Exercise 2.2 class 12 maths ncert solutions

Exercise 2.2 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 2 ex 2.2 || ex 2.2 class 12 maths ncert solutions || inverse trigonometric functions class 12 ncert solutions​​

NCERT Solutions for Class 12 Maths – Chapter 2 Exercise 2.2 (Inverse Trigonometric Functions)
Exercise 2.2 of Class 12 Maths NCERT Solutions focuses on solving problems involving identities and relationships between inverse trigonometric functions, a vital concept in the chapter Inverse Trigonometric Functions. This exercise helps students apply standard identities and manipulate expressions to simplify or prove equations involving inverse trigonometric terms. The Class 12 Maths Exercise 2.2 NCERT Solutions offer clear, step-by-step explanations to develop a deeper understanding of the topic. These solutions follow the latest CBSE syllabus and are perfect for English Medium students preparing for board exams. By practicing from the Class 12 Maths NCERT Solutions Chapter 2 Exercise 2.2, students can gain strong problem-solving skills and boost their confidence in handling inverse trigonometric expressions. The Exercise 2.2 Class 12 Maths NCERT Solutions serve as an excellent study aid for mastering this topic and scoring high in both school and competitive exams.

ex 6.4 class 12 maths ncert solutions
ex 2.2 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 2 ex 2.2 || inverse trigonometric functions class 12 ncert solutions​ || exercise 2.2 class 12 maths ncert solutions
Download the Math Ninja App Now

Exercise 2.2

1. Prove the following:
\(
3 \sin ^{-1} x=\sin ^{-1}(3 x-4 x 3) 3, x \in\left[-\frac{1}{2}, \frac{1}{2}\right]
\)
Answer
Let \( x=\sin \theta \) then \( \sin ^{-1} x=\theta \)
We have,
\(
\text { R.H.S }=\sin ^{-1}\left(3 x-4 x^{3}\right)^{3}=\sin ^{-1}\left(3 \sin \theta-4 \sin ^{3} \theta\right)
\)
Now, we know that,
\(
\sin 3 x=3 \sin x-4 \sin 3 x
\)
Therefore,
\(
=\sin ^{-1}(\sin (3 \theta))\)
\(=3 \theta\)
\(=3 \sin ^{-1} x\)
\(=\text { L.H.S }
\)
Hence Proved
2. Prove the following:
\(
3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in\left[\frac{1}{2}, 1\right]
\)
Answer
Let \( x=\cos \theta \)
Then, \( \operatorname{Cos}^{-1}=\theta \)
Now, R.H.S. \( =\cos ^{-1}\left(4 x^{3}-3 x\right) \)
\(
=\cos ^{-1}\left(4 \cos ^{3} \theta-3 \cos \theta\right)\)
\(=\cos ^{-1}\left(\cos ^{3} \theta\right)\)
\(=3 \theta\)
\(=3 \cos ^{-1} x\)
\(=\text { L.H.S. }
\)
Hence Proved
3. Prove the following:
\(
\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}=\tan ^{-1} \frac{1}{2}
\)
Answer
L.H.S. \( \tan -1 \frac{2}{11}+\tan -1 \frac{7}{24} \)
\(
=\tan ^{-1} \frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{2}{11} \cdot \frac{7}{24}} \quad\left[\therefore \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right]\)
\(=\tan ^{-1} \frac{\frac{48+77}{11 \times 24}}{\frac{11 \times 24-14}{11 \times 24}}\)
\(=\tan ^{-1} \frac{48+77}{264-14}\)
\(=\tan ^{-1} \frac{125}{250}\)
\(=\tan ^{-1} \frac{1}{2}\)
\(=\text { R.H.S. }\)
Hence Proved.
4. Prove the following:
\( 2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17} \)
Answer
L.H.S. \( =2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7} \)
\( =\tan ^{-1} \frac{2 \cdot \frac{1}{2}}{1-\left(\frac{1}{2}\right)^{2}}+\tan ^{-1} \frac{1}{7} \)
\( =\tan ^{-1} \frac{1}{\frac{3}{4}}+\tan ^{-1} \frac{1}{7} \)
\( =\tan ^{-1} \frac{4}{3}+\tan ^{-1} \frac{1}{7} \)
\( =\tan ^{-1} \frac{\frac{4}{3}+\frac{1}{7}}{1-\frac{4}{3} \cdot \frac{1}{7}}\left[\right. \) since, \( \left. \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}\right] \)
\( =\tan ^{-1} \frac{\frac{28+3}{21}}{\frac{21-4}{21}}\)
\( =\tan ^{-1} \frac{31}{17} \)
\( = \) R.H.S.
