exercise 1.4 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 1 ex 1.4 || ex 1.4 class 12 maths ncert solutions|| relations and functions class 12 ncert solutions (English Medium)
NCERT Solutions for Class 12 Maths – Chapter 1 Exercise 1.4 (Relations and Functions)
Exercise 1.4 of Class 12 Maths NCERT Solutions focuses on the concept of binary operations and functions, which is a key part of the chapter Relations and Functions. This exercise helps students understand how to perform operations on sets and verify important properties like commutativity, associativity, identity, and invertibility. The Class 12 Maths Exercise 1.4 NCERT Solutions are explained with clarity and step-by-step reasoning to aid students in mastering complex problems with ease. Aligned with the latest CBSE syllabus and designed for English Medium students, these solutions are ideal for building a strong foundation in abstract algebraic concepts. By studying the Class 12 Maths NCERT Solutions Chapter 1 Exercise 1.4, students can enhance their analytical and logical thinking skills. The Exercise 1.4 Class 12 Maths NCERT Solutions are an excellent resource for board exam preparation and for strengthening overall understanding in mathematics.

class 12 maths ncert solutions chapter 1 ex 1.4 || exercise 1.4 class 12 maths ncert solutions || ex 1.4 class 12 maths ncert solutions || relations and functions class 12 ncert solutions
Exercise 1.4
On \( \mathrm{Z}^{+} \), define \( * \) by \( \mathrm{a} * \mathrm{b}=\mathrm{a}-\mathrm{b} \)
It is not a binary operation as the image of \( (1,2) \) under \(*\) is \( 1 * 2=1-2=-1 \notin Z^{+} \).
On \( \mathrm{Z}^{+} \), define \( * \) by \( \mathrm{a} * \mathrm{b}=\mathrm{ab} \)
We can see that for each \( \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \), there is a unique element ab in \( \mathrm{Z}^{+} \).
\( \Rightarrow * \) carries each pair \( (\mathrm{a}, \mathrm{b}) \) to a unique element \( \mathrm{a} * \mathrm{b}=\mathrm{ab} \) in \( \mathrm{Z}^{+} \).
Therefore, \(*\) is a binary operation.
On \(R ,\) define \( * \) by \( \mathrm{a} * \mathrm{b}=\mathrm{ab}^{2} \)
We can see that for each \( a, b \in R \), there is a unique element \( a b^{2} \) in \( R \).
\( \Rightarrow * \) carries each pair \( \left(\mathrm{a}, \mathrm{b}\right)\) to a unique element \( \mathrm{a} * \mathrm{b}=\mathrm{ab}^{2} \) in \(R \).
Therefore, \(*\) is a binary operation.
On \( \mathrm{Z}^{+} \), define \( * \) by \( \mathrm{a} * \mathrm{b}=|\mathrm{a}-\mathrm{b}| \)
We can see that for each \( a, b \in Z^{+} \), there is a unique element \( |a-b| \) in \( Z^{+} \).
\( \Rightarrow * \) carries each pair \( (\mathrm{a}, \mathrm{b}) \) to a unique element \( \mathrm{a}* \mathrm{b}=|\mathrm{a}-\mathrm{b}| \) in \( \mathrm{Z}^{+} \).
Therefore, \(*\) is a binary operation.
On \( \mathrm{Z}^{+} \) define \( * \) by \( \mathrm{a} * \mathrm{b}=\mathrm{a} \)
We can see that for each \( \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \), there is a unique element a in \( \mathrm{Z}^{+} \).
\( \Rightarrow * \) carries each pair \( (\mathrm{a}, \mathrm{b}) \) to a unique element \( \mathrm{a} * \mathrm{b}=\mathrm{a} \) in \( \mathrm{Z}^{+} \).
Therefore, \(*\) is a binary operation.
On \( Z \), define \( a * b=a-b \)
\( \mathrm{a}-\mathrm{b} \in \mathrm{Z} \). so the operation \(*\) is binary.
We can see that \( 1 * 2=1-2=-1 \) and \( 2 * 1=2-1=1 \).
\( \Rightarrow 1 * 2 \neq 2 * 1 \), where \( 1,2 \in \mathrm{Z} \).
\( \Rightarrow \) the operation \(*\) is not commutative.
