Ex 9.6 Class 12 Maths Ncert Solutions

Ex 9.6 class 12 maths ncert solutions | class 12 maths exercise 9.6 | class 12 maths ncert solutions chapter 9 exercise 9.6 | exercise 9.6 class 12 maths ncert solutions | chapter 9 class 12 maths ncert solutions | differential equations class 12 ncert solutions

Mastering the concept of linear differential equations is now easy with our Class 12 Maths NCERT Solutions Chapter 9 Exercise 9.6. This exercise includes problems based on the standard form of linear differential equations and their solutions using integrating factors. Our step-by-step Exercise 9.6 Class 12 Maths NCERT Solutions are designed to help students grasp each method clearly. With detailed explanations and solved examples, these Class 12 Maths Exercise 9.6 solutions are ideal for exam preparation. Get complete support with our trusted Ex 9.6 Class 12 Maths NCERT Solutions, a key part of the overall Chapter 9 Class 12 Maths NCERT Solutions. Strengthen your understanding with the full set of Differential Equations Class 12 NCERT Solutions available here.

ex 9.6 class 12 maths ncert solutions
chapter 9 class 12 maths ncert solutions || exercise 9.6 class 12 maths ncert solutions || class 12 maths exercise 9.6 || ex 9.6 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 9 exercise 9.6 || differential equations class 12 ncert solutions
Download the Math Ninja App Now

EXERCISE 9.6

1. For each of the differential equations given in question, find the general solution:
\(\frac{d y}{d x}+2 y=\sin x\)
Answer
It is given that \( \frac{d y}{d x}+2 y=\sin x \)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( p=2 \) and \( Q=\sin x \))
Now, I.F. \( ={e}^{\int {pdx}}={e}^{\int 2 {dx}}={e}^{2 x} \)
Thus, the solution of the given differential equation is given by the relation:
\({y}(\text {I. F.})=\int({Q} \times \text {I. F.}) {dx}+{C}\)
\(\Rightarrow y e^{2 x}=\int \sin x . e^{2 x} d x+C\quad \ldots\ldots\text{(1)}\)
Let \( {I}=\int \sin x \cdot e^{2 x} d x \)
\(\Rightarrow {I}=\sin x \cdot \int e^{2 x} d x-\int\left(\frac{d}{d x}(\sin x) \cdot {e}^{\int {d} {d}}\right) d x\)
\(=\sin x \cdot \frac{e^{2 x}}{2}-\int\left(\cos x \cdot \frac{e^{2 x}}{2}\right) d x\)
\(\left.=\frac{e^{2 x} \sin x}{2}-\frac{1}{2}\left[\cos \int e^{2 x}-\int\left(\frac{d}{d x}(\cos x) \cdot \iint e^{2 x} d x\right)\right)\right]\)
\(=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{2}-\frac{1}{4} \int\left(\sin x \cdot e^{2 x}\right) d x\)
\(\Rightarrow \frac{e^{2 x}}{2}(2 \sin x-\cos x)-\frac{1}{4} {I}\)
\(\Rightarrow \frac{5}{4} {I}=\frac{e^{2 x}}{4}(2 \sin x-\cos x)\)
\(\Rightarrow {I}=\frac{e^{2 x}}{5}(2 \sin x-\cos x)\)
Now, putting the value of I in (1), we get,
\(\Rightarrow y e^{2 x}=\frac{e^{2 x}}{5}(2 \sin x-\cos x)+C\)
\(\Rightarrow y=\frac{1}{5}(2 \sin x-\cos x)+C e^{-2 x}\)
Therefore, the required general solution of the given differential equation is
\(y=\frac{1}{5}(2 \sin x-\cos x)+C e^{-2 x}\)
2. For each of the differential equations given in question, find the general solution:
