Exercise 2.2 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 2 ex 2.2 || ex 2.2 class 12 maths ncert solutions || inverse trigonometric functions class 12 ncert solutions
NCERT Solutions for Class 12 Maths – Chapter 2 Exercise 2.2 (Inverse Trigonometric Functions)
Exercise 2.2 of Class 12 Maths NCERT Solutions focuses on solving problems involving identities and relationships between inverse trigonometric functions, a vital concept in the chapter Inverse Trigonometric Functions. This exercise helps students apply standard identities and manipulate expressions to simplify or prove equations involving inverse trigonometric terms. The Class 12 Maths Exercise 2.2 NCERT Solutions offer clear, step-by-step explanations to develop a deeper understanding of the topic. These solutions follow the latest CBSE syllabus and are perfect for English Medium students preparing for board exams. By practicing from the Class 12 Maths NCERT Solutions Chapter 2 Exercise 2.2, students can gain strong problem-solving skills and boost their confidence in handling inverse trigonometric expressions. The Exercise 2.2 Class 12 Maths NCERT Solutions serve as an excellent study aid for mastering this topic and scoring high in both school and competitive exams.

ex 2.2 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 2 ex 2.2 || inverse trigonometric functions class 12 ncert solutions || exercise 2.2 class 12 maths ncert solutions
Exercise 2.2
\(
3 \sin ^{-1} x=\sin ^{-1}(3 x-4 x 3) 3, x \in\left[-\frac{1}{2}, \frac{1}{2}\right]
\)
We have,
\(
\text { R.H.S }=\sin ^{-1}\left(3 x-4 x^{3}\right)^{3}=\sin ^{-1}\left(3 \sin \theta-4 \sin ^{3} \theta\right)
\)
Now, we know that,
\(
\sin 3 x=3 \sin x-4 \sin 3 x
\)
Therefore,
\(
=\sin ^{-1}(\sin (3 \theta))\)
\(=3 \theta\)
\(=3 \sin ^{-1} x\)
\(=\text { L.H.S }
\)
Hence Proved
\(
3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in\left[\frac{1}{2}, 1\right]
\)
Then, \( \operatorname{Cos}^{-1}=\theta \)
Now, R.H.S. \( =\cos ^{-1}\left(4 x^{3}-3 x\right) \)
\(
=\cos ^{-1}\left(4 \cos ^{3} \theta-3 \cos \theta\right)\)
\(=\cos ^{-1}\left(\cos ^{3} \theta\right)\)
\(=3 \theta\)
\(=3 \cos ^{-1} x\)
\(=\text { L.H.S. }
\)
Hence Proved
\(
\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}=\tan ^{-1} \frac{1}{2}
\)
\(
=\tan ^{-1} \frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{2}{11} \cdot \frac{7}{24}} \quad\left[\therefore \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right]\)
\(=\tan ^{-1} \frac{\frac{48+77}{11 \times 24}}{\frac{11 \times 24-14}{11 \times 24}}\)
\(=\tan ^{-1} \frac{48+77}{264-14}\)
\(=\tan ^{-1} \frac{125}{250}\)
\(=\tan ^{-1} \frac{1}{2}\)
\(=\text { R.H.S. }\)
Hence Proved.
\( 2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17} \)
\( =\tan ^{-1} \frac{2 \cdot \frac{1}{2}}{1-\left(\frac{1}{2}\right)^{2}}+\tan ^{-1} \frac{1}{7} \)
\( =\tan ^{-1} \frac{1}{\frac{3}{4}}+\tan ^{-1} \frac{1}{7} \)
\( =\tan ^{-1} \frac{4}{3}+\tan ^{-1} \frac{1}{7} \)
\( =\tan ^{-1} \frac{\frac{4}{3}+\frac{1}{7}}{1-\frac{4}{3} \cdot \frac{1}{7}}\left[\right. \) since, \( \left. \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right] \)
\( =\tan ^{-1} \frac{\frac{28+3}{21}}{\frac{21-4}{21}}\)
\( =\tan ^{-1} \frac{31}{17} \)
\( = \) R.H.S.