On Q, define \( \mathrm{a} * \mathrm{b}=\mathrm{ab}+1 \)
\( \mathrm{ab}+1 \in \mathrm{Q} \), so operation \(*\) is binary
We know that \( \mathrm{ab}=\mathrm{ba} \) for \( \mathrm{a}, \mathrm{b} \in \mathrm{Q} \)
\(
\Rightarrow \mathrm{ab}+1=\mathrm{ba}+1 \text { for } \mathrm{a}, \mathrm{b} \in \mathrm{Q}\)
\(\Rightarrow \mathrm{a} * \mathrm{b}=\mathrm{a} * \mathrm{b} \text { for } \mathrm{a}, \mathrm{b} \in \mathrm{Q}\)
\(\Rightarrow 1* 2 \neq 2 * 1, \text { where } 1,2 \in Z
\)
\( \Rightarrow \) The operation \(*\) is commutative.
Also, we get,
\(
(1 * 2) * 3=(1 \times 2) * 3=3 * 3=3 \times 3+1=10\)
\(1 *(2 * 3)=1 *(2 \times 3)=1 * 7=1 \times 7+1=8\)
\(\Rightarrow(1 * 2) * 3 \neq 1 *(2 * 3)
\)
\( \Rightarrow \) the operation \(*\) is not associative.
On \( \mathrm{Z}^{+} \), define \( \mathrm{a} * \mathrm{b}=2 \mathrm{ab} \)
\(2ab \in \mathrm{Z}^{+} \), so operation \(*\) is binary
We know that \( \mathrm{ab}= \) ba for \( \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \)
\( \Rightarrow 2 \mathrm{ab}=2 \mathrm{ba} \) for \( \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \)
\( \Rightarrow \mathrm{a} * \mathrm{b}=\mathrm{a} * \mathrm{b} \) for \( \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \)
\( \Rightarrow \) The operation \(*\) is commutative.
Also, we get,
\((1 * 2) * 3=2(1 \times 2) * 3=4 * 3=2(4 \times 3)=212\)
\(1 *(2 * 3)=1 * 2(2 \times 3)=1 * 26=1 \times 64=264\)
\(\Rightarrow(1 * 2) * 3 \neq 1 *(2 * 3)
\)
\( \Rightarrow \) The operation \(*\) is not associative.
On \( \mathrm{Z}^{+} \), define \( \mathrm{a} * \mathrm{b}=\mathrm{a}^{\mathrm{b}} \)
\( ab \in\mathrm{Z}^{+} \), so operation \(*\) is binary
We know that \( \mathrm{ab}= \mathrm{ba}\) for \( \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+} \)
\( \Rightarrow 1 * 2=1^{2} \) and \( 2 * 1=2^{1}=2 \)
\( \Rightarrow 1 * 2 \neq 2 * 1 \), where \( 1,2 \in \mathrm{Z}^{+} \)
\( \Rightarrow \) The operation \(*\) is not commutative.
Also, we get,
\( (1 * 2) * 3=2^{3} * 3=8 * 3=2^{4} \)
\( 1 *(2 * 3)=1 * 3^{2}=1 * 9=9 \)
\( \Rightarrow(1 * 2) * 3 \neq 1 *(2 * 3) \), where \( 1,2,3 \in \mathrm{Z}^{+} \)
\( \Rightarrow \) The operation \( * \) is not associative.
On \( \mathrm{R}-\{-1\} \), define \( \mathrm{a} * \mathrm{b}= \)
\( \frac{a}{b+1} \in \mathrm{R} \) for \( \mathrm{b} \neq-1 \), so the operation \(*\) is binary.
We can see that \( 1 * 2=\frac{1}{2+1}=\frac{1}{3} \) and \( 2 * 1=\frac{2}{1+1}=\frac{2}{2}=1 \)
\( \Rightarrow 1 * 2 \neq 2 * 1 \); where \( 1,2 \in \mathrm{R}-\{-1\} \)
\( \Rightarrow \) the operation * is not commutative.
Now, we can have observed that
\( (1 * 2) * 3=\frac{1}{3} * 3=\frac{\frac{1}{3}}{3+1}=\frac{1}{12} \)
\( 1 *(2 * 3)=1 * \frac{2}{3+1}=1 * \frac{2}{4}=1 * \frac{1}{2}=\frac{1}{\frac{1}{2}+1}=\frac{1}{\frac{3}{2}}=\frac{2}{3} \)
\( \Rightarrow(1 * 2) * 3 \neq 1 *(2 * 3) \), where \( 1,2,3 \in R*-\{-1\} \)
\( \Rightarrow \) The operation \(*\) is not associative.