\(\frac{d y}{d x}+3 y=e^{-2 x}\)
Answer
It is given that \( \frac{d y}{d x}+3 y=e^{-2 x} \)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=3 \) and \( {Q}=e^{-2 x} \))
Now, I.F. \( =e^{\int p d x}=e^{\int 3 d x}=e^{3 x} \)
Thus, the solution of the given differential equation is given by the relation:
\(y(\text {I.F.})=\int(Q \times \text {I. F.}) d x+C\)
\(\Rightarrow y^{3 x}=\int\left(e^{-2 x} \times e^{2 x}\right) d x+C\)
\(\Rightarrow y^{3 x}=e^{x}+C\)
\(\Rightarrow y={e}^{-2 x}+{Ce}^{-3 x}\)
Therefore, the required general solution of the given differential equation is \( y=e^{-2 x}+C^{-3 x} \)
3. For each of the differential equations given in question, find the general solution:
\(\frac{d y}{d x}+\frac{y}{x}=x^{2}\)
Answer
It is given that \( \frac{d y}{d x}+\frac{y}{x}=x^{2} \)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\frac{1}{x} \) and \( {Q}=x^{2} \))
Now, I.F. \( =\int(Q \times \) I.F.\( ) {dx}+{C} \)
\(\Rightarrow y(x)=\int\left(x^{2} \cdot x\right) d x+C\)
\(\Rightarrow x y=\int\left(x^{3}\right) d x+C\)
\(\Rightarrow x y=\frac{x^{4}}{4}+C\)
Therefore, the required general solution of the given differential equation is \( x y=\frac{x^{4}}{4}+C \).
4. For each of the differential equations given in question, find the general solution:
\(\frac{d y}{d x}+(\sec x) y=\tan x\left(0 \leq x < \frac{\pi}{2}\right)\)
Answer
It is given that \( \frac{d y}{d x}+(\sec x) y=\tan x \)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\sec x \) and \( \left.{Q}=\tan x\right) \)
Now, I.F. \( =\int(Q \times \) I.F.\( ) d x+C \)
\(\Rightarrow {y}(\sec x+\tan x)=\int \tan x(\sec x+\tan x) {dx}+{C}\)
\(\Rightarrow {y}(\sec x+\tan x)=\int \sec x \tan x d x+\int \tan ^{2} x d x+{C}\)
\(\Rightarrow {y}(\sec x+\tan x)=\sec x+\int\left(\sec ^{2} x-1\right) d x+C\)
\(\Rightarrow {y}(\sec x+\tan x)=\sec x+\tan x-x+{C}\)
Therefore, the required general solution of the given differential equation is
\(y(\sec x+\tan x)=\sec x+\tan x-x+C\)
5. For each of the differential equations given in question, find the general solution:
\(\cos ^{2} x \frac{d y}{d x}+y=\tan x\left(0 \leq x < \frac{\pi}{2}\right)\)
Answer
It is given that \( \cos ^{2} x \frac{d y}{d x}+y=\tan x \)
\(\Rightarrow \frac{d y}{d x}+\sec ^{2} x \cdot y=\sec ^{2} x \tan x\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\sec ^{2} x \) and \(Q =\sec ^{2} x \tan x\))
Now, I.F. \( =e^{\int p d x}=e^{\int \sec ^{2} x d x}=e^{\tan x} \)
Thus, the solution of the given differential equation is given by the relation:
\(y(\text {I.F.})=\int(Q \times \text { I.F.}) d x+C\)
\(\Rightarrow y \cdot e^{\tan x}=\int e^{\tan x} d x+C\quad \ldots\ldots\text{(1)}\)
Now, Let \( {t}=\tan x \)
\(\Rightarrow \frac{d}{d x}(\tan x)=\frac{d t}{d x}\)
\(\Rightarrow \sec ^{2} x=\frac{d t}{d x}\)
\(\Rightarrow \sec ^{2} {xdx}={dt}\)
Thus, the equation (1) becomes,
\(\Rightarrow y \cdot e^{\tan x}=\int\left(e^{t} \cdot t\right) d t+C\)
\(\Rightarrow y \cdot e^{\tan x}=\int\left(t \cdot e^{t}\right) d t+C\)
