Exercise 4.1 Class 11 Maths Solutions

Exercise 4.1 class 11 maths solutions | class 11 ch 4 exercise 4.1 solutions | class 11 chapter 4 exercise 4.1 solution | class 11 maths ncert solutions chapter 4 | ncert solutions for class 11 maths chapter 4 | ncert exemplar class 11 maths | principle of mathematical induction class 11 exercise 4.1​

Looking for Exercise 4.1 Class 11 Maths solutions? You’re in the right place! This section provides clear and complete solutions to all the questions from Exercise 4.1 of Chapter 4 – Principle of Mathematical Induction. Designed as per the latest NCERT syllabus, these step-by-step answers will help you understand the concept of mathematical induction, its base case, and inductive step with clarity. Whether you’re revising from the Class 11 Ch 4 Exercise 4.1 solutions or practicing questions from the NCERT Exemplar Class 11 Maths, these solutions will strengthen your foundation. Explore or download the Class 11 Maths NCERT Solutions Chapter 4 now and build confidence in this important mathematical principle!

exercise 4.1 class 11 maths solutions
ncert solutions for class 11 maths chapter 4 || class 11 chapter 4 exercise 4.1 solution || class 11 ch 4 exercise 4.1 solutions || principle of mathematical induction class 11 exercise 4.1​ || class 11 maths ncert solutions chapter 4 || exercise 4.1 class 11 maths solutions || ncert exemplar class 11 maths
Download the Math Ninja App Now

Exercise 4.1

1. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\(1+3+3^{2}+\ldots+3^{n-1}=\frac{\left(3^{n}-1\right)}{2}\)
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\(\mathrm{P}(\mathrm{n}): 1+3+3^{2}+\ldots+3^{\mathrm{n}-1}=\frac{\left(3^{n}-1\right)}{2}\)
For \( \mathrm{n}=1 \), we have
\( P(1):=\frac{\left(3^{1}-1\right)}{2}=\frac{3-1}{2}=\frac{2}{2}=1 \), which is true.
Let \( \mathrm{P}(\mathrm{k}) \) be true for some positive integer k, i.e.,
\(1+3+3^{2}+\ldots+3^{\mathrm{k}-1}=\frac{\left(3^{k}-1\right)}{2} \ldots\)(i)
We shall now prove that \( P(k+1) \) is true.
Consider
\(1+3+3^{2}+\ldots+3 \mathrm{k}-1+3(\mathrm{k}+1)-1\)
\(=\left(1+3+3^{2}+\ldots+3 \mathrm{k}-1\right)+3 \mathrm{k}\)
\(=\frac{\left(3^{k}-1\right)}{2}+3 k\)
\(=\frac{\left(3^{k}-1\right)+2.3^{k}}{2}[\text { using (1)] }\)
\(=\frac{(1+2) 3^{k}-1}{2}\)
\(=\frac{3.3^{k}-1}{2}\)
\(=\frac{3^{k-1}-1}{2}\)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( \mathrm{P}(\mathrm{n}) \) is true for all natural numbers i.e., N .
2: Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\(1^{3}+2^{3}+3^{3}+\ldots+\mathrm{n}^{3}=\left(\frac{n(n+1)}{2}\right)^{2}\)
Answer
Let the given statement be \( \mathrm{P(n)} \), i.e.,
\(\mathrm{P}(\mathrm{n}): 1^{3}+2^{3}+3^{3}+\ldots+\mathrm{n}^{3}=\left(\frac{n(n+1)}{2}\right)^{2}\)
For \( \mathrm{n}=1 \), we have
\( \mathrm{P}(1): 1^{3}=1=\left(\frac{1(1+1)}{2}\right)^{2}=\left(\frac{1.2}{2}\right)^{2}=1^{2}=1 \) which is true.
Let \( \mathrm{P}(\mathrm{k}) \) be true for some positive integer \( k \), i.e.,
\(1^{3}+2^{3}+3^{3}+\ldots+\mathrm{k}^{3}=\left(\frac{k(k+1)}{2}\right)^{2} \ldots\)(1)
We shall now prove that \( P(k+1) \) is true.
Consider
\(1^{3}+2^{3}+3^{3}+\ldots+k^{3}+(k+1)^{3}\)
\(=\left(1^{3}+2^{3}+3^{3}+\ldots .+k^{3}\right)+(k+1)^{3}\)
\(=\left\{\frac{k(k+1)}{2}\right\}^{2}+(k+1)^{3}[\operatorname{using}(1)]\)
\(=\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3}\)
\(=\frac{k^{3}(k+1)^{3}+4(k+1)^{3}}{4}\)
\(=\frac{(k+1)^{2}\left\{k^{2}+4(k+1)\right\}}{4}\)
\(=\frac{(k+1)^{2}+\left(k^{2}+4 k+4\right)}{4}\)
\(=\frac{(k+1)^{2}+(k+1)^{2}}{4}\)
\(=\frac{(k+1)^{2}(k+1+1)^{2}}{4}\)
\(=\left\{\frac{(k+1)(k+1+1)}{2}\right\}^{2}\)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( \mathrm{P(n}) \) is true for all natural numbers i.e., N .
3. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\(1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots+\frac{1}{(1+2+3+\cdots n)}=\frac{2 n}{(n+1)}\)
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\(\mathrm{P}(\mathrm{n}): 1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots+\frac{1}{(1+2+3+. .+n)}=\frac{2 n}{(n+1)}\)
For \( \mathrm{n}=1 \), we have
\( \mathrm{P}(1): 1=\frac{2.1}{1+1}=\frac{2}{2}=1 \) which is true.
Let \( \mathrm{P(k)} \) be true for some positive integer \( k \), i.e.,
\(1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots+\frac{1}{(1+2+3+. . k)}=\frac{2 k}{k+1} \ldots\)
We shall now prove that \( \mathrm{P(k+1) }\) is true.
Consider
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots+\frac{1}{1+2+3+. .+k}+\frac{1}{1+2+3+\cdots+k+(k+1)}\)
\(=\left\{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\cdots+\frac{1}{1+2+3+k}\right\}+\frac{1}{1+2+3+\cdots+k+(k+1)}\)
\(=\frac{2 k}{k+1}+\frac{1}{1+2+3+. .+k+(k+1)}[\operatorname{using}(1)]\)
\(=\frac{2 k}{k+1}+\frac{1}{\left(\frac{(k+1)(k+1+1)}{2}\right)}\left[1+2+3+. .+n=\frac{n(n+1)}{2}\right]\)
\(=\frac{2 k}{k+1}+\frac{2}{(k+1)(k+2)}\)
\(=\frac{2}{k+1}\left\{k+\frac{1}{k+2}\right\}\)
\(=\frac{2}{k+1}\left\{\frac{k^{2}+2 k+1}{k+2}\right\}\)
\(=\frac{2}{k+1}\left[\frac{(k+1)^{2}}{k+2}\right]\)
\(=\frac{2(k+1)}{k+2}\)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( \mathrm{P}(\mathrm{n}) \) is true for all natural numbers i.e., N .
ncert solutions for class 11 maths chapter 4 || class 11 chapter 4 exercise 4.1 solution || class 11 ch 4 exercise 4.1 solutions || principle of mathematical induction class 11 exercise 4.1​ || class 11 maths ncert solutions chapter 4 || exercise 4.1 class 11 maths solutions || ncert exemplar class 11 maths
Download the Math Ninja App Now
4. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N}:
1.2 .3+2.3 .4+\ldots+\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)= \) \( \frac{n(n+1)(n+2)(n+3)}{4} \)
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\(\mathrm{P}(\mathrm{n}): 1.2.3+2.3.4+\ldots+\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)=\frac{n(n+1)(n+2)(n+3)}{4}\)
For \( \mathrm{n}=1 \), we have
\( \mathrm{P(1)}: 1.2.3=6=\frac{1(1+1)(1+2)(1+3)}{4}=\frac{1.2.3 \cdot 4}{4}=6 \) which is true.
Let \( \mathrm{P}(\mathrm{k}) \) be true for some positive integer k, i.e.,
\(1.2.3+2.3.4+\ldots+\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)=\frac{k(k+1)(k+2)(k+3)}{4}\)
We shall now prove that \( \mathrm{P(k+1)} \) is true.
Consider
\(1.2 .3+2.3 .4+\ldots+\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)+(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)\)
\(= \{1.2.3+2.3 .4+\ldots+\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+2)\}+(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+3)\)
\(= \frac{k(k+1)(k+2)(k+3)}{4}+(k+1)(k+2)(k+3)[\operatorname{using}(1)]\)
\(= (k+1)\left(k+20(k+3)\left(\frac{k}{4}+1\right)\right.\)
\(= \frac{(k+1)(k+2)(k+3)(k+4)}{4}\)
\(= \frac{(k+1)(k+1+1)(k+1+2)(k+1+3)}{4}\)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( \mathrm{P}(\mathrm{n}) \) is true for all natural numbers i.e., N .
5. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\(1.3+2.3^{2}+3.3^{2}+\ldots+n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}\)
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\(\mathrm{P}(\mathrm{n}): 1.3+2.3^{2}+3.3^{2}+\ldots+\mathrm{n} .3^{\mathrm{n}}=\frac{(2 n-1) 3^{n+1}+3}{4}\)
For \( \mathrm{n}=1 \), we have
\( \mathrm{P(1)}: 1.3=3 \frac{(2 n-1) 3^{1+1}+3}{4}=\frac{3^{2}+3}{4}=\frac{12}{4}=3 \), which is true.
Let \( \mathrm{P}(\mathrm{k}) \) be true for some positive integer \( k \), i.e.,
\(1.3+2.3^{2}+3.3^{2}+\mathrm{k} 3^{\mathrm{k}}=\frac{(2 k-1) 3^{k+1}+3}{4} \ldots(1)\)
We shall now prove that \( \mathrm{P}(\mathrm{k}+1) \) is true.