Therefore, the operation table of the given operation \( { }^{\wedge} \) can be given as:
\(\begin{array}{|l|l|l|l|l|l|}
\hline { }^{\wedge} & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 2 & 2 & 2 & 2 \\
\hline 3 & 1 & 2 & 3 & 3 & 3 \\
\hline 4 & 1 & 2 & 3 & 4 & 4 \\
\hline 5 & 1 & 2 & 3 & 4 & 5 \\
\hline
\end{array}\)
class 12 maths ncert solutions chapter 1 ex 1.4 || exercise 1.4 class 12 maths ncert solutions || ex 1.4 class 12 maths ncert solutions || relations and functions class 12 ncert solutions
(i) Compute \( (2 * 3) * 4 \) and \( 2 *(3 * 4) \)
(ii) Is \( * \) commutative?
(iii) Compute \( (2 * 3) *(4 * 5) \).
Table 1.2
\(\begin{array}{|l|l|l|l|l|l|}
\hline * & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 2 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 \\
\hline 4 & 1 & 2 & 1 & 4 & 1 \\
\hline 5 & 1 & 1 & 1 & 1 & 5 \\
\hline
\end{array}\)
\(
2 *(3 * 4)=2 * 1=1
\)
(ii) For every \( \mathrm{a}, \mathrm{b} \in\{1,2,3,4,5\} \),
We have, \( \mathrm{a} * \mathrm{b}=\mathrm{b} * \mathrm{a} \)
\( \Rightarrow \) the operation \( * \) is commutative.
(iii) \( (2 * 3)=1 \)
\(
\Rightarrow(2 * 3) *(4 * 5)=1 * 1=1
\)
The operation table for the operation \( *{ }^{\prime} \) is given by:
\(\begin{array}{|l|l|l|l|l|l|}
\hline * & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 2 & 1 & 2 & 1 & 2 & 1 \\
\hline 3 & 1 & 1 & 3 & 1 & 1 \\
\hline 4 & 1 & 2 & 1 & 4 & 1 \\
\hline 5 & 1 & 1 & 1 & 1 & 5 \\
\hline
\end{array}\)
From the above table we can see that the operation tables for the operation \(*\) and \(*{ }^{\prime}\) are the same.
Therefore, the operation \( *{ }^{\prime}\) is same as the operation \(*\)
(i) \( 5 * 7,20 * 16 \)
(ii) Is \( * \) commutative?
(iii) Is \(*\) associative?
(iv) Find the identity of \( * \) in N
(v) Which elements of N are invertible for the operation \(*\) ?
Then, \( 5 * 7=\mathrm{LCM} \) of 5 and \( 7=35 \)
\( 20 * 16=\mathrm{LCM} \) of 20 and \( 16=80 \).
(ii) It is given that the binary operation on N given by \( \mathrm{a} * \mathrm{b}= \) L.C.M. of a and b.
We know that LCM of \( a \) and \( b=\mathrm{LCM} \) of \( b \) and \( a, a, b \in N \).
\(
\Rightarrow \mathrm{a} * \mathrm{b}=\mathrm{b} * \mathrm{a}
\)
Therefore, the operation \(*\) is commutative.
(iii) It is given that the binary operation on N given by \( \mathrm{a} * \mathrm{b}= \) L.C.M. of a and b.
For \( a, b, c \in N \)
\( (\mathrm{a} * \mathrm{b}) * \mathrm{c}=(\mathrm{LCM} \) of a and b\( ) * \mathrm{c}=\mathrm{LCM} \) of \( \mathrm{a}, \mathrm{b} \) and c
\( a*\left(b* c\right)=a *( \mathrm{LCM} \) of \( b \) and \( c)= \) LCM of \( a, b \) and \( c \)
\(
\Rightarrow(\mathrm{a} * \mathrm{b}) * \mathrm{c}=\mathrm{a} *(\mathrm{b} * \mathrm{c})
\)
Therefore, the operation \(*\) is associative.
(iv) It is given that the binary operation on N given by \( \mathrm{a} * \mathrm{b}= \) L.C.M. of a and b.
We know that LCM of a and \( 1=\mathrm{a}=\mathrm{LCM} \) of 1 and \( 1, \mathrm{a} \in \mathrm{N} \) \( \Rightarrow \mathrm{a}* 1=\mathrm{a}=1* \mathrm{a}, \mathrm{a} \in \mathrm{N} \)
Therefore, 1 is the identity of \(*\) in N.