\(\Rightarrow y \cdot e^{\tan x}=t \int e^{t} d t-\int\left(\frac{d}{d t}(t) \cdot \int e^{t} d t\right)+C\)
\(\Rightarrow y \cdot e^{\tan x}=t \cdot e^{t}-\int e^{t} d t+C\)
\(\Rightarrow {t} {e}^{\tan x}=({t}-1) {e}^{{t}}+{C}\)
\(\Rightarrow {t} {e}^{\tan x}=(\tan x-1) {e}^{\tan x}+{C}\)
\(\Rightarrow {y}=(\tan x-1)+{C} {e}^{\tan x}\)
Therefore, the required general solution of the given differential equation is
\(y=(\tan x-1)+C e^{-\tan x} .\)
chapter 9 class 12 maths ncert solutions || exercise 9.6 class 12 maths ncert solutions || class 12 maths exercise 9.6 || ex 9.6 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 9 exercise 9.6 || differential equations class 12 ncert solutions
Download the Math Ninja App Now
6. For each of the differential equations given in question, find the general solution:
\(x \frac{d y}{d x}+2 y=x^{2} \log x\)
Answer
It is given that \( x \frac{d y}{d x}+2 y=x^{2} \log x \)
\(\Rightarrow \frac{d y}{d x}+\frac{2}{x} y=x^{2} \log x\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\frac{2}{x} \) and \(Q =x \log x \))
Now, I.F. \( =e^{\int p d x}=e^{\int \frac{2}{x} d x}=e^{2(\log x)}=e^{\log x^{2}}=x^{2} \)
Thus, the solution of the given differential equation is given by the relation:
\(\text {y(I.F.})=\int({Q} \times {I} . {F} .) {dx}+{C}\)
\(\Rightarrow y \cdot x^{2}=\int\left(x \log x \cdot x^{2}\right) d x+C\)
\(\Rightarrow x^{2} y=\int\left(x^{3} \log x\right) d x+C\)
\(\Rightarrow x^{2} y=\log x \cdot \int x^{3} d x-\int\left[\frac{d}{d x}(\log x) \cdot \int x^{3} d x\right] d x+C\)
\(\Rightarrow x^{2} y=\log x \cdot \frac{x^{4}}{4}-\int\left(\frac{1}{x} \cdot \frac{x^{4}}{4}\right) d x+C\)
\(\Rightarrow x^{2} y=\frac{x^{4} \log x}{4}-\frac{1}{x} \cdot \frac{x^{4}}{4}+C\)
\(\Rightarrow x^{2} y=\frac{1}{16} x^{4}-(4 \log x-1)+C\)
\(\Rightarrow y=\frac{1}{16} x^{2}-(4 \log x-1)+C x^{-2}\)
Therefore, the required general solution of the given differential equation
\(y=\frac{1}{16} x^{2}-(4 \log x-1)+C x^{-2}\)
7. For each of the differential equations given in question, find the general solution:
\(x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x\)
Answer
It is given that \( x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x \)
\(\Rightarrow \frac{d y}{d x}+\frac{y}{x \log x}=\frac{2}{x^{2}}\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\frac{1}{x \log x} \) and \(Q =\frac{2}{x^{2}} \))
Now, I.F. \( =e^{\int p d x}=e^{\int \frac{1}{x \log x} d x}=e^{\log (\log x)}=\log x \)
Thus, the solution of the given differential equation is given by the relation:
\(y(\text {I.F.})=\int({Q} \times \text {I. F.}) {d} x+{C}\)
\(\Rightarrow y \cdot \log x=\int\left[\frac{2}{x^{2}} \cdot \log x\right] d x+C\quad \ldots\ldots\text{(1)}\)
Now, \( \int\left[\frac{2}{x^{2}} \cdot \log x\right] d x=2 \int\left(\log \frac{1}{x^{2}}\right) d x \)
\(=2\left[\log x \cdot \int \frac{1}{x^{2}} d x-\int\left\{\frac{d}{d x}(\log x) \cdot \int \frac{1}{x^{2}} d x\right\} d x\right]\)
