Ex 9.6 class 12 maths ncert solutions | class 12 maths exercise 9.6 | class 12 maths ncert solutions chapter 9 exercise 9.6 | exercise 9.6 class 12 maths ncert solutions | chapter 9 class 12 maths ncert solutions | differential equations class 12 ncert solutions
Mastering the concept of linear differential equations is now easy with our Class 12 Maths NCERT Solutions Chapter 9 Exercise 9.6. This exercise includes problems based on the standard form of linear differential equations and their solutions using integrating factors. Our step-by-step Exercise 9.6 Class 12 Maths NCERT Solutions are designed to help students grasp each method clearly. With detailed explanations and solved examples, these Class 12 Maths Exercise 9.6 solutions are ideal for exam preparation. Get complete support with our trusted Ex 9.6 Class 12 Maths NCERT Solutions, a key part of the overall Chapter 9 Class 12 Maths NCERT Solutions. Strengthen your understanding with the full set of Differential Equations Class 12 NCERT Solutions available here.

chapter 9 class 12 maths ncert solutions || exercise 9.6 class 12 maths ncert solutions || class 12 maths exercise 9.6 || ex 9.6 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 9 exercise 9.6 || differential equations class 12 ncert solutions
EXERCISE 9.6
\(\frac{d y}{d x}+2 y=\sin x\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( p=2 \) and \( Q=\sin x \))
Now, I.F. \( ={e}^{\int {pdx}}={e}^{\int 2 {dx}}={e}^{2 x} \)
Thus, the solution of the given differential equation is given by the relation:
\({y}(\text {I. F.})=\int({Q} \times \text {I. F.}) {dx}+{C}\)
\(\Rightarrow y e^{2 x}=\int \sin x . e^{2 x} d x+C\quad \ldots\ldots\text{(1)}\)
Let \( {I}=\int \sin x \cdot e^{2 x} d x \)
\(\Rightarrow {I}=\sin x \cdot \int e^{2 x} d x-\int\left(\frac{d}{d x}(\sin x) \cdot {e}^{\int {d} {d}}\right) d x\)
\(=\sin x \cdot \frac{e^{2 x}}{2}-\int\left(\cos x \cdot \frac{e^{2 x}}{2}\right) d x\)
\(\left.=\frac{e^{2 x} \sin x}{2}-\frac{1}{2}\left[\cos \int e^{2 x}-\int\left(\frac{d}{d x}(\cos x) \cdot \iint e^{2 x} d x\right)\right)\right]\)
\(=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{2}-\frac{1}{4} \int\left(\sin x \cdot e^{2 x}\right) d x\)
\(\Rightarrow \frac{e^{2 x}}{2}(2 \sin x-\cos x)-\frac{1}{4} {I}\)
\(\Rightarrow \frac{5}{4} {I}=\frac{e^{2 x}}{4}(2 \sin x-\cos x)\)
\(\Rightarrow {I}=\frac{e^{2 x}}{5}(2 \sin x-\cos x)\)
Now, putting the value of I in (1), we get,
\(\Rightarrow y e^{2 x}=\frac{e^{2 x}}{5}(2 \sin x-\cos x)+C\)
\(\Rightarrow y=\frac{1}{5}(2 \sin x-\cos x)+C e^{-2 x}\)
Therefore, the required general solution of the given differential equation is
\(y=\frac{1}{5}(2 \sin x-\cos x)+C e^{-2 x}\)
\(\frac{d y}{d x}+3 y=e^{-2 x}\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=3 \) and \( {Q}=e^{-2 x} \))
Now, I.F. \( =e^{\int p d x}=e^{\int 3 d x}=e^{3 x} \)
Thus, the solution of the given differential equation is given by the relation:
\(y(\text {I.F.})=\int(Q \times \text {I. F.}) d x+C\)
\(\Rightarrow y^{3 x}=\int\left(e^{-2 x} \times e^{2 x}\right) d x+C\)
\(\Rightarrow y^{3 x}=e^{x}+C\)
\(\Rightarrow y={e}^{-2 x}+{Ce}^{-3 x}\)
Therefore, the required general solution of the given differential equation is \( y=e^{-2 x}+C^{-3 x} \)
\(\frac{d y}{d x}+\frac{y}{x}=x^{2}\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\frac{1}{x} \) and \( {Q}=x^{2} \))
Now, I.F. \( =\int(Q \times \) I.F.\( ) {dx}+{C} \)
\(\Rightarrow y(x)=\int\left(x^{2} \cdot x\right) d x+C\)
\(\Rightarrow x y=\int\left(x^{3}\right) d x+C\)
\(\Rightarrow x y=\frac{x^{4}}{4}+C\)
Therefore, the required general solution of the given differential equation is \( x y=\frac{x^{4}}{4}+C \).