Hence Proved.
5. Write the following functions in the simplest form:
\( \tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}, x \neq 0 \)
Answer
\(
\tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}, x \neq 0
\)
Now, Put \( x=\tan \theta \Rightarrow \theta=\tan ^{-1} x \)
Therefore, \( \tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}=\tan ^{-1}\left(\frac{\sqrt{1+\tan \theta^{2}}-1}{\tan \theta}\right) \)
\( =\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right) \)
\( =\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right) \)
\( =\tan ^{-1}\left(\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin{\frac{\theta}{2}}\cos \frac{\theta}{2}}\right) \)
\( =\tan ^{-1}\left(\tan \frac{\theta}{2}\right) \)
\( =\frac{\theta}{2}=\frac{1}{2} \tan ^{-1} x \)
Therefore, \( \tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}=\frac{1}{2} \tan ^{-1} x \)
6. Write the following functions in the simplest form:
\(
\tan ^{-1} \frac{1}{\sqrt{x^{2}-1}},|x| > 1
\)
Answer
\(
\tan ^{-1} \frac{1}{\sqrt{x^{2}-1}},|x| > 1
\)
Let us take,
\(
x=\operatorname{cosec} \theta=\theta=\operatorname{cosec}^{-1} x
\)
[We have done this substitution on the bases of identity \( \sec 2 \theta-1= \) \( \tan 2 \theta] \)
Therefore, \( \tan ^{-1} \frac{1}{\sqrt{x^{2}-1}}=\tan ^{-1} \frac{1}{\sqrt{\operatorname{cosec}^{2} \theta-1}} \)
Now we know that, \( \operatorname{cosec} 2 \theta-1=\cot 2 \theta \)
Therefore,
\( =\tan ^{-1} \frac{1}{\cot \theta}=\tan ^{-1}(\tan \theta)=\theta=\operatorname{cosec}^{-1} x \)
7. Write the following functions in the simplest form:
\( \tan ^{-1}=\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right) x < \pi \)
Answer
\( \tan ^{-1}=\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right) x < \pi \)
\( =\tan ^{-1}\left(\sqrt{\frac{2 \sin^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}}\right) \)
\( =\tan ^{-1}\left(\frac{\sin{\frac{x}{2}}}{\cos{\frac{x}{2}}}\right) \)
\( =\tan ^{-1}\left(\tan \frac{x}{2}\right) \)
\( =\frac{x}{2} \)
Hence, \( \tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)=\frac{x}{2} \)
ex 2.2 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 2 ex 2.2 || inverse trigonometric functions class 12 ncert solutions​ || exercise 2.2 class 12 maths ncert solutions
Download the Math Ninja App Now
8. Write the following functions in the simplest form:
\( \tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right), 0 < x < \pi \)
Answer
\(
\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)
\)
Dividing by \( \cos x \),
\( =\tan ^{-1}\left(\frac{1-\frac{s i n x}{\cos x}}{1+\frac{s i n x}{\cos x}}\right) \)
\( =\tan ^{-1}\left(\frac{1-\tan x}{1+\tan x}\right),\left[\therefore \frac{\sin x}{\cos x}=\tan x\right] \)
\( =\tan ^{-1}-\tan ^{-1}(\tan x)\left[\therefore \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)\right] \)
As we know \( \tan (\frac {\pi}{4})=1 \)
\( =\tan ^{-1}\left(\tan \left(\frac{\pi}{4}\right)\right)+\tan ^{-1}(\tan x) \)
\( =\frac{\pi}{4}-x \)
Hence, \( \tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right)=\frac{\pi}{4}-x \).