Hence Proved.
\( \tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}, x \neq 0 \)
\tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}, x \neq 0
\)
Now, Put \( x=\tan \theta \Rightarrow \theta=\tan ^{-1} x \)
Therefore, \( \tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}=\tan ^{-1}\left(\frac{\sqrt{1+\tan \theta^{2}}-1}{\tan \theta}\right) \)
\( =\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right) \)
\( =\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right) \)
\( =\tan ^{-1}\left(\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin{\frac{\theta}{2}}\cos \frac{\theta}{2}}\right) \)
\( =\tan ^{-1}\left(\tan \frac{\theta}{2}\right) \)
\( =\frac{\theta}{2}=\frac{1}{2} \tan ^{-1} x \)
Therefore, \( \tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}=\frac{1}{2} \tan ^{-1} x \)
\(
\tan ^{-1} \frac{1}{\sqrt{x^{2}-1}},|x| > 1
\)
\tan ^{-1} \frac{1}{\sqrt{x^{2}-1}},|x| > 1
\)
Let us take,
\(
x=\operatorname{cosec} \theta=\theta=\operatorname{cosec}^{-1} x
\)
[We have done this substitution on the bases of identity \( \sec 2 \theta-1= \) \( \tan 2 \theta] \)
Therefore, \( \tan ^{-1} \frac{1}{\sqrt{x^{2}-1}}=\tan ^{-1} \frac{1}{\sqrt{\operatorname{cosec}^{2} \theta-1}} \)
Now we know that, \( \operatorname{cosec} 2 \theta-1=\cot 2 \theta \)
Therefore,
\( =\tan ^{-1} \frac{1}{\cot \theta}=\tan ^{-1}(\tan \theta)=\theta=\operatorname{cosec}^{-1} x \)
\( \tan ^{-1}=\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right) x < \pi \)
\( =\tan ^{-1}\left(\sqrt{\frac{2 \sin^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}}\right) \)
\( =\tan ^{-1}\left(\frac{\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}}\right) \)
\( =\tan ^{-1}\left(\tan \frac{x}{2}\right) \)
\( =\frac{x}{2} \)
Hence, \( \tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)=\frac{x}{2} \)
ex 2.2 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 2 ex 2.2 || inverse trigonometric functions class 12 ncert solutions || exercise 2.2 class 12 maths ncert solutions
\( \tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right), 0 < x < \pi \)
\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)
\)
Dividing by \( \cos x \),
\( =\tan ^{-1}\left(\frac{1-\frac{s i n x}{\cos x}}{1+\frac{s i n x}{\cos x}}\right) \)
\( =\tan ^{-1}\left(\frac{1-\tan x}{1+\tan x}\right),\left[\therefore \frac{\sin x}{\cos x}=\tan x\right] \)
\( =\tan ^{-1}-\tan ^{-1}(\tan x)\left[\therefore \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)\right] \)
As we know \( \tan (\frac {\pi}{4})=1 \)
\( =\tan ^{-1}\left(\tan \left(\frac{\pi}{4}\right)\right)+\tan ^{-1}(\tan x) \)
\( =\frac{\pi}{4}-x \)
Hence, \( \tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)=\frac{\pi}{4}-x \).