\(\frac{d y}{d x}+(\sec x) y=\tan x\left(0 \leq x < \frac{\pi}{2}\right)\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\sec x \) and \( \left.{Q}=\tan x\right) \)
Now, I.F. \( =\int(Q \times \) I.F.\( ) d x+C \)
\(\Rightarrow {y}(\sec x+\tan x)=\int \tan x(\sec x+\tan x) {dx}+{C}\)
\(\Rightarrow {y}(\sec x+\tan x)=\int \sec x \tan x d x+\int \tan ^{2} x d x+{C}\)
\(\Rightarrow {y}(\sec x+\tan x)=\sec x+\int\left(\sec ^{2} x-1\right) d x+C\)
\(\Rightarrow {y}(\sec x+\tan x)=\sec x+\tan x-x+{C}\)
Therefore, the required general solution of the given differential equation is
\(y(\sec x+\tan x)=\sec x+\tan x-x+C\)
\(\cos ^{2} x \frac{d y}{d x}+y=\tan x\left(0 \leq x < \frac{\pi}{2}\right)\)
\(\Rightarrow \frac{d y}{d x}+\sec ^{2} x \cdot y=\sec ^{2} x \tan x\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\sec ^{2} x \) and \(Q =\sec ^{2} x \tan x\))
Now, I.F. \( =e^{\int p d x}=e^{\int \sec ^{2} x d x}=e^{\tan x} \)
Thus, the solution of the given differential equation is given by the relation:
\(y(\text {I.F.})=\int(Q \times \text { I.F.}) d x+C\)
\(\Rightarrow y \cdot e^{\tan x}=\int e^{\tan x} d x+C\quad \ldots\ldots\text{(1)}\)
Now, Let \( {t}=\tan x \)
\(\Rightarrow \frac{d}{d x}(\tan x)=\frac{d t}{d x}\)
\(\Rightarrow \sec ^{2} x=\frac{d t}{d x}\)
\(\Rightarrow \sec ^{2} {xdx}={dt}\)
Thus, the equation (1) becomes,
\(\Rightarrow y \cdot e^{\tan x}=\int\left(e^{t} \cdot t\right) d t+C\)
\(\Rightarrow y \cdot e^{\tan x}=\int\left(t \cdot e^{t}\right) d t+C\)
\(\Rightarrow y \cdot e^{\tan x}=t \int e^{t} d t-\int\left(\frac{d}{d t}(t) \cdot \int e^{t} d t\right)+C\)
\(\Rightarrow y \cdot e^{\tan x}=t \cdot e^{t}-\int e^{t} d t+C\)
\(\Rightarrow {t} {e}^{\tan x}=({t}-1) {e}^{{t}}+{C}\)
\(\Rightarrow {t} {e}^{\tan x}=(\tan x-1) {e}^{\tan x}+{C}\)
\(\Rightarrow {y}=(\tan x-1)+{C} {e}^{\tan x}\)
Therefore, the required general solution of the given differential equation is
\(y=(\tan x-1)+C e^{-\tan x} .\)
chapter 9 class 12 maths ncert solutions || exercise 9.6 class 12 maths ncert solutions || class 12 maths exercise 9.6 || ex 9.6 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 9 exercise 9.6 || differential equations class 12 ncert solutions
\(x \frac{d y}{d x}+2 y=x^{2} \log x\)
\(\Rightarrow \frac{d y}{d x}+\frac{2}{x} y=x^{2} \log x\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\frac{2}{x} \) and \(Q =x \log x \))
Now, I.F. \( =e^{\int p d x}=e^{\int \frac{2}{x} d x}=e^{2(\log x)}=e^{\log x^{2}}=x^{2} \)
Thus, the solution of the given differential equation is given by the relation:
\(\text {y(I.F.})=\int({Q} \times {I} . {F} .) {dx}+{C}\)