9. Write the following functions in the simplest form:
\(
\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}},|x| < \mathrm{a}
\)
Answer
\(
\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}}
\)
We will solve this problem on the bases of the identity \( 1-\sin 2 \theta=\cos 2 \theta \)
So, for \( \mathrm{a}^{2}-x^{2} \), we can substitute \( x=\mathrm{a} \sin \theta \) or \( x=\mathrm{a} \cos \theta \)
Now, let us put \( x=\mathrm{a} \sin \theta \)
\(
=\frac{x}{a}=\sin \theta\)
\(=\theta=\sin ^{-1}\left(\frac{x}{a}\right)
\)
Therefore,
\(\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}}=\tan ^{-1}\left(\frac{a \sin \theta}{\sqrt{a^{2}-a^{2} \sin ^{2} \theta}}\right)=\tan ^{-1}\left(\frac{a \sin \theta}{a \cos \theta}\right)\)
\(=\tan ^{-1}(\tan \theta)=\theta=\sin ^{-1}\left(\frac{x}{a}\right)
\)
Hence, \( \tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right) \)
10. Write the following functions in the simplest form:
\(
\tan ^{-1}\left\{\frac{3 a^{3} x-x^{3}}{a^{3}-3 a x^{2}}\right\}, \mathrm{a} > 0 ; \frac{-a}{\sqrt{3}} < x < \frac{a}{\sqrt{3}}
\)
Answer
\(
\tan ^{-1}\left\{\frac{3 a^{3} x-x^{3}}{a^{3}-3 a x^{2}}\right\}
\)
Put \( x=\mathrm{a} \tan \theta \Rightarrow \frac{x}{a}=\tan \theta=\tan ^{-1} \frac{x}{a} \)
Now,
\(
\tan ^{-1}\left(\frac{3 a^{3} x-x^{3}}{a^{3}-3 a x^{2}}\right)=\tan ^{-1}\left(\frac{3 a^{3} \cdot a \tan \theta-a^{3} \tan ^{3} \theta}{a^{3}-3 a \cdot a^{2} \tan ^{2} \theta}\right)\)
\(=\tan ^{-1}\left(\frac{3 a^{3} \tan \theta-a^{3} \tan ^{3} \theta}{a^{3}-3 a^{3} \tan ^{2} \theta}\right)\)
\(=\tan ^{-1}(\tan 3 \theta)\left[\therefore \frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}=\tan 3 \theta\right]\)
\(=3 \theta\)
\(=3 \tan ^{-1} \frac{x}{a}
\)
11. Find the values of each of the following:
\(
\tan ^{-1}\left[2 \cos \left(2 s i \bar{n}^{1} \frac{1}{2}\right)\right]
\)
Answer
\(
\tan ^{-1}\left[2 \cos \left(2 \operatorname{si} \bar{n}^{1} \frac{1}{2}\right)\right]
\)
We will solve the inner bracket first.
So, we will first find the principal value of \( \sin ^{-1} \frac{1}{2} \)
We know that, \( \sin ^{-1} \frac{1}{2}=\frac{\pi}{6} \)
Therefore,
\(
\tan ^{-1}\left[2 \cos \left(2 \operatorname{si} \bar{n}^{1} \frac{1}{2}\right)\right]=\tan ^{-1}\left[2 \cos \left(2 \times \frac{\pi}{6}\right)\right]\)
\(=\tan ^{-1}\left[2 \cos \left(\frac{\pi}{3}\right)\right]\)
\(=\tan ^{-1}\left[2 \times \frac{1}{2}\right]\left[\text { since, cos }\left(\frac{\pi}{3}\right)=\frac{1}{2}\right]\)
\(=\tan ^{-1} 1\)
\(=\frac{ \pi }{ 4 }
\)
Hence,
The value of \( \tan ^{-1}\left[2 \cos \left(2 \operatorname{si} {n}^{-1} \frac{1}{2}\right)\right]=\frac{\pi}{4} \)
12. Find the values of each of the following:
\(
\cot \left(\tan ^{-1} a+\cot ^{-1} a\right)
\)
Answer
\(
\cot \left(\tan ^{-1} a+\cot ^{-1} a\right)\)
\(=\cot \left(\frac{\pi}{2}\right),\left[\therefore \tan ^{-1} x+\cot ^{-1} y=\frac{\pi}{2}\right]\)
\(=0
\)
Hence, the value of \( \cot \left(\tan ^{-1} a+\cot ^{-1} a\right)=0 \)
13. Find the values of each of the following:
\(
\tan \frac{1}{2}\left[\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right],|x| < 1, y=0
\)
Answer
\(
\tan \frac{1}{2}\left[\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right]
\)
We will solve this problem by expressing \( \sin 2 \theta \) and \( \cos 2 \theta \) in terms of \( \tan \theta \)
Now let us put, \( x=\tan \theta \). Then we will have,
\(
{l}
\theta=\tan ^{-1} x \\
\therefore \sin ^{-1} \frac{2 x}{1+x^{2}}=\sin ^{-1} \frac{2 \tan \theta}{1+\tan ^{2} \theta}=\sin ^{-1}(\sin 2 \theta)=2 \theta=2 \tan ^{-1} x