\(
\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}},|x| < \mathrm{a}
\)
\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}}
\)
We will solve this problem on the bases of the identity \( 1-\sin 2 \theta=\cos 2 \theta \)
So, for \( \mathrm{a}^{2}-x^{2} \), we can substitute \( x=\mathrm{a} \sin \theta \) or \( x=\mathrm{a} \cos \theta \)
Now, let us put \( x=\mathrm{a} \sin \theta \)
\(
=\frac{x}{a}=\sin \theta\)
\(=\theta=\sin ^{-1}\left(\frac{x}{a}\right)
\)
Therefore,
\(\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}}=\tan ^{-1}\left(\frac{a \sin \theta}{\sqrt{a^{2}-a^{2} \sin ^{2} \theta}}\right)=\tan ^{-1}\left(\frac{a \sin \theta}{a \cos \theta}\right)\)
\(=\tan ^{-1}(\tan \theta)=\theta=\sin ^{-1}\left(\frac{x}{a}\right)
\)
Hence, \( \tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right) \)
\(
\tan ^{-1}\left\{\frac{3 a^{3} x-x^{3}}{a^{3}-3 a x^{2}}\right\}, \mathrm{a} > 0 ; \frac{-a}{\sqrt{3}} < x < \frac{a}{\sqrt{3}}
\)
\tan ^{-1}\left\{\frac{3 a^{3} x-x^{3}}{a^{3}-3 a x^{2}}\right\}
\)
Put \( x=\mathrm{a} \tan \theta \Rightarrow \frac{x}{a}=\tan \theta=\tan ^{-1} \frac{x}{a} \)
Now,
\(
\tan ^{-1}\left(\frac{3 a^{3} x-x^{3}}{a^{3}-3 a x^{2}}\right)=\tan ^{-1}\left(\frac{3 a^{3} \cdot a \tan \theta-a^{3} \tan ^{3} \theta}{a^{3}-3 a \cdot a^{2} \tan ^{2} \theta}\right)\)
\(=\tan ^{-1}\left(\frac{3 a^{3} \tan \theta-a^{3} \tan ^{3} \theta}{a^{3}-3 a^{3} \tan ^{2} \theta}\right)\)
\(=\tan ^{-1}(\tan 3 \theta)\left[\therefore \frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}=\tan 3 \theta\right]\)
\(=3 \theta\)
\(=3 \tan ^{-1} \frac{x}{a}
\)
\(
\tan ^{-1}\left[2 \cos \left(2 s i \bar{n}^{1} \frac{1}{2}\right)\right]
\)
\tan ^{-1}\left[2 \cos \left(2 \operatorname{si} \bar{n}^{1} \frac{1}{2}\right)\right]
\)
We will solve the inner bracket first.
So, we will first find the principal value of \( \sin ^{-1} \frac{1}{2} \)
We know that, \( \sin ^{-1} \frac{1}{2}=\frac{\pi}{6} \)
Therefore,
\(
\tan ^{-1}\left[2 \cos \left(2 \operatorname{si} \bar{n}^{1} \frac{1}{2}\right)\right]=\tan ^{-1}\left[2 \cos \left(2 \times \frac{\pi}{6}\right)\right]\)
\(=\tan ^{-1}\left[2 \cos \left(\frac{\pi}{3}\right)\right]\)
\(=\tan ^{-1}\left[2 \times \frac{1}{2}\right]\left[\text { since, cos }\left(\frac{\pi}{3}\right)=\frac{1}{2}\right]\)
\(=\tan ^{-1} 1\)
\(=\frac{ \pi }{ 4 }
\)
Hence,
The value of \( \tan ^{-1}\left[2 \cos \left(2 \operatorname{si} {n}^{-1} \frac{1}{2}\right)\right]=\frac{\pi}{4} \)
\(
\cot \left(\tan ^{-1} a+\cot ^{-1} a\right)
\)
\cot \left(\tan ^{-1} a+\cot ^{-1} a\right)\)
\(=\cot \left(\frac{\pi}{2}\right),\left[\therefore \tan ^{-1} x+\cot ^{-1} y=\frac{\pi}{2}\right]\)
\(=0
\)
Hence, the value of \( \cot \left(\tan ^{-1} a+\cot ^{-1} a\right)=0 \)