\(\Rightarrow y \cdot x^{2}=\int\left(x \log x \cdot x^{2}\right) d x+C\)
\(\Rightarrow x^{2} y=\int\left(x^{3} \log x\right) d x+C\)
\(\Rightarrow x^{2} y=\log x \cdot \int x^{3} d x-\int\left[\frac{d}{d x}(\log x) \cdot \int x^{3} d x\right] d x+C\)
\(\Rightarrow x^{2} y=\log x \cdot \frac{x^{4}}{4}-\int\left(\frac{1}{x} \cdot \frac{x^{4}}{4}\right) d x+C\)
\(\Rightarrow x^{2} y=\frac{x^{4} \log x}{4}-\frac{1}{x} \cdot \frac{x^{4}}{4}+C\)
\(\Rightarrow x^{2} y=\frac{1}{16} x^{4}-(4 \log x-1)+C\)
\(\Rightarrow y=\frac{1}{16} x^{2}-(4 \log x-1)+C x^{-2}\)
Therefore, the required general solution of the given differential equation
\(y=\frac{1}{16} x^{2}-(4 \log x-1)+C x^{-2}\)
\(x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x\)
\(\Rightarrow \frac{d y}{d x}+\frac{y}{x \log x}=\frac{2}{x^{2}}\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\frac{1}{x \log x} \) and \(Q =\frac{2}{x^{2}} \))
Now, I.F. \( =e^{\int p d x}=e^{\int \frac{1}{x \log x} d x}=e^{\log (\log x)}=\log x \)
Thus, the solution of the given differential equation is given by the relation:
\(y(\text {I.F.})=\int({Q} \times \text {I. F.}) {d} x+{C}\)
\(\Rightarrow y \cdot \log x=\int\left[\frac{2}{x^{2}} \cdot \log x\right] d x+C\quad \ldots\ldots\text{(1)}\)
Now, \( \int\left[\frac{2}{x^{2}} \cdot \log x\right] d x=2 \int\left(\log \frac{1}{x^{2}}\right) d x \)
\(=2\left[\log x \cdot \int \frac{1}{x^{2}} d x-\int\left\{\frac{d}{d x}(\log x) \cdot \int \frac{1}{x^{2}} d x\right\} d x\right]\)
\(=2\left[\log x\left(-\frac{1}{x}\right)-\int\left(\frac{1}{x} \cdot\left(-\frac{1}{x}\right)\right)\right]\)
\(=2\left[-\frac{\log x}{x}+\int \frac{1}{x^{2}} d x\right]\)
\(=-\frac{2}{x}(1+\log x)\)
Now, substituting the value in (1), we get,
\(\Rightarrow y \cdot \log x=-\frac{2}{x}(1+\log x)+C\)
Therefore, the required general solution of the given differential equation is
\(y \cdot \log x=-\frac{2}{x}(1+\log x)+C\)
\(\left(1+x^{2}\right) d y+2 x y d x=\cot x d x(x \neq 0)\)
\(\Rightarrow \frac{d y}{d x}+\frac{2 x y}{\left(1+x^{2}\right)}=\frac{\cot x}{1+x^{2}}\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\frac{2 x y}{\left(1+x^{2}\right)} \) and \(Q =\frac{\cot x}{1+x^{2}}\))
Now, I.F. \( =e^{\int p d x}=e^{\int \frac{2 x y}{\left(1+x^{2}\right)} d x}=e^{\log \left(1+x^{2}\right)}=1+x^{2} \)
Thus, the solution of the given differential equation is given by the relation:
\(y(\text {I.F.})=\int(Q \times \text { I.F.}) {dx}+{C}\)
\(\Rightarrow {y} \cdot\left(1+x^{2}\right)=\int\left[\frac{\cot x}{1+x^{2}} \cdot\left(1+x^{2}\right)\right] {dx}+{C}\)