Consider
\(1.3+2.3^{2}+3.3^{3}+\ldots+\mathrm{k}.3^{\mathrm{k}}+(\mathrm{k}+1).3 \mathrm{k}+1\)
\(=\left(1.3+2.3^{2}+3.3^{3}+\ldots+\mathrm{k}.3^{\mathrm{k}}\right)+(\mathrm{k}+1).3 \mathrm{k}+1\)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true
\(=\frac{(2 k-1) 3^{k+1}+3}{4}+(k+1) 3^{k+1}[\text { using }(1)]\)
\(=\frac{(2 k-1) 3^{k+1}+3+4(k+1) 3^{k+1}}{4}\)
\(=\frac{3^{k+1}\{2 k-1+4(k+1)\}+3}{4}\)
\(=\frac{3^{k+1}(6 k+3)+3}{4}\)
\(=\frac{3^{k+1} \cdot 3(2 k+1)+3}{4}\)
\(=\frac{3^{(k+1)+1}(2 k+1)+3}{4}\)
\(=\frac{(2(k+1)) 3^{(k+1)+1}+3}{4}\)
Hence, by the principle of mathematical induction, statement \( \mathrm{P}(\mathrm{n}) \) is true for all natural numbers i.e., N.
6. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\(1.2+2.3+3.4+\ldots+\mathrm{n}(\mathrm{n}+1)=\left[\frac{n(n+1)(n+2)}{3}\right]\)
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\(\mathrm{P}(\mathrm{n}): 1.2+2.3+3.4+\ldots+\mathrm{n}(\mathrm{n}+1)=\left[\frac{n(n+1)(n+2)}{3}\right]\)
For \( \mathrm{n}=1 \), we have
\( \mathrm{P(1)}: 1.2=2=\frac{1(1+1)(1+2)}{3}=\frac{1.2 .3}{3}=2 \) which is true.
Let \( \mathrm{P(k)} \) be true for some positive integer \( k \), i.e.,
We shall now prove that \( \mathrm{P(k+1)} \) is true.
\(\text { Consider } 1.2+2.3+3.4+\ldots+\mathrm{k} .(\mathrm{k}+1)+(\mathrm{k}+1) .(\mathrm{k}+2)\)
\(=[1.2+2.3+3.4+\ldots+\mathrm{k}(\mathrm{k}+1)]+(\mathrm{k}+1)(\mathrm{k}+2)\)
\(=\frac{k(k+1)(k+2)}{3}+(k+1)(k+2)[\operatorname{using}(1)]\)
\(=(\mathrm{k}+1)(\mathrm{k}+2)\left(\frac{k}{3}+1\right)\)
\(=\frac{(k+1)(k+2)(k+3)}{3}\)
\(=\frac{(k+1)(k+1+1)(k+1+2)}{3}\)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( \mathrm{P}(\mathrm{n}) \) is true for all natural numbers i.e., N.
7. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\(1.3+3.5+5.7+\ldots+(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}\)
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\(\mathrm{P}(\mathrm{n}): 1.3+3.5+5.7+\ldots+(2 \mathrm{n}-1)(2 \mathrm{n}+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}\)
For \( \mathrm{n}=1 \), we have
\( P(1): 1.3=3=\frac{1\left(4.1^{2}+6.1-1\right)}{3}=\frac{4+6-1}{3}=\frac{9}{3}=3 \), which is true.
Let \( \mathrm{P}(\mathrm{k}) \) be true for some positive integer k, i.e.,
\(1.3+3.5+5.7+\ldots+(2 \mathrm{k}-1)(2 \mathrm{k}+1)=\frac{k\left(4 k^{2}+6 k-1\right)}{3} \ldots\)(1)
We shall now prove that \(\mathrm{ P(k+1)} \) is true.
Consider
\((1.3+3.5+5.7+\ldots+(2 \mathrm{k}-1)(2 \mathrm{k}+1)+\{2(\mathrm{k}+1)-1\}\{2(\mathrm{k}+1)+1\}\)
\(=\frac{k\left(4 k^{2}+6 k-1\right)}{3}+(2 k+2-1)(2 k+2+1)[\text { using }(1)]\)
\(=\frac{k\left(4 k^{2}+6 k-1\right)}{3}+(2 k+1)(2 k+3)\)
\(=\frac{k\left(4 k^{2}+6 k-1\right)}{3}+\left(4 k^{2}+8 k+3\right)\)
\(=\frac{k\left(4 k^{2}+6 k-1\right)+3\left(4 k^{2}+8 k+3\right)}{3}\)
\(=\frac{4 k^{3}+6 k^{2}-k+12 k^{2}+24 k+9}{3}\)
\(=\frac{4 k^{3}+18 k^{3}+23 k+9}{3}\)
\(=\frac{4 k^{3}+14 k^{3}+9 k+4 k^{3}+14 k+9}{3}\)
\(=\frac{k\left(4 k^{2}+14 k+9\right)+1\left(4 k^{2}+14 k+9\right)}{3}\)
\(=\frac{(k+1)\left(4 k^{2}+14 k+9\right)}{3}\)
\(=\frac{(k+1)\left\{4 k^{2}+8 k+4+6 k+6-1\right\}}{3}\)
\(=\frac{(k+1)\left\{4\left(k^{2}+2 k+1\right)+6(k+1)-1\right\}}{3}\)
\(=\frac{(k+1)\left\{4(k+1)^{2}+6(k+1)-1\right\}}{3}\)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( \mathrm{P}(\mathrm{n}) \) is true for all natural numbers i.e., N .