(v) It is given that the binary operation on N given by \( \mathrm{a} * \mathrm{b}= \) L.C.M. of \( a \) and \( b \).
An element a in N is invertible w.r.t. the operation \(*\) if there exists an element b in N,
Such that \( a * b=e=b * a \)
Now, if \( \mathrm{e}=1 \)
\( \Rightarrow \) LCM of a and \( \mathrm{b}=1=\mathrm{LCM} \) of b and a
\( \Rightarrow \) This is only possible when \( \mathrm{a}=\mathrm{b}=1 \)
Therefore, 1 is the only invertible element of N w.r.t. the operation \(*\).
\( a * b=\mathrm{LCM} \) of \( a \) and \( b \).
\( 2 * 3=\mathrm{LCM} \) of 2 and \( 3=6 \).
But 6 does not belong to the given set.
Therefore, the given operation \(*\) is not a binary operation.
We know that HCF of \( a \) and \( b= \) HCF of \( b \) and \( a, a, b \in N \).
\(
\Rightarrow \mathrm{a}* \mathrm{b}=\mathrm{b} * \mathrm{a}
\)
\( \Rightarrow \) The operation \( * \) is commutative.
For \( \mathrm{a}, \mathrm{b} \mathrm{c} \in \mathrm{N} \), we get,
\( (a * b) * c=( \)HCF of \( a \) and \( b) * c= \) HCF of \( a, b \) and \( c \)
\( a*\left(b* c\right)=a *( \)HCF of \( b \) and \( c)= \) HCF of \( a, b \) and \( c \)
\(
\Rightarrow(\mathrm{a} * \mathrm{b}) * \mathrm{c}=\mathrm{a} *(\mathrm{b} * \mathrm{c})
\)
\( \Rightarrow \) The operation \( * \) is associative.
Now, an element \( \mathrm{e} \in\mathrm{N} \) will be the identity for the operation.
Now, if \( \mathrm{a} * \mathrm{e}=\mathrm{a}=\mathrm{e} * \mathrm{a}, \mathrm{a} \in \mathrm{N} \).
But, this is not true for any \( a\in\mathrm{N} \).
Therefore, the operation \(*\) does not have any identity in N.
Find which of the binary operations are commutative and which are associative.
\(
a * b=a-b
\)
We can have observed that for \( 2,3,4 \in \mathrm{Q} \)
\( 2 * 3=2-3=-1 \) and \( 3 * 2=3-2=1 \)
\(
2 * 3 \neq 3 * 2
\)
\( \Rightarrow \) the operation \(*\) is not commutative.
Also, \( (2 * 3) * 4=(-1) * 4=-1-4=-5 \) and
\(2 *(3 * 4)=2 *(-1)=2-(-1)=3\)
\(\Rightarrow(2 * 3) * 4 \neq 2 *(3 * 4)
\)
Therefore, the operation \(*\) is not associative.
Find which of the binary operations are commutative and which are associative.
\(
a * b=a^{2}+b^{2}
\)
For \( \mathrm{a}, \mathrm{b} \in \mathrm{Q} \), we get,
\( a* b=a^{2}+b^{2}=b^{2}+a^{2}=b* a \)
\( \Rightarrow \) the operation is commutative.
We can see that \( (1 * 2) * 3 \neq 1 *(2 * 3) \), where \( 1,2,3 \in \mathrm{Q} \)
Therefore, the operation \(*\) is not associative.
\(
a * b=a+a b
\)
Find which of the binary operations are commutative and which are associative.
\(
a * b=a+a b
\)
We can see that \( 1 * 2=1+1 \times 2=1+2=3 \)
and \( 2 * 1=2+2 \times 1=2+2=4 \)
\( \Rightarrow 1 * 2 \neq 2 * 1: \) where \( 1,2 \in \mathrm{Q} \).
\( \Rightarrow \) the operation \(*\) is not commutative.
Also, we can see that \( (1 * 2) * 3 \neq 1 *(2 * 3) \), where \( 1,2,3 \in \mathrm{Q} \)
Therefore, the operation \(*\) is not associative.
Find which of the binary operations are commutative and which are associative.
\(
a * b=(a-b)^{2}
\)
For \( \mathrm{a}, \mathrm{b} \in \mathrm{Q} \), we have,
\(
a * b=(a-b)^{2}\)
\(b * a=(b-a)^{2}=[-(a-b)]^{2}=(a-b)^{2}\)
\(\Rightarrow a * b=b * a
\)
\( \Rightarrow \) the operation \( * \) is commutative.