\(=2\left[\log x\left(-\frac{1}{x}\right)-\int\left(\frac{1}{x} \cdot\left(-\frac{1}{x}\right)\right)\right]\)
\(=2\left[-\frac{\log x}{x}+\int \frac{1}{x^{2}} d x\right]\)
\(=-\frac{2}{x}(1+\log x)\)
Now, substituting the value in (1), we get,
\(\Rightarrow y \cdot \log x=-\frac{2}{x}(1+\log x)+C\)
Therefore, the required general solution of the given differential equation is
\(y \cdot \log x=-\frac{2}{x}(1+\log x)+C\)
8. For each of the differential equations given in question, find the general solution:
\(\left(1+x^{2}\right) d y+2 x y d x=\cot x d x(x \neq 0)\)
Answer
It is given that \( \left(1+x^{2}\right) d y+2 {xy} {dx}=\cot {xdx} \)
\(\Rightarrow \frac{d y}{d x}+\frac{2 x y}{\left(1+x^{2}\right)}=\frac{\cot x}{1+x^{2}}\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\frac{2 x y}{\left(1+x^{2}\right)} \) and \(Q =\frac{\cot x}{1+x^{2}}\))
Now, I.F. \( =e^{\int p d x}=e^{\int \frac{2 x y}{\left(1+x^{2}\right)} d x}=e^{\log \left(1+x^{2}\right)}=1+x^{2} \)
Thus, the solution of the given differential equation is given by the relation:
\(y(\text {I.F.})=\int(Q \times \text { I.F.}) {dx}+{C}\)
\(\Rightarrow {y} \cdot\left(1+x^{2}\right)=\int\left[\frac{\cot x}{1+x^{2}} \cdot\left(1+x^{2}\right)\right] {dx}+{C}\)
\(\Rightarrow {y} \cdot\left(1+x^{2}\right)=\int \cot x {dx}+{C}\)
\(\Rightarrow {y}\left(1+x^{2}\right)=\log |\sin x|+{C}\)
Therefore, the required general solution of the given differential equation is
\(y\left(1+x^{2}\right)=\log |\sin x|+C\)
9. For each of the differential equations given in question, find the general solution:
\(x \frac{d y}{d x}+y-x+x y \cot x=0(x \neq 0)\)
Answer
It is given that \( x \frac{d y}{d x}+y-x+x y \cot x=0 \)
\(\Rightarrow x \frac{d y}{d x}+y(1+x \cot x)=x\)
\(\Rightarrow x \frac{d y}{d x}+\left(\frac{1}{x}+\cot x\right) y=1\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\frac{1}{x} \) and \( {Q}=1 \))
\(\text{Now, I.F. } =e^{\int p d x}=e^{\int\left(\frac{1}{x}+\cot x\right) d y}=e^{\log x+\log (\sin x)}=e^{\log (x \sin x)}=x \sin x \)
Thus, the solution of the given differential equation is given by the relation:
\(\text { y(I.F.})=\int({Q} \times \text {I. F.}) {dx}+{C}\)
\(\Rightarrow {y} \cdot(x \sin x)=\int[1 \times x \sin x] {dx}+{C}\)
\(\Rightarrow {y} \cdot(x \sin x)=\int[x \sin x] {dx}+{C}\)
\(\Rightarrow {y}(x \sin x)=x \int \sin x d x-\int\left[\frac{d}{d x}(x) \cdot \int \sin x d x\right]+C\)
\(\Rightarrow {y}(x \sin x)=x(-\cos x)-\int 1 \cdot(-\cos x) d x+C\)
\(\Rightarrow {y}(x \sin x)=-x \cos x+\sin x+{C}\)
\(\Rightarrow y=\frac{-x \cos x}{x \sin x}+\frac{\sin x}{x \sin x}+\frac{C}{x \sin x}\)
\(\Rightarrow y=\cot x+\frac{1}{x}+\frac{C}{x \sin x}\)
Therefore, the required general solution of the given differential equation is
\(y=\cot x+\frac{1}{x}+\frac{C}{x \sin x}\)
chapter 9 class 12 maths ncert solutions || exercise 9.6 class 12 maths ncert solutions || class 12 maths exercise 9.6 || ex 9.6 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 9 exercise 9.6 || differential equations class 12 ncert solutions