\)
Now again, Let's put, \( y=\tan \emptyset \). Then we will have,
\( \phi=\tan -1 y \)
\(
\therefore \cos ^{-1} \frac{1-y^{2}}{1+y^{2}}=\sin ^{-1}\left(\frac{1-\tan ^{2} \phi}{1+\tan ^{2} \phi}\right)=\cos ^{-1}(\cos 2 \phi)=2 \phi=2 \tan ^{-1} y
\)
Now,
\(
\begin{array}{l}
\tan \frac{1}{2}\left[\sin {n}^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right] \\
=\tan \frac{1}{2}\left[2 \tan ^{-1} x+2 \tan ^{-1} y\right] \\
=\tan \left[\tan ^{-1} x+\tan ^{-1} y\right] \\
=\tan \left[\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\right] \\
=\frac{x+y}{1-x y}
\end{array}
\)
Hence, the value of
\( \tan \frac{1}{2}\left[\sin^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right]=\frac{x+y}{1-x y} \)
14. Find the values of each of the following:
If \( \sin \left(si{n}^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1 \), then find the value of \( x \)
Answer
\(
\begin{array}{l}
\operatorname{Sin }\left(\ si{n}^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1 \\
=\sin ^{-1} \frac{1}{5}+\cos ^{-1} x=\sin -11 \\
=\sin ^{-1} \frac{1}{5}+\cos ^{-1} x=\frac{\pi}{2},\left[\text { since, } si{n}^{-1} 1=\frac{\pi}{2}\right] \\
=\sin ^{-1} \frac{1}{5}=\frac{\pi}{2}-\cos ^{-1} x \\
=\sin ^{-1} \frac{1}{5}=\sin ^{-1} x,\left[\text { since, } si {n}^{-1} x+\cos ^{-1} x=\frac{\pi}{2}\right]
\end{array}
\)
On comparing the co-efficient on both sides we get,
\(
=x=\frac{1}{5}
\)
15. Find the values of each of the expression
\(
\operatorname{Sin}^{-1}\left(\sin \frac{2 \pi}{3}\right)
\)
Answer
\(
\operatorname{Sin}^{-1}\left(\sin _{3}^{2 \pi}\right)
\)
(For \( \sin ^{-1}(\sin x) \) type of problem we have to always check whether the angle is in the principal range or not. This angle must be in the principal range \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \)
So here, \( \frac{2 \pi}{2} otin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \)
Now, \( \sin ^{-1}\left(\sin \frac{2\pi}{3}\right) \) can be written as,
\( \sin ^{-1}\left(\sin \frac{2\pi}{3}\right) \)
\( =\sin ^{-1}\left(\sin \pi-\frac{\pi}{3}\right) \)
\( =\sin ^{-1}\left(\sin \frac{\pi}{3}\right) \) where \( \frac{\pi}{3} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \)
\( =\frac{\pi}{3} \)
Hence, \( \sin ^{-1}\left(\sin \frac{2\pi}{3}\right)=\frac{\pi}{3} \).
ex 2.2 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 2 ex 2.2 || inverse trigonometric functions class 12 ncert solutions​ || exercise 2.2 class 12 maths ncert solutions
Download the Math Ninja App Now
16. Find the values of each of the expression
\( \tan ^{-1}\left(\tan \frac{3 \pi}{4}\right) \)
Answer
\(
\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)
\)
(For \( \tan ^{-1}(\tan x) \) type of problem we have to always check whether the angle is in the principal range or not. This angle must be in the principal range. \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \) )
So here, \( \frac{3 \pi}{4} \notin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \)
Now, \( \tan ^{-1}\left(\tan \frac{3 \pi}{4}\right) \) can be written as,
\(\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)\)
\(=\tan ^{-1}\left[\tan \left(\pi-\frac{\pi}{4}\right)\right]\)
\( =-\tan -1\left(\tan \frac{\pi}{4}\right) \)
where \( -\frac{\pi}{4} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \),
[since, \( \tan (\pi-x)=-\tan x \)
\( =-\frac{\pi}{4} \)
Hence, \( \tan -1\left(\tan \frac{3 \pi}{4}\right)=-\frac{\pi}{4} \)
17. Find the values of each of the expression
\(
\tan \left(\operatorname{si} {n}^{1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)
