\int \frac{1}{x} d x\)
\(\frac{1}{2}(\log -\log ({v}+2))=-\log x+\log C\)
\(\frac{1}{2}\left(\log \frac{{v}}{{v}+2}\right)=\log \frac{C}{x}\)
\(\log \left(\frac{\frac{{y}}{x}}{\frac{{y}}{x}+2}\right)=2 \log \frac{C}{x}\)
\(\log \left(\frac{y}{y+2 x}\right)=2 \log \left(\frac{C}{x}\right)^{2}\)
\(\frac{y}{{y}+2 x}=\left(\frac{C}{x}\right)^{2}\)
\(\frac{x^{2} y}{y+2 x}={C}^{2}\)
\(y=1 \text { where } x=1\)
\({C}^{2}=\frac{1}{1+2}=\frac{1}{3}\)
\(\therefore \frac{x^{2} y}{y+2 x}=\frac{1}{3}\)
\(3 x^{2} y=y+2 x\)
\(y+2 x=3 x^{2} y\)
The required solution of the differential equation.
13. For each of the differential equations in question, find the particular solution satisfying the given condition:
\(\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right] d x+x d y=0 ; y=\frac{\pi}{4} \text { when } x=1\)
Answer
\({\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right] d x=-x d y}\)
\({\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right]=-x \frac{d y}{d x}}\)
\(\frac{d y}{d x}=-\left[\frac{x \sin ^{2}\left(\frac{y}{x}\right)-y}{x}\right]\)
\({f}({x}, {y})=-\left[\frac{x \sin ^{2}\left(\frac{y}{x}\right)-y}{x}\right]\)
Here, putting \( {x}={kx} \) and \( {y}={ky} \)
\( {f}({kx}, {ky})=-\left[\frac{k x \sin ^{2}\left(\frac{k y}{k x}\right)-k y}{k x}\right]\)
\({f}({kx}, {ky})=\frac{k}{k} \cdot-\left[\frac{x \sin ^{2}\left(\frac{y}{x}\right)-y}{x}\right]\)
\(={k}^{0} \cdot {f}({x}, {y})\)
Therefore, the given differential equation is homogeneous.
\( {\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right] d x=-x d y}\)
\({\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right]=-x \frac{d y}{d x}}\)
\(\frac{d y}{d x}=-\left[\frac{x \sin ^{2}\left(\frac{y}{x}\right)-y}{x}\right]\)
To solve it we make the substitution.
\(y=v x\)
Differentiating eq. with respect to \( x \), we get
\( \frac{d y}{d x}={v}+{x} \frac{{dv}}{{dx}}\)
\({v}+{x} \frac{{dv}}{{dx}}=-\frac{\left[x \sin ^{2}\left(\frac{{vx}}{{x}}\right)-{vx}\right]}{x}\)
\({v}+{x} \frac{{dv}}{{dx}}=-\left[\frac{x \sin ^{2} {v}-{vx}}{x}\right]\)
\({v}+{x} \frac{{dv}}{{dx}}=-\sin ^{2} {v}-{v}\)
\({x} \frac{{dv}}{{dx}}=\left[\sin ^{2} {v}-{v}\right]-{v}\)
\({x} \frac{{dv}}{{dx}}=\sin ^{2} {v}+{v}-{v}\)
\({x} \frac{{dv}}{{dx}}=-\sin ^{2} {v}\)
\(\frac{1}{\sin ^{2} v} {dv}=-\frac{1}{x} {dx}\)
Integrating both sides, we get
\( \int \frac{1}{\sin ^{2} v} {dv}=-\int \frac{1}{x} {dx}\)
\(\int \operatorname{cosec}^{2} {vdv}=-\log {x}-\log {C}\)
\(-\cot {v}=-\log {x}-\log {C}\)
\( \cot {v}=\log {x}+\log {C}\)
\(\cot \frac{y}{x}=\log (C x)\)
\(y=\frac{\pi}{4} \text { when } {x}=1\)
\(\cot \frac{\frac{\pi}{4}}{x}=\log (C \cdot 1)\)
\(\cot \frac{\pi}{4}=\log {C}\)
\(1={C}\)
\({e}^{1}={C}\)
\(\therefore \cot \frac{y}{x}=\log (e x)\)
The required solution of the differential equation.