Download the Math Ninja App Now
10. For each of the differential equations given in question, find the general solution:
\((x+y) \frac{d y}{d x}=1\)
Answer
It is given that \( (x+y) \frac{d y}{d x}=1 \)
\(\Rightarrow \frac{d y}{d x}=\frac{1}{x+y}\)
\(\Rightarrow \frac{d x}{d y}=x+y\)
\(\Rightarrow \frac{d x}{d y}-x=y\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=-1 \) and \( {Q}=y \))
Now, I.F. \( =e^{\int p d y}=e^{\int-d y}=e^{-y} \)
Thus, the solution of the given differential equation is given by the relation:
\(x(\text {I.F.})=\int({Q} \times \text {I. F.}) {dy}+{C}\)
\(\Rightarrow x e^{-y}=\int\left[y . e^{-y}\right] {dy}+{C}\)
\(\Rightarrow x e^{-y}=y \int e^{-d y}-\int\left[\frac{d}{d x}(y) \cdot \int e^{-y} d y\right]+C\)
\(\Rightarrow x e^{-y}=y\left(-e^{-y}\right)-\int\left(-e^{-y}\right) d y+C\)
\(\Rightarrow x e^{-y}=-y e^{-y}-\int e^{-y} d y+C\)
\(\Rightarrow x e^{-y}=-y e^{-y}-e^{-y}+C\)
\(\Rightarrow x=-{y}-1+{Ce}^{{y}}\)
\(\Rightarrow x+{y}+1={Ce}^{{y}}\)
Therefore, the required general solution of the given differential equation is
\(x+{y}+1={Ce}^{{y}}\).
11. For each of the differential equations given in question, find the general solution:
\(y d x+\left(x-y^{2}\right) d y=0\)
Answer
It is given that \( y d x+\left(x-y^{2}\right) d y=0 \)
\(\Rightarrow y d x=\left(y^{2}-x\right) d y\)
\(\Rightarrow \frac{d x}{d y}=\frac{\left(y^{2}-x\right)}{y}=y-\frac{x}{y}\)
\(\Rightarrow \frac{d x}{d y}+\frac{x}{y}=y\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\frac{1}{y} \) and \( {Q}=y \))
Now, I.F. \( =e^{\int p d y}=e^{\int \frac{d y}{y}}=e^{\log y}=y \)
Thus, the solution of the given differential equation is given by the relation:
\(x( \text{I.F.})=\int({Q} \times \text{I.F.}) {dy}+{C}\)
\(\Rightarrow x \cdot y=\int[y \cdot y] {dy}+{C}\)
\(\Rightarrow x \cdot y=\int y^{2} {dy}+{C}\)
\(\Rightarrow x \cdot y=\frac{y^{3}}{3}+C\)
\(\Rightarrow x y=\frac{y^{3}}{3}+\frac{c}{y}\)
Therefore, the required general solution of the given differential equation is \( x y=\frac{y^{3}}{3}+\frac{C}{y} \)
12. For each of the differential equations given in question, find the general solution:
\(\left(x+3 y^{2}\right) \frac{d y}{d x}=y(y > 0)\)
Answer
It is given that \( \left(x+3 y^{2}\right) \frac{d y}{d x}=y \)
\(\Rightarrow \frac{d y}{d x}=\frac{y}{x+3 y^{2}}\)
\(\Rightarrow \frac{d x}{d y}=\frac{x+3 y^{2}}{y}=\frac{x}{y}+3 y\)
\(\Rightarrow \frac{d x}{d y}-\frac{x}{y}=3 y\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=-\frac{1}{y} \) and \( {Q}=3 y \))
Now, I.F. \( =e^{\int p d y}=e^{\int \frac{d y}{y}}=e^{-\log y}=e^{\log \left(\frac{1}{y}\right)}=\frac{1}{y} \)
Thus, the solution of the given differential equation is given by the relation:
\(x( \text{I.F.})=\int({Q} \times \text{I.F.}) {dy}+{C}\)
\(\Rightarrow x \cdot \frac{1}{y}=\int\left[3 y \cdot \frac{1}{y}\right] {dy}+{C}\)
\(\Rightarrow \frac{x}{y}=3 y+C\)
\(\Rightarrow x=3 y^{2}+C y\)
Therefore, the required general solution of the given differential equation is \( x=3 y^{2}+C y \).