\(
\tan \frac{1}{2}\left[\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right],|x| < 1, y=0
\)
\tan \frac{1}{2}\left[\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right]
\)
We will solve this problem by expressing \( \sin 2 \theta \) and \( \cos 2 \theta \) in terms of \( \tan \theta \)
Now let us put, \( x=\tan \theta \). Then we will have,
\(
{l}
\theta=\tan ^{-1} x \\
\therefore \sin ^{-1} \frac{2 x}{1+x^{2}}=\sin ^{-1} \frac{2 \tan \theta}{1+\tan ^{2} \theta}=\sin ^{-1}(\sin 2 \theta)=2 \theta=2 \tan ^{-1} x
\)
Now again, Let's put, \( y=\tan \emptyset \). Then we will have,
\( \phi=\tan -1 y \)
\(
\therefore \cos ^{-1} \frac{1-y^{2}}{1+y^{2}}=\sin ^{-1}\left(\frac{1-\tan ^{2} \phi}{1+\tan ^{2} \phi}\right)=\cos ^{-1}(\cos 2 \phi)=2 \phi=2 \tan ^{-1} y
\)
Now,
\(
\begin{array}{l}
\tan \frac{1}{2}\left[\sin {n}^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right] \\
=\tan \frac{1}{2}\left[2 \tan ^{-1} x+2 \tan ^{-1} y\right] \\
=\tan \left[\tan ^{-1} x+\tan ^{-1} y\right] \\
=\tan \left[\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\right] \\
=\frac{x+y}{1-x y}
\end{array}
\)
Hence, the value of
\( \tan \frac{1}{2}\left[\sin^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right]=\frac{x+y}{1-x y} \)
If \( \sin \left(si{n}^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1 \), then find the value of \( x \)
\begin{array}{l}
\operatorname{Sin }\left(\ si{n}^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1 \\
=\sin ^{-1} \frac{1}{5}+\cos ^{-1} x=\sin -11 \\
=\sin ^{-1} \frac{1}{5}+\cos ^{-1} x=\frac{\pi}{2},\left[\text { since, } si{n}^{-1} 1=\frac{\pi}{2}\right] \\
=\sin ^{-1} \frac{1}{5}=\frac{\pi}{2}-\cos ^{-1} x \\
=\sin ^{-1} \frac{1}{5}=\sin ^{-1} x,\left[\text { since, } si {n}^{-1} x+\cos ^{-1} x=\frac{\pi}{2}\right]
\end{array}
\)
On comparing the co-efficient on both sides we get,
\(
=x=\frac{1}{5}
\)
\(
\operatorname{Sin}^{-1}\left(\sin \frac{2 \pi}{3}\right)
\)
\operatorname{Sin}^{-1}\left(\sin _{3}^{2 \pi}\right)
\)
(For \( \sin ^{-1}(\sin x) \) type of problem we have to always check whether the angle is in the principal range or not. This angle must be in the principal range \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \)
So here, \( \frac{2 \pi}{2} otin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \)
Now, \( \sin ^{-1}\left(\sin \frac{2\pi}{3}\right) \) can be written as,
\( \sin ^{-1}\left(\sin \frac{2\pi}{3}\right) \)
\( =\sin ^{-1}\left(\sin \pi-\frac{\pi}{3}\right) \)
\( =\sin ^{-1}\left(\sin \frac{\pi}{3}\right) \) where \( \frac{\pi}{3} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \)
\( =\frac{\pi}{3} \)
Hence, \( \sin ^{-1}\left(\sin \frac{2\pi}{3}\right)=\frac{\pi}{3} \).