14. For each of the differential equations in question, find the particular solution satisfying the given condition:
\( \frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec}\left(\frac{y}{x}\right)=0 ; {y}=0 \) when \( x=1 \)
Answer
\(\frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec}\left(\frac{y}{x}\right)=0\)
\(\frac{d y}{d x}=\frac{y}{x}-\operatorname{cosec}\left(\frac{y}{x}\right)\)
Let \( {f}(x, {y})=\frac{y}{x}-\operatorname{cosec}\left(\frac{y}{x}\right) \)
Here, putting \( x={kx} \) and \( {y}={ky} \)
\({f}({kx}, {ky})=\frac{k y}{k x}-\operatorname{cosec}\left(\frac{k y}{k x}\right)\)
\(=\frac{y}{x}-\operatorname{cosec}\left(\frac{y}{x}\right)\)
\(={k}^{0} . {f}(x, {y})\)
Therefore, the given differential equation is homogeneous.
\(\frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec}\left(\frac{y}{x}\right)=0\)
\(\frac{d y}{d x}=\frac{y}{x}-\operatorname{cosec}\left(\frac{y}{x}\right)\)
To solve it we make the substitution.
\(y=v x\)
Differentiating eq. with respect to \( x \), we get
\(\frac{d y}{d x}=v+x \frac{d v}{d x}\)
\(v+x \frac{d v}{d x}=\frac{v x}{x}+\operatorname{cosec}\left(\frac{v x}{x}\right)\)
\(v+x \frac{d v}{d x}=v+\operatorname{cosec} v\)
\(x \frac{{dv}}{{dx}}=-\operatorname{cosec} {v}\)
\(\frac{1}{\operatorname{cosec} {v}} {dv}=-\frac{1}{x} {dx}\)
Integrating both sides, we get
\(\int \sin {v} d v=-\frac{1}{x} {dx}\)
\(-\cos {v}=-\log x+{C}\)
\(-\cos \frac{y}{x}=-\log x+{C}\)
\({y}=0 \text { when } x=1\)
\(-\cos \frac{0}{1}=-\log 1+C\)
\(-1=C\)
\(\therefore-\cos \frac{y}{x}=-\log x+1\)
\(\cos \frac{y}{x}=-\log x+\log {e}\)
The required solution of the differential equation.
15. For each of the differential equations in question, find the particular solution satisfying the given condition:
\(2 x y+y^{2}-2 x^{2} \frac{d y}{d x}=0 ; {y}=2 \text { when } x=1\)
Answer
\(2 x y+y^{2}-2 x^{2} \frac{d y}{d x}=0\)
\(\frac{d y}{d x}=\frac{2 x y+y^{2}}{2 x^{2}}\)
Let \( {f}(x, {y})=\frac{2 x y+y^{2}}{2 x^{2}} \)
Here, putting \( x={kx} \) and \( {y}={ky} \)
\({f}({kx}, {ky})=\frac{2 k x k y+(k y)^{2}}{2(k x)^{2}}\)
\(=\frac{k^{2}}{k^{2}} \cdot \frac{2 x y+y^{2}}{2 x^{2}}\)
\(={k}^{0} \cdot {f}(x, {y})\)
Therefore, the given differential equation is homogeneous.
\(2 x y+y^{2}-2 x^{2} \frac{d y}{d x}=0\)
\(\frac{d y}{d x}=\frac{2 x y+y^{2}}{2 x^{2}}\)
To solve it we make the substitution.
\(y=v x\)
Differentiating eq. with respect to \( x \), we get
\(\frac{d y}{d x}={v}+x \frac{{dv}}{{dx}}\)
\({v}+x \frac{{dv}}{{dx}}=\frac{2 x \cdot {vx}+({vx})^{2}}{2 x^{2}}\)
\({v}+x \frac{{dv}}{{dx}}=\frac{2 {v}+{v}^{2}}{2}\)
\({v}+x \frac{{dv}}{{dx}}={v}+\frac{1}{2} {v}^{2}\)
\(x \frac{{dv}}{{dx}}=\frac{1}{2} {v}^{2}\)
\(2 \frac{1}{{v}^{2}} {dv}=\frac{1}{x} {dx}\)
Integrating both sides, we get
\(\int 2 \frac{1}{{v}^{2}} {dv}=\int \frac{1}{x} {dx}\)
\(-\frac{2}{{v}}=\log x+C\)
\(-\frac{2}{\frac{y}{x}}=\log x+C\)
\(-\frac{2 x}{y}=\log x+C\)
\({y}=2 \text { when } x=1\)
\(-\frac{2.1}{2}=\log 1+C\)
\(-1={C}\)
\(\therefore-\frac{2 x}{y}=\log x-1\)
\(\frac{2 x}{y}=1-\log x\)
\(y=\frac{2 x}{1-\log |x|} ; x \neq e, x \neq 0\)
16. A homogeneous differential equation of the from \( \frac{d x}{d y}= \) \( h\left(\frac{x}{y}\right) \) can be solved by making the substitution.