13. For each of the differential equations given in question, find a particular solution satisfying the given condition:
\(\frac{d y}{d x}+2 y \tan x=\sin x ; y=0 \text { when } x=\frac{\pi}{3}\)
Answer
It is given that \( \frac{d y}{d x}+2 y \tan x=\sin x \)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=2 \tan x \) and \( Q =\sin x) \)
Now, I.F. \( =e^{\int p d x}=e^{\int 2 \tan x d x}=e^{2 \log (\sec x)}=e^{\log \left(\sec ^{2} x\right)}=\sec ^{2} x \)
Thus, the solution of the given differential equation is given by the relation:
\(y(\text {I.F.})=\int(Q \times \text { I.F.}) d x+C\)
\(\Rightarrow y .\left(\sec ^{2} x\right)=\int\left[\sin x \cdot \sec ^{2} x\right] d x+C\)
\(\Rightarrow y .\left(\sec ^{2} x\right)=\int[\sec x \cdot \tan x] d x+C\)
\(\Rightarrow y \cdot\left(\sec ^{2} x\right)=\sec x+C\quad \ldots\ldots\text{(1)}\)
Now, it is given that \( {y}=0 \) at \( x=\frac{\pi}{3} \)
\(0 \times \sec ^{2} \frac{\pi}{3}=\sec \frac{\pi}{3}+C\)
\(\Rightarrow 0=2+C\)
\(\Rightarrow C=-2\)
Now, Substituting the value of \( {C}=-2 \) in (1), we get,
\(\Rightarrow y \cdot\left(\sec ^{2} x\right)=\sec x-2\)
\(\Rightarrow {y}=\cos x-2 \cos ^{2} x\)
Therefore, the required general solution of the given differential equation is
\(y=\cos x-2 \cos ^{2} x\)
14. For each of the differential equations given in question, find a particular solution satisfying the given condition:
\(\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\frac{1}{1+x^{2}} ; y=0 \text { when } x=1\)
Answer
It is given that \( \left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\frac{1}{1+x^{2}} \)
\(\Rightarrow \frac{d y}{d x}+\frac{2 x y}{\left(1+x^{2}\right)}=\frac{1}{\left(1+x^{2}\right)^{2}}\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\frac{2 x}{\left(1+x^{2}\right)} \) and \( {Q}= \frac{1}{\left(1+x^{2}\right)^{2}}\))
Now, I.F. \( =e^{\int p d x}=e^{\int \frac{2 x}{\left(1+x^{2}\right)} d x}=e^{\log \left(1+x^{2}\right)}=1+x^{2} \)
Thus, the solution of the given differential equation is given by the relation:
\(y(\text {I.F.})=\int(Q \times \text {I. F.}) d x+C\)
\(\Rightarrow y \cdot\left(1+x^{2}\right)=\int\left[\frac{1}{\left(1+x^{2}\right)^{2}} \cdot\left(1+x^{2}\right)\right] d x+C\)
\(\Rightarrow y \cdot\left(1+x^{2}\right)=\int \frac{1}{\left(1+x^{2}\right)} d x+C\)
\(\Rightarrow y \cdot\left(1+x^{2}\right)=\tan ^{-1} x+C\quad \ldots\ldots\text{(1)}\)
Now, it is given that \( {y}=0 \) at \( x=1 \)
\(0 \times \sec ^{2} \frac{\pi}{3}=\sec \frac{\pi}{3}+C\)
\(\Rightarrow 0=\tan ^{-1} 1+{C}\)
\(\Rightarrow {C}=-\frac{\pi}{4}\)
Now, Substituting the value of \( {C}=-\frac{\pi}{4} \) in (1), we get,
\(\Rightarrow y \cdot\left(\sec ^{2} x\right)=\sec x-2\)
\(\Rightarrow y \cdot\left(1+x^{2}\right)=\tan ^{-1} x-\frac{\pi}{4}\)
Therefore, the required general solution of the given differential equation is
\( y .\left(1+x^{2}\right)=\tan ^{-1} x-\frac{\pi}{4} \)
15. For each of the differential equations given in question, find a particular solution satisfying the given condition:
\(\frac{d y}{d x}-3 y \cot x=\sin 2 x ; y=2 \text { when } x=\frac{\pi}{2}\)
Answer
It is given that \( \frac{d y}{d x}-3 y \cot x=\sin 2 x \)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=-3 \cot x \) and \( Q =\sin 2 x) \)
Now, I.F. \( =e^{\int p d x}=e^{-3 \int \cot x d x}=e^{-3 \log |\sin x|}=e^{\log \left|\frac{1}{\sin ^{3} x}\right|}=\frac{1}{\sin ^{3} x} \)
Thus, the solution of the given differential equation is given by the relation:
\({y}(\text {I.F.})=\int({Q} \times \text {I. F.}) {dx}+{C}\)
\(\Rightarrow {y} \cdot \frac{1}{\sin ^{3} x}=\int\left[\sin 2 x \cdot \frac{1}{\sin ^{3} x}\right] {dx}+{C}\)
\(\Rightarrow {y} \cdot \operatorname{cosec}^{3} x=2=\int(\cot x \operatorname{cosec} x) {dx}+{C}\)
\(\Rightarrow {y} \operatorname{cosec}^{3} x=2 \operatorname{cosec} x+{C}\)
\(\Rightarrow y=-\frac{2}{\operatorname{cosec}^{2} x}+\frac{3}{\operatorname{cosec}^{3} x}\)
\(\Rightarrow {y}=-2 \sin ^{2} x+{C} \sin ^{3} x\quad \ldots\ldots\text{(1)}\)
Now, it is given that \( {y}=2 \) when \( x=\frac{\pi}{2} \)
Thus, we get,
\(2=-2+C\)
\(\Rightarrow C=4\)
Now, Substituting the value of \( {C}=4 \) in (1), we get,
\(y=-2 \sin ^{2} x+4 \sin ^{3} x\)
\(\Rightarrow y=4 \sin ^{3} x-2 \sin ^{2} x\)
Therefore, the required general solution of the given differential equation is
\({y}=4 \sin ^{3} x-2 \sin ^{2} x\)
16. Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point \( (x, {y}) \) is equal to the sum of the coordinates of the point.
Answer
Let \( {F}(x, {y}) \) be the curve passing through origin and let \( (x, {y}) \) be a point on the curve.
We know the slope of the tangent to the curve at \( (x, {y}) \) is \( \frac{d y}{d x} \).
According to the given conditions, we get,
\(\frac{d y}{d x}=x+y\)
\(\Rightarrow \frac{d y}{d x}-y=x\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=-1 \) and \( {Q}=x \))
Now, I.F. \( =e^{\int p d x}=e^{\int(-1) d x}=e^{-x} \)
Thus, the solution of the given differential equation is given by the relation:
\({y}( \text{I.F.})=\int({Q} \times \text {I. F.}) {dy}+{C}\)
\(\Rightarrow {y} e^{-x}=x e^{-x} {dx}+{C}\quad \ldots\ldots\text{(1)}\)
Now, \( \int x e^{-x} d x=x \int e^{-x} d x-\int\left[\frac{d}{d x}(x) . \int e^{-x} d x\right] d x \)
\(=x\left(e^{-x}\right)-\int\left(-e^{-x}\right) d x\)
\(=x\left(e^{-x}\right)-\left(-e^{-x}\right)\)
\(=-e^{-x}(x+1)\)
Thus, from equation (1), we get,
\(\Rightarrow {y} e^{-x}=-e^{-x}(x+1)+{C}\)
\(\Rightarrow {y}=-(x+1)+{Ce}^{x}\)
\(\Rightarrow x+{y}+1={Ce}^{x}\quad \ldots\ldots\text{(2)}\)
Now, it is given that curve passes through origin.
Thus, equation (2) becomes:
\(1={C}\)
\(\Rightarrow {C}=1\)
Substituting \( {C}=1 \) in equation (2), we get,
\(x+y-1=e^{x}\)
Therefore, the required general solution of the given differential equation is
\(x+y-1=e^{x}\)
17. Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.
Answer
Let \( {F}(x, {y} ) \) be the curve and let (\( x, {y} \)) be a point on the curve.