\(\Rightarrow {y} \cdot\left(1+x^{2}\right)=\int \cot x {dx}+{C}\)
\(\Rightarrow {y}\left(1+x^{2}\right)=\log |\sin x|+{C}\)
Therefore, the required general solution of the given differential equation is
\(y\left(1+x^{2}\right)=\log |\sin x|+C\)
\(x \frac{d y}{d x}+y-x+x y \cot x=0(x \neq 0)\)
\(\Rightarrow x \frac{d y}{d x}+y(1+x \cot x)=x\)
\(\Rightarrow x \frac{d y}{d x}+\left(\frac{1}{x}+\cot x\right) y=1\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\frac{1}{x} \) and \( {Q}=1 \))
\(\text{Now, I.F. } =e^{\int p d x}=e^{\int\left(\frac{1}{x}+\cot x\right) d y}=e^{\log x+\log (\sin x)}=e^{\log (x \sin x)}=x \sin x \)
Thus, the solution of the given differential equation is given by the relation:
\(\text { y(I.F.})=\int({Q} \times \text {I. F.}) {dx}+{C}\)
\(\Rightarrow {y} \cdot(x \sin x)=\int[1 \times x \sin x] {dx}+{C}\)
\(\Rightarrow {y} \cdot(x \sin x)=\int[x \sin x] {dx}+{C}\)
\(\Rightarrow {y}(x \sin x)=x \int \sin x d x-\int\left[\frac{d}{d x}(x) \cdot \int \sin x d x\right]+C\)
\(\Rightarrow {y}(x \sin x)=x(-\cos x)-\int 1 \cdot(-\cos x) d x+C\)
\(\Rightarrow {y}(x \sin x)=-x \cos x+\sin x+{C}\)
\(\Rightarrow y=\frac{-x \cos x}{x \sin x}+\frac{\sin x}{x \sin x}+\frac{C}{x \sin x}\)
\(\Rightarrow y=\cot x+\frac{1}{x}+\frac{C}{x \sin x}\)
Therefore, the required general solution of the given differential equation is
\(y=\cot x+\frac{1}{x}+\frac{C}{x \sin x}\)
chapter 9 class 12 maths ncert solutions || exercise 9.6 class 12 maths ncert solutions || class 12 maths exercise 9.6 || ex 9.6 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 9 exercise 9.6 || differential equations class 12 ncert solutions
\((x+y) \frac{d y}{d x}=1\)
\(\Rightarrow \frac{d y}{d x}=\frac{1}{x+y}\)
\(\Rightarrow \frac{d x}{d y}=x+y\)
\(\Rightarrow \frac{d x}{d y}-x=y\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=-1 \) and \( {Q}=y \))
Now, I.F. \( =e^{\int p d y}=e^{\int-d y}=e^{-y} \)
Thus, the solution of the given differential equation is given by the relation:
\(x(\text {I.F.})=\int({Q} \times \text {I. F.}) {dy}+{C}\)
\(\Rightarrow x e^{-y}=\int\left[y . e^{-y}\right] {dy}+{C}\)
\(\Rightarrow x e^{-y}=y \int e^{-d y}-\int\left[\frac{d}{d x}(y) \cdot \int e^{-y} d y\right]+C\)
\(\Rightarrow x e^{-y}=y\left(-e^{-y}\right)-\int\left(-e^{-y}\right) d y+C\)
\(\Rightarrow x e^{-y}=-y e^{-y}-\int e^{-y} d y+C\)
\(\Rightarrow x e^{-y}=-y e^{-y}-e^{-y}+C\)
\(\Rightarrow x=-{y}-1+{Ce}^{{y}}\)
\(\Rightarrow x+{y}+1={Ce}^{{y}}\)
Therefore, the required general solution of the given differential equation is
\(x+{y}+1={Ce}^{{y}}\).