8. Prove the following by using the principle of mathematical induction for all \( n \in N:\)
\( 1.2+2.2^{2}+3.2^{2}+\ldots+n .2^{n}=(n-1) 2^{\mathrm{n}+1}+2 \)
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\(\mathrm{P}(\mathrm{n}): 1.2+2.2^{2}+3.2^{2}+\ldots+\mathrm{n} .2^{\mathrm{n}}=(\mathrm{n}-1) 2^{\mathrm{n}+1}+2\)
For \( \mathrm{n}=1 \), we have
\( \mathrm{P}(1): 1.2=2=(1-1) 2^{1+1}+2=0+2=2 \), which is true.
Let \( P(k) \) be true for some positive integer \( k \), i.e.,
\(1.2+2.2^{2}+3.2^{2}+\ldots+\mathrm{k} .2^{\mathrm{k}}=(\mathrm{k}-1) 2^{\mathrm{k}+1}+2 \ldots \text { (i) }\)
We shall now prove that \( \mathrm{P}(\mathrm{k}+1) \) is true.
Consider
\(\left\{1 \cdot 2+2 \cdot 2^{2}+3 \cdot 2^{3}+\cdots+k \cdot 2^{k}\right\}+(k+1) \cdot 2^{k+1}\)
\(=(k+1) 2^{k+1}+2+(k+1) 2^{k+1}\)
\(=2^{k+1}\{(k-1)+(k+1)\}+2\)
\(=2^{k+1} \cdot 2 k+2\)
\(=\mathrm{k} \cdot 2^{(k+1)+1}+2\)
\(=\{(k+1)-1\} 2^{(k+1)+1}+2\)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( \mathrm{P}(\mathrm{n}) \) is true for all natural numbers i.e., N .
ncert solutions for class 11 maths chapter 4 || class 11 chapter 4 exercise 4.1 solution || class 11 ch 4 exercise 4.1 solutions || principle of mathematical induction class 11 exercise 4.1​ || class 11 maths ncert solutions chapter 4 || exercise 4.1 class 11 maths solutions || ncert exemplar class 11 maths
Download the Math Ninja App Now
9. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\(=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}\)
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\(\mathrm{P}(\mathrm{n}): \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}\)
For \( \mathrm{n}=1 \), we have
\( P(1): \frac{1}{2}=1-\frac{1}{2^{1}}=\frac{1}{2} \) which is true.
Let \( \mathrm{P}(\mathrm{k}) \) be true for some positive integer \( k \), i.e.,
\(=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{k}}=1-\frac{1}{2^{k}} \ldots\)(1)
We shall now prove that \( \mathrm{P}(\mathrm{k}+1) \) is true.
Consider
\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{k}}\right)+\frac{1}{2^{k+1}}\)
\(=\left(1-\frac{1}{2^{k}}\right)+\frac{1}{2^{k+1}}[\operatorname{using}(1)]\)
\(=1-\frac{1}{2^{k}}+\frac{1}{2.2^{k}}\)
\(=1-\frac{1}{2^{k}}\left(1-\frac{1}{2}\right)\)
\(=1-\frac{1}{2^{k}}\left(\frac{1}{2}\right)\)
\(=1-\frac{1}{2^{k+1}}\)

Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( \mathrm{P}(\mathrm{n}) \) is true for all natural numbers i.e., N.
10. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\cdots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{(6 n+4)}\)
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\(\mathrm{P}(\mathrm{n}): \frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\cdots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{(6 n+4)}\)
For \( \mathrm{n}=1 \), we have
\( \mathrm{P (1)}:\frac{1}{2.5}=\frac{1}{10}=\frac{1}{6.1+4}=\frac{1}{10^{\prime}}\) which is true.