A. \( y=v x \) B. \( v=y x \) C. \( x=v y \) D. \( x=v \)
Answer
Since \( \frac{d x}{d y} \) is given equal to \( h\left(\frac{x}{y}\right) \)
\( h\left(\frac{x}{y}\right) \) is a function of \( \frac{x}{y} \).
Therefore, we shall substitute, \( x=v y \)

17.

A. A homogeneous differential equation of the from \( \frac{d x}{d y}= \) \( h\left(\frac{x}{y}\right) \) can be solved by making the substitution.
\( (4 x+6 y+5) d y-(3 y+2 x+4) d x=0 \)
Answer
\( (4 x+6 y+5) d y-(3 y+2 x+4) d x=0 \)
It cannot be homogeneous as we can see that \( (4 x+6 y+5) \) is not homogeneous.
class 12 maths ncert solutions chapter 9 exercise 9.5 || chapter 9 class 12 maths ncert solutions || class 12 maths exercise 9.5 || differential equations class 12 ncert solutions || exercise 9.5 class 12 maths ncert solutions || ex 9.5 class 12 maths ncert solutions
Download the Math Ninja App Now
B. A homogeneous differential equation of the from \( \frac{d x}{d y}= \) \( h\left(\frac{x}{y}\right) \) can be solved by making the substitution.
\( (x y) d x-\left(x^{3}+y^{3}\right) d y=0 \)
Answer
\( (x y) d x-\left(x^{3}+y^{3}\right) d y=0 \)
It cannot be homogeneous as the \(xy\) which multiplies with \(dx \) and \( x^{3}+ {y}^{3} \) which multiplies with \(dy\) are not of same degree.
C. A homogeneous differential equation of the from \( \frac{d x}{d y}= \) \( h\left(\frac{x}{y}\right) \) can be solved by making the substitution.
\( \left(x^{3}+2 y^{2}\right) d x+2 x y d y=0 \)
Answer
\( \left(x^{3}+2 y^{2}\right) d x+2 x y d y=0 \)
Similarly, it cannot be homogeneous as the \( x^{3}+2 y^{2} \) which multiplies with \(dx\) and \(2 xy \) which multiplies with \(dy\) are not of same degree.
D. A homogeneous differential equation of the from \( \frac{d x}{d y}= \) \( h\left(\frac{x}{y}\right) \) can be solved by making the substitution.
\( y^{2} d x+\left(x^{2}-x y-y^{2}\right) d y=0 \)
Answer
\( y^{2} d x+\left(x^{2}-x y-y^{2}\right) d y=0 \)
\(\frac{d y}{d x}=-\frac{x^{2}-x y-y^{2}}{y^{2}}\)
Let \( {f}(x, {y})=-\frac{x^{2}-x y-y^{2}}{y^{2}} \)
Here, putting \( x={kx} \) and \( {y}={ky} \)
\({f}({kx}, {ky})=-\frac{(k x)^{2}-k x k y-(k y)^{2}}{(k y)^{2}}\)
\(=\frac{k^{2}}{k^{2}} \cdot-\frac{x^{2}-x y-y^{2}}{y^{2}}\)
\(={k}^{0} \cdot {f}(x, {y})\)
Therefore, the given differential equations are homogeneous.
class 12 maths ncert solutions chapter 9 exercise 9.5 || chapter 9 class 12 maths ncert solutions || class 12 maths exercise 9.5 || differential equations class 12 ncert solutions || exercise 9.5 class 12 maths ncert solutions || ex 9.5 class 12 maths ncert solutions
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top