\(y d x+\left(x-y^{2}\right) d y=0\)
\(\Rightarrow y d x=\left(y^{2}-x\right) d y\)
\(\Rightarrow \frac{d x}{d y}=\frac{\left(y^{2}-x\right)}{y}=y-\frac{x}{y}\)
\(\Rightarrow \frac{d x}{d y}+\frac{x}{y}=y\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\frac{1}{y} \) and \( {Q}=y \))
Now, I.F. \( =e^{\int p d y}=e^{\int \frac{d y}{y}}=e^{\log y}=y \)
Thus, the solution of the given differential equation is given by the relation:
\(x( \text{I.F.})=\int({Q} \times \text{I.F.}) {dy}+{C}\)
\(\Rightarrow x \cdot y=\int[y \cdot y] {dy}+{C}\)
\(\Rightarrow x \cdot y=\int y^{2} {dy}+{C}\)
\(\Rightarrow x \cdot y=\frac{y^{3}}{3}+C\)
\(\Rightarrow x y=\frac{y^{3}}{3}+\frac{c}{y}\)
Therefore, the required general solution of the given differential equation is \( x y=\frac{y^{3}}{3}+\frac{C}{y} \)
\(\left(x+3 y^{2}\right) \frac{d y}{d x}=y(y > 0)\)
\(\Rightarrow \frac{d y}{d x}=\frac{y}{x+3 y^{2}}\)
\(\Rightarrow \frac{d x}{d y}=\frac{x+3 y^{2}}{y}=\frac{x}{y}+3 y\)
\(\Rightarrow \frac{d x}{d y}-\frac{x}{y}=3 y\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=-\frac{1}{y} \) and \( {Q}=3 y \))
Now, I.F. \( =e^{\int p d y}=e^{\int \frac{d y}{y}}=e^{-\log y}=e^{\log \left(\frac{1}{y}\right)}=\frac{1}{y} \)
Thus, the solution of the given differential equation is given by the relation:
\(x( \text{I.F.})=\int({Q} \times \text{I.F.}) {dy}+{C}\)
\(\Rightarrow x \cdot \frac{1}{y}=\int\left[3 y \cdot \frac{1}{y}\right] {dy}+{C}\)
\(\Rightarrow \frac{x}{y}=3 y+C\)
\(\Rightarrow x=3 y^{2}+C y\)
Therefore, the required general solution of the given differential equation is \( x=3 y^{2}+C y \).
\(\frac{d y}{d x}+2 y \tan x=\sin x ; y=0 \text { when } x=\frac{\pi}{3}\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=2 \tan x \) and \( Q =\sin x) \)
Now, I.F. \( =e^{\int p d x}=e^{\int 2 \tan x d x}=e^{2 \log (\sec x)}=e^{\log \left(\sec ^{2} x\right)}=\sec ^{2} x \)
Thus, the solution of the given differential equation is given by the relation:
\(y(\text {I.F.})=\int(Q \times \text { I.F.}) d x+C\)
\(\Rightarrow y .\left(\sec ^{2} x\right)=\int\left[\sin x \cdot \sec ^{2} x\right] d x+C\)
\(\Rightarrow y .\left(\sec ^{2} x\right)=\int[\sec x \cdot \tan x] d x+C\)
\(\Rightarrow y \cdot\left(\sec ^{2} x\right)=\sec x+C\quad \ldots\ldots\text{(1)}\)
Now, it is given that \( {y}=0 \) at \( x=\frac{\pi}{3} \)
\(0 \times \sec ^{2} \frac{\pi}{3}=\sec \frac{\pi}{3}+C\)
\(\Rightarrow 0=2+C\)
\(\Rightarrow C=-2\)
Now, Substituting the value of \( {C}=-2 \) in (1), we get,
\(\Rightarrow y \cdot\left(\sec ^{2} x\right)=\sec x-2\)
\(\Rightarrow {y}=\cos x-2 \cos ^{2} x\)
Therefore, the required general solution of the given differential equation is
\(y=\cos x-2 \cos ^{2} x\)
\(\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\frac{1}{1+x^{2}} ; y=0 \text { when } x=1\)
\(\Rightarrow \frac{d y}{d x}+\frac{2 x y}{\left(1+x^{2}\right)}=\frac{1}{\left(1+x^{2}\right)^{2}}\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\frac{2 x}{\left(1+x^{2}\right)} \) and \( {Q}= \frac{1}{\left(1+x^{2}\right)^{2}}\))
Now, I.F. \( =e^{\int p d x}=e^{\int \frac{2 x}{\left(1+x^{2}\right)} d x}=e^{\log \left(1+x^{2}\right)}=1+x^{2} \)