ex 2.2 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 2 ex 2.2 || inverse trigonometric functions class 12 ncert solutions || exercise 2.2 class 12 maths ncert solutions
\( \tan ^{-1}\left(\tan \frac{3 \pi}{4}\right) \)
\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)
\)
(For \( \tan ^{-1}(\tan x) \) type of problem we have to always check whether the angle is in the principal range or not. This angle must be in the principal range. \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \) )
So here, \( \frac{3 \pi}{4} \notin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \)
Now, \( \tan ^{-1}\left(\tan \frac{3 \pi}{4}\right) \) can be written as,
\(\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)\)
\(=\tan ^{-1}\left[\tan \left(\pi-\frac{\pi}{4}\right)\right]\)
\( =-\tan -1\left(\tan \frac{\pi}{4}\right) \)
where \( -\frac{\pi}{4} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \),
[since, \( \tan (\pi-x)=-\tan x \)
\( =-\frac{\pi}{4} \)
Hence, \( \tan -1\left(\tan \frac{3 \pi}{4}\right)=-\frac{\pi}{4} \)
\(
\tan \left(\operatorname{si} {n}^{1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)
\)
Hence, \( \cos y=\frac{4}{5} \) and \( \tan y=\frac{3}{4} \), so \( ta{n}^{-1}\left(\frac{3}{4}\right)=y \)
Also,
\( \operatorname{Cot}^{-1}\left(\frac{3}{2}\right)=\tan ^{-1} \frac{2}{3} \) as \( \cot ^{-1} x=\tan ^{-1}\left(\frac{1}{x}\right) \)
So, \( \tan \left({si}{n}^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right) \)
\( =\tan \left(\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right) \)
\( =\tan \left(\tan ^{-1} \frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \cdot \frac{2}{3}}\right) \)
\( =\tan \left(\tan ^{-1} \frac{17}{6}\right)=\frac{17}{6} \)
Hence, \( \tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)=\frac{17}{6} \)
\( \operatorname{Cos}^{-1}\left(\cos \frac{7 \pi}{6}\right) \) is equal to
A. \( \frac{7 \pi}{6} \)
B. \( \frac{5 \pi}{6} \)
C. \( \frac{\pi}{6} \)
D. \( \frac{\pi}{3} \)
(For \( \cos ^{-1}(\cos x) \) type of problem we have to always check whether the angle is in the principal range or not. This angle must be in the principal range. \( \left.\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right) \)
So here,
\( \frac{7 \pi}{6} \notin[0, \pi] \)
Now, \( \cos ^{-1}\left(\cos \frac{7 \pi}{67}\right) \) can be written as,
\( \operatorname{Cos}^{-1}\left(\cos \frac{7 \pi}{6}\right) \)
\( =\cos ^{-1}\left[\cos \left(\pi+\frac{\pi}{6}\right)\right] \)
\( =-\cos ^{-1}\left(\cos \frac{\pi}{6}\right) \)
where \( -\frac{\pi}{6} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \)
[since, \( \cos (\pi+x)=-\cos x] \)
\( =\pi-\cos ^{-1}\left(\cos \frac{\pi}{6}\right) \) as \( \cos -1(-x)=\pi-\cos -1 \)
\( =\pi-\frac{\pi}{6}=\frac{5 \pi}{6} \)
Hence, \( \cos \left(\cos \frac{7 \pi}{6}\right)=\frac{5 \pi}{6} \).
\( \sin \left(\frac{\pi}{3}-\right. \) \( \left. si{n}^{-1}\left(-\frac{1}{2}\right)\right) \) is equal to
A. \( \frac{1}{2} \)
B. \( \frac{1}{3} \)
C. \( \frac{1}{4} \)
D. 1
\( =-\frac{\pi}{6} \) as \( \sin \left(\frac{\pi}{6}\right)=\frac{1}{2} \)
We all know that the principal value branch of \( \sin ^{-1} \) is \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \)
\( \therefore \) \( si{n}^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6} \)
Therefore,\( \sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right)=\sin \left(\frac{\pi}{3}+\frac{\pi}{6}\right)=\sin \left(\frac{3 \pi}{6}\right)=\sin \left(\frac{\pi}{2}\right)=1 \) Hence, the value of \( \sin \left(\frac{\pi}{3}-\right. \) \( \left. si{n}^{-1}\left(-\frac{1}{2}\right)\right) \)
\(
\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})
\)
is equal to
A. \( \pi \)
B. \( -\frac{\pi}{2} \)
C. 0
D. \( 2 \sqrt{3} \)
\tan ^{-1} \sqrt{3-} \cot ^{-1}(-\sqrt{3})\)
\(=\tan ^{-1} \sqrt{3}-\left(\pi-\cot ^{-1} \sqrt{3}\right)\)
\(=\tan ^{-1} \sqrt{3}+\cot ^{-1} \sqrt{3}-\pi\)
\(=\frac{\pi}{2}-\pi\)
\(=-\frac{\pi}{2}
\)