Let \( \mathrm{P}(\mathrm{k}) \) be true for some positive integer \( k \), i.e.,
\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\cdots+\frac{1}{(3 k-1)(3 k+2)}=\frac{k}{6 k+4} \ldots\)(1)
We shall now prove that \( P(k+1) \) is true
Consider
\(=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\cdots+\frac{1}{(3 k-1)(3 k+2)}+\frac{1}{\{3(k+1)-1\}\{3(k+1)+2\}}\)
\(=\frac{k}{6 k+4}+\frac{1}{(3 k+3-1)(3 k+3+2)}[\text { using }(1)]\)
\(=\frac{k}{6 k+4}+\frac{1}{(3 k+2)(3 k+5)}\)
\(=\frac{k}{2(3 k+2)}+\frac{1}{(3 k+2)(3 k+5)}\)
\(=\frac{1}{3 k+2}\left(\frac{k}{2}+\frac{1}{3 k+5}\right)\)
\(=\frac{1}{3 k+2}\left(\frac{k(3 k+5)+2}{2(3 k+5)}\right)\)
\(=\frac{1}{3 k+2}\left(\frac{3 k^{2}+5 k+2}{2(3 k+5)}\right)\)
\(=\frac{1}{3 k+2}\left(\frac{(3 k+2)(k+1)}{2(3 k+5)}\right)\)
\(=\frac{k+1}{2(3 k+5)}\)
\(=\frac{k+1}{6 k+10}\)
\(=\frac{k+1}{6(k+1)+4}\)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( P(n) \) is true for all natural numbers i.e., N.
11. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\(\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\cdots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}\)
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\(\mathrm{P}(\mathrm{n}): \frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\cdots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}\)
For \( \mathrm{n}=1 \), we have, which is true.
\( P(1): \frac{1}{1.2.3}=\frac{1 .(1+3)}{4(1+1)(1+2)}=\frac{1.4}{4.2.3}=\frac{1}{1.2 .3^{\prime}} \) which is true.
Let \( \mathrm{P}(\mathrm{k}) \) be true for some positive integer \( k \), i.e.,
\(\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\cdots+\frac{1}{k(k+1)(k+2)}=\frac{k(k+3)}{4(k+1)(k+2)} \ldots(1)\)
We shall now prove that \( \mathrm{P}(\mathrm{k}+1) \) is true.
Consider
\(=\left[\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\cdots+\frac{1}{k(k+1)(k+2)}\right]+\frac{1}{(k+1)(k+2)(k+3)}\)
\(=\frac{k(k+3)}{4(k+1)(k+2)}+\frac{1}{(k+1)(k+2)(k+3)}[\operatorname{using}(1)]\)
\(=\frac{1}{(k+1)(k+2)}\left\{\frac{k(k+3)}{4}+\frac{1}{k+3}\right\}\)
\(=\frac{1}{(k+1)(k+2)}\left\{\frac{k(k+3)^{2}+4}{4(k+3)}\right\}\)
\(=\frac{1}{(k+1)(k+2)}\left\{\frac{k\left(k^{2}+6 k+9\right)+4}{4(k+3)}\right\}\)
\(=\frac{1}{(k+1)(k+2)}\left\{\frac{k^{3}+6 k^{2}+9 k+6}{4(k+3)}\right\}\)
\(=\frac{1}{(k+1)(k+2)}\left\{\frac{k^{3}+2 k^{3}+k+4 k^{3}+8 k+4}{4(k+3)}\right\}\)
\(=\frac{1}{(k+1)(k+2)}\left\{\frac{k\left(k^{2}+2 k+1\right)+4\left(k^{2}+2 k+1\right)}{4(k+3)}\right\}\)
\(=\frac{1}{(k+1)(k+2)}\left\{\frac{k(k+1)^{2}+4(k+1)^{2}}{4(k+3)}\right\}\)
\(=\frac{(k+1)^{2}(k+4)}{4(k+1)(k+2)(k+3)}\)
\(=\frac{(k+1)\{(k+1)+3\}}{4\{(k+1)+1\}\{(k+1)+2\}}\)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( \mathrm{P}(\mathrm{n}) \) is true for all natural numbers i.e., N.
12. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\(a+a r+a r^{2}+\cdots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}\)
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\( \mathrm{P}(\mathrm{n}): a+a r+a r^{2}+\cdots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1} \)
For \( \mathrm{n}=1 \), we have
\( \mathrm{P}(1): a=\frac{a\left(r^{1}-1\right)}{r-1}=a \), which is true.
Let \( P(k) \) be true for some positive integer \( k \), i.e.,
\(=a+a r+a r^{2}+\cdots+a r^{k-1}=\frac{a\left(r^{k}-1\right)}{r-1} \ldots \text { (1) }\)
We shall now prove that \( P(k+1) \) is true.
Consider
\(\left\{a+a r+a r^{2}+\cdots+a r^{k-1}\right\}+a r^{(k+1)-1}\)
\(=\frac{a\left(r^{k}-1\right)}{r-1}+a r^{k}[\text { using }(1)]\)
\(=\frac{a\left(r^{k}-1\right)+a r^{k}(r-1)}{r-1}\)
\(=\frac{a\left(r^{k}-1\right)+a r^{k-1}-a r^{k}}{r-1}\)
\(=\frac{a r^{k}-a+a r^{k+1}-a r^{k}}{r-1}\)
\(=\frac{a r^{k+1}-a}{r-1}\)
\(=\frac{a\left(r^{k+1}-1\right)}{r-1}\)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( P(n) \) is true for all natural numbers i.e., N.
13. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\(\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 n+1)}{n^{2}}\right)=(n+1)^{2}\)
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\(P(n):=\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 n+1)}{n^{2}}\right)=(n+1)^{2}\)
For \( \mathrm{n}=1 \), we have
\( P(1):\left(1+\frac{3}{1}\right)+4=(1+1)^{2}=2^{2}=4 \), which is true.
Let \( \mathrm{P}(\mathrm{k}) \) be true for some positive integer k, i.e.,
\(=\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 k+1)}{k^{2}}\right)=(k+1)^{2} \ldots\)(1)
We shall now prove that \( P(k+1) \) is true.
Consider
\({\left[\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 k+1)}{k^{2}}\right)\right]\left\{1+\frac{(2(k+1)+1)}{(k+1)^{2}}\right\}}\)
\(=(k+1)^{2}\left(1+\frac{2(k+1)+1}{(k+1)^{2}}\right)[\operatorname{using}(1)]\)
\(=(k+1)^{2}\left[\frac{(k+1)^{2}+2(k+1)+1}{(k+1)^{2}}\right]\)
\(=(\mathrm{k}+1)+2(\mathrm{k}+1)+1\)
\(=\{(\mathrm{k}+1)+1\}+2\)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( \mathrm{P}(\mathrm{n}) \) is true for all natural numbers i.e., N.
ncert solutions for class 11 maths chapter 4 || class 11 chapter 4 exercise 4.1 solution || class 11 ch 4 exercise 4.1 solutions || principle of mathematical induction class 11 exercise 4.1​ || class 11 maths ncert solutions chapter 4 || exercise 4.1 class 11 maths solutions || ncert exemplar class 11 maths
Download the Math Ninja App Now
14. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\(\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots .\left(1+\frac{1}{n}\right)=(n+1)\)
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\(P(n):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{n}\right)=(n+1)\)
For \( \mathrm{n}=1 \), we have
\( P(1):\left(1+\frac{1}{1}\right)=2=(1+1) \), which is true.
Let \( \mathrm{P}(\mathrm{k}) \) be true for some positive integer \( k \), i.e.,
\(\mathrm{P}(\mathrm{k}):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{k}\right)=(k+1) \ldots\)(1)
We shall now prove that \( P(k+1) \) is true.
Consider
\({\left[\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{k}\right)\right]\left(1+\frac{1}{k+1}\right)}\)
\(=(k+1)\left[1+\frac{1}{k+1}\right][\operatorname{using}(1)]\)
\(=(k+1)\left\{\frac{(k+1)+1}{(k+1)}\right\}\)
\(=(k+1)+1\)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( \mathrm{P}(\mathrm{n}) \) is true for all natural numbers i.e., N.
15. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\(=1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}\)
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\(P(n): 1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}\)
For \( \mathrm{n}=1 \) we have
\( \mathrm{P}(1): 1^{2}=1=\frac{1(2.1-1)(2.1+1)}{3}=\frac{1.1 .3}{3}=1 \), which is true
Let \( \mathrm{P}(\mathrm{k}) \) be true for some positive integer k, i.e.,
\(\mathrm{P}(\mathrm{k}): 1^{2}+3^{2}+5^{2}+(2 k+1)^{2}=\frac{k(2 k-1)(2 k+1)}{3} \ldots\)(1)
We shall now prove that \( P(k+1) \) is true.
Consider
\(\left\{1^{2}+3^{2}+5^{2}+\cdots+(2 k-1)^{2}\right\}+\{2(k+1)-1\}^{2}\)
\(=\frac{k(2 k-1)(2 k+1)}{3}+(2 k+2-1)^{2}[\text { using }(1)]\)
\(=\frac{k(2 k-1)(2 k+1)}{3}+(2 k+1)^{2}\)
\(=\frac{k(2 k-1)(2 k+1)+3(2 k+1)^{2}}{3}\)
\(=\frac{(2 k+1)\{k(2 k-1)+3(2 k+1)\}}{3}\)
\(=\frac{(2 k+1)\left\{2 k^{2}-k+6 k+3\right\}}{3}\)
\(=\frac{(2 k+1)\left\{2 k^{2}+5 k+3\right\}}{3}\)
\(=\frac{(2 k+1)\left(2 k^{2}+2 k+3 k+3\right)}{3}\)
\(=\frac{(2 k+1)\{2 k(k+1)+3(k+1)\}}{3}\)
\(=\frac{(2 k+1)(k+1)(2 k+3)}{3}\)
\(=\frac{(k+1)\{2(k+1)-1\}\{2(k+10+1\}}{3}\)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( \mathrm{P}(\mathrm{n}) \) is true for all natural numbers i.e., N.
16. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\cdots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}\)
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\(\mathrm{P}(\mathrm{n}): \frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\cdots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}\)
For \( \mathrm{n}=(1) \) we have
\( \mathrm{P}(1)=\frac{1}{1.4}=\frac{1}{3.1+4}=\frac{1}{4}=\frac{1}{1.4^{\prime}} \) which is true.