Thus, the solution of the given differential equation is given by the relation:
\(y(\text {I.F.})=\int(Q \times \text {I. F.}) d x+C\)
\(\Rightarrow y \cdot\left(1+x^{2}\right)=\int\left[\frac{1}{\left(1+x^{2}\right)^{2}} \cdot\left(1+x^{2}\right)\right] d x+C\)
\(\Rightarrow y \cdot\left(1+x^{2}\right)=\int \frac{1}{\left(1+x^{2}\right)} d x+C\)
\(\Rightarrow y \cdot\left(1+x^{2}\right)=\tan ^{-1} x+C\quad \ldots\ldots\text{(1)}\)
Now, it is given that \( {y}=0 \) at \( x=1 \)
\(0 \times \sec ^{2} \frac{\pi}{3}=\sec \frac{\pi}{3}+C\)
\(\Rightarrow 0=\tan ^{-1} 1+{C}\)
\(\Rightarrow {C}=-\frac{\pi}{4}\)
Now, Substituting the value of \( {C}=-\frac{\pi}{4} \) in (1), we get,
\(\Rightarrow y \cdot\left(\sec ^{2} x\right)=\sec x-2\)
\(\Rightarrow y \cdot\left(1+x^{2}\right)=\tan ^{-1} x-\frac{\pi}{4}\)
Therefore, the required general solution of the given differential equation is
\( y .\left(1+x^{2}\right)=\tan ^{-1} x-\frac{\pi}{4} \)
\(\frac{d y}{d x}-3 y \cot x=\sin 2 x ; y=2 \text { when } x=\frac{\pi}{2}\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=-3 \cot x \) and \( Q =\sin 2 x) \)
Now, I.F. \( =e^{\int p d x}=e^{-3 \int \cot x d x}=e^{-3 \log |\sin x|}=e^{\log \left|\frac{1}{\sin ^{3} x}\right|}=\frac{1}{\sin ^{3} x} \)
Thus, the solution of the given differential equation is given by the relation:
\({y}(\text {I.F.})=\int({Q} \times \text {I. F.}) {dx}+{C}\)
\(\Rightarrow {y} \cdot \frac{1}{\sin ^{3} x}=\int\left[\sin 2 x \cdot \frac{1}{\sin ^{3} x}\right] {dx}+{C}\)
\(\Rightarrow {y} \cdot \operatorname{cosec}^{3} x=2=\int(\cot x \operatorname{cosec} x) {dx}+{C}\)
\(\Rightarrow {y} \operatorname{cosec}^{3} x=2 \operatorname{cosec} x+{C}\)
\(\Rightarrow y=-\frac{2}{\operatorname{cosec}^{2} x}+\frac{3}{\operatorname{cosec}^{3} x}\)
\(\Rightarrow {y}=-2 \sin ^{2} x+{C} \sin ^{3} x\quad \ldots\ldots\text{(1)}\)
Now, it is given that \( {y}=2 \) when \( x=\frac{\pi}{2} \)
Thus, we get,
\(2=-2+C\)
\(\Rightarrow C=4\)
Now, Substituting the value of \( {C}=4 \) in (1), we get,
\(y=-2 \sin ^{2} x+4 \sin ^{3} x\)
\(\Rightarrow y=4 \sin ^{3} x-2 \sin ^{2} x\)
Therefore, the required general solution of the given differential equation is
\({y}=4 \sin ^{3} x-2 \sin ^{2} x\)
We know the slope of the tangent to the curve at \( (x, {y}) \) is \( \frac{d y}{d x} \).
According to the given conditions, we get,
\(\frac{d y}{d x}=x+y\)
\(\Rightarrow \frac{d y}{d x}-y=x\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=-1 \) and \( {Q}=x \))
Now, I.F. \( =e^{\int p d x}=e^{\int(-1) d x}=e^{-x} \)
Thus, the solution of the given differential equation is given by the relation:
\({y}( \text{I.F.})=\int({Q} \times \text {I. F.}) {dy}+{C}\)
\(\Rightarrow {y} e^{-x}=x e^{-x} {dx}+{C}\quad \ldots\ldots\text{(1)}\)
Now, \( \int x e^{-x} d x=x \int e^{-x} d x-\int\left[\frac{d}{d x}(x) . \int e^{-x} d x\right] d x \)
\(=x\left(e^{-x}\right)-\int\left(-e^{-x}\right) d x\)
\(=x\left(e^{-x}\right)-\left(-e^{-x}\right)\)
\(=-e^{-x}(x+1)\)
Thus, from equation (1), we get,
\(\Rightarrow {y} e^{-x}=-e^{-x}(x+1)+{C}\)
\(\Rightarrow {y}=-(x+1)+{Ce}^{x}\)
\(\Rightarrow x+{y}+1={Ce}^{x}\quad \ldots\ldots\text{(2)}\)
Now, it is given that curve passes through origin.