\)
Answer
Let \( \sin ^{-1}\left(\frac{3}{5}\right)=y \) so \( \sin y=\frac{3}{5} \) and \( y \in\left(0, \frac{\pi}{2}\right) \), so all ratio of y are positive and
Hence, \( \cos y=\frac{4}{5} \) and \( \tan y=\frac{3}{4} \), so \( ta{n}^{-1}\left(\frac{3}{4}\right)=y \)
Also,
\( \operatorname{Cot}^{-1}\left(\frac{3}{2}\right)=\tan ^{-1} \frac{2}{3} \) as \( \cot ^{-1} x=\tan ^{-1}\left(\frac{1}{x}\right) \)
So, \( \tan \left({si}{n}^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right) \)
\( =\tan \left(\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right) \)
\( =\tan \left(\tan ^{-1} \frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \cdot \frac{2}{3}}\right) \)
\( =\tan \left(\tan ^{-1} \frac{17}{6}\right)=\frac{17}{6} \)
Hence, \( \tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right)=\frac{17}{6} \)
18. Find the values of each of the expression
\( \operatorname{Cos}^{-1}\left(\cos \frac{7 \pi}{6}\right) \) is equal to
A. \( \frac{7 \pi}{6} \)
B. \( \frac{5 \pi}{6} \)
C. \( \frac{\pi}{6} \)
D. \( \frac{\pi}{3} \)
Answer
\( \operatorname{Cos}^{-1}\left(\cos \frac{7 \pi}{6}\right) \)
(For \( \cos ^{-1}(\cos x) \) type of problem we have to always check whether the angle is in the principal range or not. This angle must be in the principal range. \( \left.\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right) \)
So here,
\( \frac{7 \pi}{6} \notin[0, \pi] \)
Now, \( \cos ^{-1}\left(\cos \frac{7 \pi}{67}\right) \) can be written as,
\( \operatorname{Cos}^{-1}\left(\cos \frac{7 \pi}{6}\right) \)
\( =\cos ^{-1}\left[\cos \left(\pi+\frac{\pi}{6}\right)\right] \)
\( =-\cos ^{-1}\left(\cos \frac{\pi}{6}\right) \)
where \( -\frac{\pi}{6} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \)
[since, \( \cos (\pi+x)=-\cos x] \)
\( =\pi-\cos ^{-1}\left(\cos \frac{\pi}{6}\right) \) as \( \cos -1(-x)=\pi-\cos -1 \)
\( =\pi-\frac{\pi}{6}=\frac{5 \pi}{6} \)
Hence, \( \cos \left(\cos \frac{7 \pi}{6}\right)=\frac{5 \pi}{6} \).
19. Find the values of each of the expression
\( \sin \left(\frac{\pi}{3}-\right. \) \( \left. si{n}^{-1}\left(-\frac{1}{2}\right)\right) \) is equal to
A. \( \frac{1}{2} \)
B. \( \frac{1}{3} \)
C. \( \frac{1}{4} \)
D. 1
Answer
\( \operatorname{Sin}^{-1}\left(-\frac{1}{2}\right)=\sin ^{-1}\left(\frac{1}{2}\right) \) as \( \sin ^{-1}(-x)=\sin ^{-1} x \)
\( =-\frac{\pi}{6} \) as \( \sin \left(\frac{\pi}{6}\right)=\frac{1}{2} \)
We all know that the principal value branch of \( \sin ^{-1} \) is \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \)
\( \therefore \) \( si{n}^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6} \)
Therefore,\( \sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right)=\sin \left(\frac{\pi}{3}+\frac{\pi}{6}\right)=\sin \left(\frac{3 \pi}{6}\right)=\sin \left(\frac{\pi}{2}\right)=1 \) Hence, the value of \( \sin \left(\frac{\pi}{3}-\right. \) \( \left. si{n}^{-1}\left(-\frac{1}{2}\right)\right) \)
20. Find the values of each of the expression
\(
\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})
\)
is equal to
A. \( \pi \)
B. \( -\frac{\pi}{2} \)
C. 0
D. \( 2 \sqrt{3} \)
Answer
\(
\tan ^{-1} \sqrt{3-} \cot ^{-1}(-\sqrt{3})\)
\(=\tan ^{-1} \sqrt{3}-\left(\pi-\cot ^{-1} \sqrt{3}\right)\)
\(=\tan ^{-1} \sqrt{3}+\cot ^{-1} \sqrt{3}-\pi\)
\(=\frac{\pi}{2}-\pi\)
\(=-\frac{\pi}{2}
\)
ex 2.2 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 2 ex 2.2 || inverse trigonometric functions class 12 ncert solutions​ || exercise 2.2 class 12 maths ncert solutions
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top