Also, we can see that \( (1 * 2) * 3 \neq 1 *(2 * 3) \), where \( 1,2,3 \in \mathrm{Q} \) Therefore, the operation \(*\) is not associative.
Find which of the binary operations are commutative and which are associative.
\(
\mathrm{a} * \mathrm{b}=\frac{a b}{4}
\)
For \( a, b \in Q \), we get,
\(
\mathrm{a} * \mathrm{b}=\frac{a b}{4}=\frac{b a}{4}=\mathrm{b} * \mathrm{a}
\)
\( \Rightarrow \) the operation is commutative.
For, \( \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Q} \), we get,
\(
(\mathrm{a} * \mathrm{b}) * \mathrm{c}=\frac{a b}{4} * \mathrm{c}=\frac{\frac{a b}{4} \cdot c}{4}=\frac{a b c}{16}\)
\(\mathrm{a} *(\mathrm{b} * \mathrm{c})=\mathrm{a} * \frac{b c}{4}=\frac{a \cdot \frac{b c}{4}}{4}=\frac{a b c}{16}\)
\(\Rightarrow(\mathrm{a} * \mathrm{b}) * \mathrm{c}=\mathrm{a} *(\mathrm{b} * \mathrm{c})
\)
Therefore, the operation \(*\) is associative.
class 12 maths ncert solutions chapter 1 ex 1.4 || exercise 1.4 class 12 maths ncert solutions || ex 1.4 class 12 maths ncert solutions || relations and functions class 12 ncert solutions
Find which of the binary operations are commutative and which are associative.
\(
a * b=a b^{2}
\)
We can see that for \( 2,3 \in \mathrm{Q} \)
\( 2 * 3=2.3^{2}=18 \) and \( 3 * 2=3.2^{2}=12 \)
\(
\Rightarrow 2 * 3 \neq 3 * 2
\)
Therefore, the operation \(*\) is not commutative.
Also, we can see that \( (1 * 2) * 3 \neq 1 *(2 * 3) \), where \( 1,2,3 \in \mathrm{Q} \)
Therefore, the operation \(*\) is not associative.
\(
a* b=a-b
\)
This operation is not commutative,
Therefore, it does not have identity element.
(ii) An element \( \mathrm{e} \in \mathrm{Q} \) will be the identity element for the operation \(*\) if \( \mathrm{a}* \mathrm{e}=\mathrm{a}=\mathrm{e}* \mathrm{a}, \forall \mathrm{a} \in \mathrm{Q} \)
\(
a* b=a^{2}+b^{2}
\)
If \( a * e=a \), then \( a^{2}+e^{2}=a \)
For \( \mathrm{a}=-2,(-2)^{4}+\mathrm{e}^{2} \neq-2 \).
Therefore, there is no identity element.
(iii) An element \( e \in Q \) will be the identity element for the operation * if \( \mathrm{a}* \mathrm{e}=\mathrm{a}=\mathrm{e}* \mathrm{a}, \forall \mathrm{a} \in \mathrm{Q} \)
Now, \( a * b=a+a b \)
This is not commutative.
Therefore, there is no identity element.
(iv) An element \( e \in Q \) will be the identity element for the operation \(*\) if \( \mathrm{a}* \mathrm{e}=\mathrm{a}=\mathrm{e}* \mathrm{a}, \forall \mathrm{a} \in \mathrm{Q} \)
\(
a* b=(a-b)^{2}
\)
If \( a* \mathrm{e}=\mathrm{a} \), then \( (\mathrm{a}-\mathrm{e})^{2}=\mathrm{a} \).
A square is always positive, thus for \( \mathrm{a}=-2,(-2-\mathrm{e})^{2} \neq-2 \).
Therefore, there is no identity element.
(v) An element \( \mathrm{e} \in \mathrm{Q} \) will be the identity element for the operation \(*\) if \( \mathrm{a} * \mathrm{e}=\mathrm{a}=\mathrm{e}* \mathrm{a}, \forall \mathrm{a} \in \mathrm{Q} \)
\( \mathrm{a} * \mathrm{b}=\frac{a b}{4} \)
If \( \mathrm{a} * \mathrm{e}=\mathrm{a} \), then \( \frac{a e}{4}=\mathrm{a} \)
Therefore, \( \mathrm{e}=4 \) is the identity element.