Thus, equation (2) becomes:
\(1={C}\)
\(\Rightarrow {C}=1\)
Substituting \( {C}=1 \) in equation (2), we get,
\(x+y-1=e^{x}\)
Therefore, the required general solution of the given differential equation is
\(x+y-1=e^{x}\)
We know the slope of the tangent to the curve at \( (x, {y}) \) is \( \frac{d y}{d x} \).
According to the given conditions, we get,
\(\frac{d y}{d x}+5=x+y\)
\(\Rightarrow \frac{d y}{d x}-y=x-5\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=-1 \) and \( {Q}=-5 \))
Now, I.F. \( =e^{\int p d x}=e^{\int(-1) d x}=e^{-x} \)
Thus, the solution of the given differential equation is given by the relation:
\(\text { y(I.F.})=\int({Q} \times \text { I. F.}) {dy}+\text { C }\)
\(\Rightarrow {y} e^{-x}=(x-5) e^{-x} {dx}+{C}\quad \ldots\ldots\text{(1)}\)
\(\text {Now, } \int(x-5) e^{-x} d x=(x-5) \int e^{-x} d x-\int\left[\frac{d}{d x}(x-5) \cdot \int e^{-x} d x\right] d x\)
\(=(x-5)\left(e^{-x}\right)-\int\left(-e^{-x}\right) d x\)
\(=(x-5)\left(e^{-x}\right)-\left(-e^{-x}\right)\)
\(=(4-x)-e^{-x}\)
Thus, from equation (1), we get,
\(\Rightarrow {y} e^{-x}=(4-x) e^{-x}+{C}\)
\(\Rightarrow {y}=4-x+C {e}^{x}\)
\(\Rightarrow x+{y}-4=C {e}^{x}\)
Now, it is given that curve passes through \( (0,2) \).
Thus, equation (2) becomes:
\(0+2-4={Ce}^{0}\)
\(\Rightarrow-2={C}\)
\(\Rightarrow {C}=-2\)
Substituting \( C=-2 \) in equation (2), we get,
\(x+{y}-4=-2 {e}^{x}\)
\(\Rightarrow {y}=4-x-2 {e}^{x}\)
Therefore, the required general solution of the given differential equation is
\(y=4-x-2 e^{x}\)
A. \( {e}^{-x} \) B. \( e^{-y} \) C. \(\frac{ 1 }{ x }\) D. \(x\)
\(\Rightarrow \frac{d y}{d x}-\frac{y}{x}=2 x\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=-\frac{1}{x} \) and \( {Q}=2 x \))
Now, I.F. \( =e^{\int p d x}=e^{\int-\frac{1}{x} d x}=e^{\log \left(x^{-1}\right)}=x^{-1}=\frac{1}{x} \)
A. \( \frac{1}{y^{2}-1} \) B. \( \frac{1}{\sqrt{y^{2}-1}} \) C. \( \frac{1}{1-y^{2}} \) D. \( \frac{1}{\sqrt{1-y^{2}}} \)
\(\Rightarrow \frac{d y}{d x}-\frac{y x}{1-y^{2}}=\frac{a y}{1-y^{2}}\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\frac{y}{1-y^{2}} \) and \( {Q}= \frac{a}{1-y^{2}}\))
Now, I.F. \( =e^{\int p d y}=e^{\int \frac{y}{1-y^{2}} d y}=e^{\frac{1}{2} \log \left(1-y^{2}\right)}=e^{\log \left[\frac{1}{\sqrt{1-y^{2}}}\right]} \)
\(=\frac{1}{\sqrt{1-y^{2}}}\)