We know the slope of the tangent to the curve at \( (x, {y}) \) is \( \frac{d y}{d x} \).
According to the given conditions, we get,
\(\frac{d y}{d x}+5=x+y\)
\(\Rightarrow \frac{d y}{d x}-y=x-5\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=-1 \) and \( {Q}=-5 \))
Now, I.F. \( =e^{\int p d x}=e^{\int(-1) d x}=e^{-x} \)
Thus, the solution of the given differential equation is given by the relation:
\(\text { y(I.F.})=\int({Q} \times \text { I. F.}) {dy}+\text { C }\)
\(\Rightarrow {y} e^{-x}=(x-5) e^{-x} {dx}+{C}\quad \ldots\ldots\text{(1)}\)
\(\text {Now, } \int(x-5) e^{-x} d x=(x-5) \int e^{-x} d x-\int\left[\frac{d}{d x}(x-5) \cdot \int e^{-x} d x\right] d x\)
\(=(x-5)\left(e^{-x}\right)-\int\left(-e^{-x}\right) d x\)
\(=(x-5)\left(e^{-x}\right)-\left(-e^{-x}\right)\)
\(=(4-x)-e^{-x}\)
Thus, from equation (1), we get,
\(\Rightarrow {y} e^{-x}=(4-x) e^{-x}+{C}\)
\(\Rightarrow {y}=4-x+C {e}^{x}\)
\(\Rightarrow x+{y}-4=C {e}^{x}\)
Now, it is given that curve passes through \( (0,2) \).
Thus, equation (2) becomes:
\(0+2-4={Ce}^{0}\)
\(\Rightarrow-2={C}\)
\(\Rightarrow {C}=-2\)
Substituting \( C=-2 \) in equation (2), we get,
\(x+{y}-4=-2 {e}^{x}\)
\(\Rightarrow {y}=4-x-2 {e}^{x}\)
Therefore, the required general solution of the given differential equation is
\(y=4-x-2 e^{x}\)
18. The Integrating Factor of the differential equation \( x \frac{d y}{d x}- y=2 x^{2} \) is
A. \( {e}^{-x} \) B. \( e^{-y} \) C. \(\frac{ 1 }{ x }\) D. \(x\)
Answer
It is given that \( \frac{d y}{d x}-y=2 x^{2} \)
\(\Rightarrow \frac{d y}{d x}-\frac{y}{x}=2 x\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=-\frac{1}{x} \) and \( {Q}=2 x \))
Now, I.F. \( =e^{\int p d x}=e^{\int-\frac{1}{x} d x}=e^{\log \left(x^{-1}\right)}=x^{-1}=\frac{1}{x} \)
19. The Integrating Factor of the differential equation \( \left(1-y^{2}\right) \frac{d y}{d x}+y x=a y(-1 < y < 1) \) is
A. \( \frac{1}{y^{2}-1} \) B. \( \frac{1}{\sqrt{y^{2}-1}} \) C. \( \frac{1}{1-y^{2}} \) D. \( \frac{1}{\sqrt{1-y^{2}}} \)
Answer
It is given that \( \left(1-y^{2}\right) \frac{d y}{d x}+y x=a y \)
\(\Rightarrow \frac{d y}{d x}-\frac{y x}{1-y^{2}}=\frac{a y}{1-y^{2}}\)
This is equation in the form of \( \frac{d y}{d x}+p y=Q \) (where, \( {p}=\frac{y}{1-y^{2}} \) and \( {Q}= \frac{a}{1-y^{2}}\))
Now, I.F. \( =e^{\int p d y}=e^{\int \frac{y}{1-y^{2}} d y}=e^{\frac{1}{2} \log \left(1-y^{2}\right)}=e^{\log \left[\frac{1}{\sqrt{1-y^{2}}}\right]} \)
\(=\frac{1}{\sqrt{1-y^{2}}}\)
chapter 9 class 12 maths ncert solutions || exercise 9.6 class 12 maths ncert solutions || class 12 maths exercise 9.6 || ex 9.6 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 9 exercise 9.6 || differential equations class 12 ncert solutions
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top