Let \( P(k) \) be true for some positive integer \( k \), i.e.,
\(\mathrm{P}(\mathrm{k})=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\cdots+\frac{1}{(3 k-2)(3 k+1)}=\frac{k}{(3 k+1)} \ldots(1)\)
We shall now prove that \( \mathrm{P}(\mathrm{k}+1) \) is true.
Consider
\(=\left\{\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\cdots+\frac{1}{(3 k-2)(3 k+1)}\right\}+\frac{1}{\{3(k+1)-2\}\{3(k+1)+1\}}\)
\(=\frac{k}{3 k+1}+\frac{1}{(3 k+1)(3 k+4)}[\operatorname{using}(1)]\)
\(=\frac{1}{(3 k+1)}\left\{k+\frac{1}{(3 k+4)}\right\}\)
\(=\frac{1}{(3 k+1)}\left\{\frac{k(3 k+4)+1}{(3 k+4)}\right\}\)
\(=\frac{1}{(3 k+1)}\left\{\frac{3 k^{2}+4 k+1}{(3 k+4)}\right\}\)
\(=\frac{1}{3 k+1}\left\{\frac{3 k^{2}+3 k+k+1}{(3 k+4)}\right\}\)
\(=\frac{(3 k+1)(k+1)}{(3 k+1)(3 k+4)}\)
\(=\frac{(k+1)}{3(k+1)+1}\)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( \mathrm{P}(\mathrm{n}) \) is true for all natural numbers i.e., N.
17. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}\)
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\(\mathrm{P}(\mathrm{n}): \frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\cdots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}\)
For \( \mathrm{n}=1 \), we have
\(P (1): \frac{1}{3.5}=\frac{1}{3(2.1+3)}=\frac{1}{3.5^{\prime}} \) which is true.
Let \( \mathrm{P}(\mathrm{k}) \) be true for some positive integer \( k \), i.e.,
\(\mathrm{P}(\mathrm{k}): \frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\cdots+\frac{1}{(2 k+1)(2 k+3)}=\frac{k}{3(2 k+3)} \ldots(1)\)
We shall now prove that \( \mathrm{P}(\mathrm{k}+1) \) is true.
Consider
\(=\left[\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\cdots+\frac{1}{(2 k+1)(2 k+3)}\right]+\frac{1}{\{2(k+1)+1\}\{2(k+1))+3\}}\)
\(=\frac{k}{3(2 k+3)}+\frac{1}{(2 k+3)(2 k+5)}\) [using (1)]
\(=\frac{1}{(2 k+3)}\left[\frac{k}{3}+\frac{1}{(2 k+5)}\right]\)
\(=\frac{1}{(2 k+3)}\left[\frac{k(2 k+5)+3}{3(2 k+5)}\right]\)
\(=\frac{1}{(2 k+3)}\left[\frac{2 k^{2}+5 k+3}{3(2 k+5)}\right]\)
\(=\frac{1}{(2 k+3)}\left[\frac{2 k^{2}+2 k+3 k+3}{3(2 k+5)}\right]\)
\(=\frac{1}{2 k+3}\left[\frac{2 k(k+1)+3(k+1)}{3(2 k+5)}\right]\)
\(=\frac{(k+1)(2 k+3)}{3(2 k+3)(2 k+5)}\)
\(=\frac{(k+1)}{3\{2(k+1)+3\}}\)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( \mathrm{P}(\mathrm{n}) \) is true for all natural numbers i.e., N.
18. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\(1+2+3+\ldots+n < \frac{1}{8}(2 n+1)^{2}\)
Answer
Let the given statement be \( P(n) \), i.e.,
\(\mathrm{P}(\mathrm{n}): 1+2+3+\ldots+n < \frac{1}{8}(2 n+1)^{2}\)
It can be noted that \( \mathrm{P}(\mathrm{n}) \) is true for \( \mathrm{n}=1 \) since
\(1 < \frac{1}{8}(2.1+1)^{2}=\frac{9}{8}\)
Let \( P(k) \) be true for some positive integer \( k \), i.e.,
\(\mathrm{P}(\mathrm{k})=1+2+3+\ldots+k < \frac{1}{8}(2 k+1)^{2}\)
We shall now prove that \( P(k+1) \) is true whenever \( P(k) \) is true.
Consider
\((1+2+. .+k)+(k+1) < \frac{1}{8}(2 k+1)^{2}+(k+1)[\text { using }(1)]\)
\(< \frac{1}{8}\left\{(2 k+1)^{2}+8(k+1)\right\}\)
\(< \frac{1}{8}\left\{4 k^{2}+4 k+1+8 k+8\right\}\)
\(< \frac{1}{8}\left\{4 k^{2}+12 k+9\right\}\)
\( < \frac{1}{8}(2 k+3)^{2}\)
\(< \frac{1}{8}\{2(k+1)+1\}^{2}\)
Hence, \( (1+2+3+\cdots+k)+(k+1) < \frac{1}{8}(2 k+1)^{2}+(k+1) \)
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( \mathrm{P}(\mathrm{n}) \) is true for all natural numbers i.e., N.
19. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\( \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+5) \) is a multiple of 3 .
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\( \mathrm{P}(\mathrm{n}): \mathrm{n}(\mathrm{n}+1)(\mathrm{n}+5) \), which is a multiple of \(3\) .
It can be noted that \( P(n) \) is true for \( \mathrm{n}=1 \) since \( 1(1+1)(1+5)=12 \), which is a multiple of \(3\) .
Hence,
Let \( P(k) \) be true for some positive integer \( k \), i.e.,
\( k(k+1)(k+5) \) is a multiple of \(3\) .
\( \therefore \mathrm{k}(\mathrm{k}+1)(\mathrm{k}+5)=3 \mathrm{~m} \), where \( \mathrm{m} \in \mathrm{N} \ldots\)(1)
We shall now prove that \( P(k+1) \) is true whenever \( P(k) \) is true.
Consider
\((\mathrm{k}+1)\{(\mathrm{k}+1)+1\}\{(\mathrm{k}+1)+5\}\)
\(=(\mathrm{k}+1)(\mathrm{k}+2)\{(\mathrm{k}+5)+1\}\)
\(=(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+5)+(\mathrm{k}+1)(\mathrm{k}+2)\)
\(=\{\mathrm{k}(\mathrm{k}+1)(\mathrm{k}+5)+2(\mathrm{k}+1)(\mathrm{k}+5)\}+(\mathrm{k}+1)(\mathrm{k}+2)\)
\(=3 \mathrm{~m}+(\mathrm{k}+1)\{2(\mathrm{k}+5)+(\mathrm{k}+2)\}\)
\(=3 \mathrm{~m}+(\mathrm{k}+1)\{2 \mathrm{k}+10+\mathrm{k}+2\}\)
\(=3 \mathrm{m}+(\mathrm{k}+1)\{3 \mathrm{k}+12\}\)
\(=3 \mathrm{m}+3(\mathrm{k}+1)(\mathrm{k}+4)\)
\( =3 \{\mathrm{m}+(\mathrm{k}+1)(\mathrm{k}+4)\}=3 \times \mathrm{q}\), where \( \mathrm{q}=[\mathrm{m}+(\mathrm{k}+1)(\mathrm{k}+4)\} \) is some natural number.
Therefore, \( (\mathrm{k}+1)\{(\mathrm{k}+1)+1\}\{(\mathrm{k}+1)+5\} \) is a multiple of \(3\).
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( \mathrm{P}(\mathrm{n}) \) is true for all natural numbers i.e., N.
20. Prove the following by using the principle of mathematical induction for all \( \mathrm{n} \in \mathrm{N} \) :
\( 10^{2 \mathrm{n}-1}+1 \) is divisible by 11 .
Answer
Let the given statement be \( \mathrm{P}(\mathrm{n}) \), i.e.,
\( \mathrm{P}(\mathrm{n}): 10^{2 \mathrm{n}-1}+1 \) is divisible by 11 .
It can be observed that \( P(n) \) is true for \( \mathrm{n}=1 \)
since \( P(1)=10^{2.1-1}+1=11 \), which is divisible by 11 .
Let \( P(k) \) be true for some positive integer \( k \),
i.e., \( 10^{2 \mathrm{k}-1}+1 \) is divisible by 11 .
\( \therefore 10^{2 \mathrm{k}-1}+1=11 \mathrm{m} \), where \( \mathrm{m} \in \mathrm{N} \ldots\)(1)
We shall now prove that \( P(k+1) \) is true whenever \( P(k) \) is true.
Consider
\(10^{2(\mathrm{k}+1)-1}+1\)
\(=10^{2 \mathrm{k}+2-1}+1\)
\(=10^{2 \mathrm{k}+1}+1\)
\(10^{2}\left(10^{2 \mathrm{k}-1}+1-1\right)+1\)
\(=10^{2}\left(10^{2 \mathrm{k}-1}+1\right)-102+1\)
\(=10^{2} .11 \mathrm{m}-100+1[\text { using }(1)]\)
\(=100 \times 11 \mathrm{m}-99\)
\(=11(100 \mathrm{m}-9)\)
\( =11 \mathrm{r} \), where \( \mathrm{r}=(100 \mathrm{m}-9) \) is some natural number
Therefore, \( 10^{2(k+1)-1}+1 \) is divisible by 11 .
Thus, \( \mathrm{P}(\mathrm{k}+1) \) is true whenever \( \mathrm{P}(\mathrm{k}) \) is true.
Hence, by the principle of mathematical induction, statement \( \mathrm{P}(\mathrm{n}) \) is true for all natural numbers i.e., N.
ncert solutions for class 11 maths chapter 4 || class 11 chapter 4 exercise 4.1 solution || class 11 ch 4 exercise 4.1 solutions || principle of mathematical induction class 11 exercise 4.1​ || class 11 maths ncert solutions chapter 4 || exercise 4.1 class 11 maths solutions || ncert exemplar class 11 maths
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top