\( \mathrm{a} * 4=4 * \mathrm{a}=\frac{4 a}{4}=\mathrm{a} \).
(vi) An element \( e \in\mathrm{Q} \) will be the identity element for the operation \(*\) if \( \mathrm{a} * \mathrm{e}=\mathrm{a}=\mathrm{e} * \mathrm{a}, \forall \mathrm{a} \in \mathrm{Q} \)
Now, \( \mathrm{a} * \mathrm{b}=\mathrm{ab}^{2} \)
This operation is not commutative,
Therefore, there is not have identity element.
Show that \( * \) is commutative and associative. Find the identity element for \( * \) on \( A \), if any.
Let \( (\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}) \in \mathrm{A} \)
Then, \( a, b, c, d \in N \)
Now, we have,
\(
(a, b) *(c, d)=(a+c, b+d)
\)
\(
(\mathrm{c}, \mathrm{d}) *(\mathrm{a}, \mathrm{d})=(\mathrm{c}+\mathrm{a}, \mathrm{d}+\mathrm{b})=(\mathrm{a}+\mathrm{c}, \mathrm{b}+\mathrm{d})\)
\(\Rightarrow(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})=(\mathrm{c}, \mathrm{d}) *(\mathrm{a}, \mathrm{b})
\)
\( \Rightarrow \) The operation \(*\) is commutative.
Now, \( (\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}),(\mathrm{e}, \mathrm{f}) \in \mathrm{A} \)
Then, \( a, b, c, d, e, f \in N \)
Now, we have,
\(((a, b) *(c, d)) *(e, f)=(a+c, b+d) *(e, f)=(a+c+e, b+d+f)\)
\((a, b) *((c, d) *(e, f))=(a, b) *(c+e, d+f)=(a+c+e, b+d+f)
\)
Then, \( ((\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})) *(\mathrm{e}, \mathrm{f})=(\mathrm{a}, \mathrm{b}) *((\mathrm{c}, \mathrm{d}) *(\mathrm{e}, \mathrm{f})) \)
Therefore, the operation \(*\) is associative.
Now, an element \( e=\left(e_{1}, e_{2}\right) \in \mathrm{A} \) will be an identity for the operation \(*\) if \( a * \mathrm{e}=\mathrm{a}=\mathrm{e} * \mathrm{a} \forall \mathrm{a}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right) \in A \),
\(
\left(a_{1}+e_{1}, a_{2}+e_{2}\right)=\left(a_{1}, a_{2}\right)=\left(e_{1}+a_{1}, e_{2}+a_{2}\right)
\)
which is not true for any element in A.?
Therefore, the operation \(*\) does not have any identity element.
The above statement is false.
Explanation: It is given that an operation \( * \) on a set \( N, a * a=a \forall a \in N \)
Then, in particular, for \( \mathrm{b}=\mathrm{a}=3 \), we get,
\(
3 * 3=3+3=6 \neq 3
\)
Explanation: RHS \( =(\mathrm{c} * \mathrm{b}) * \mathrm{a} \)
\( =(\mathrm{b} * \mathrm{c}) * \mathrm{a}(* \) is commutative\( ) \)
\( =\mathrm{a} *(\mathrm{b} * \mathrm{c})(\mathrm{as} * \) is commutative\( ) \)
\( = \) LHS.
Therefore, \( a *(b * c)=(c * b) * a \).
Hence Proved
A. Is \( * \) both associative and commutative?
B. Is \( * \) commutative but not associative?
C. Is \( * \) associative but not commutative?
D. Is \(*\) neither commutative nor associative?
For, \( \mathrm{a}, \mathrm{b} \in \mathrm{N} \), we get,
\( a* b=a^{3}+b^{3}=b^{3}+a^{3}=b * a \) [Addition is commutative in \( N \)]
\( \Rightarrow \) the operation \( * \) is commutative.
We can have observed that
\( \left(1* 2\right) * 3=\left(1^{3}+2^{3}\right) * 3=9 * 3=9^{3}+3^{3}=729 +27=756 \)
Also, \( 1*\left(2* 3\right)=1 *\left(2^{3}+3^{3}\right)=1 *(8+27)=1 \times 35=1^{3}+35^{3}=1+(35)^{3}= \) \( 1+42875=42876 \).
Therefore, \( (1 * 2) * 3 \neq 1 *(2 * 3) \); where \( 1,2,3 \in \mathrm{N} \)
Therefore, the operation * is not associative.
Therefore, the operation * is commutative, but not associative.