Miscellaneous Exercise Class 11 Chapter 9 Sequences And Series

Miscellaneous exercise class 11 chapter 9 Sequences and Series | class 11 maths ch 9 miscellaneous exercise solutions | class 11 maths chapter 9 miscellaneous exercise​ | class 11 maths Sequences and Series | ncert solution for class 11 maths chapter 9 | ncert exemplar class 11 maths

Looking for Miscellaneous Exercise Class 11 Chapter 9 – Sequences and Series solutions? You’re in the right place! This section provides detailed, step-by-step solutions for all questions from the Miscellaneous Exercise of Chapter 9 – Sequences and Series, based on the latest NCERT syllabus. These solutions cover a blend of problems involving Arithmetic Progressions (AP), Geometric Progressions (GP), and special series, helping you apply concepts to more complex and mixed questions. Whether you’re practicing from the Class 11 Maths Ch 9 Miscellaneous Exercise solutions, revising with the NCERT Exemplar Class 11 Maths, or building a deeper understanding of Sequences and Series Class 11, these answers will guide you confidently. View or download the complete NCERT Solution for Class 11 Maths Chapter 9 and strengthen your problem-solving skills today!

miscellaneous exercise class 11 chapter 9 Sequences and Series
class 11 maths chapter 9 miscellaneous exercise​ || ncert solution for class 11 maths chapter 9 || class 11 maths ch 9 miscellaneous exercise solutions || miscellaneous exercise class 11 chapter 9 Sequences and Series || ncert exemplar class 11 maths || class 11 maths Sequences and Series
Download the Math Ninja App Now

Miscellaneous Exercise

1. Show that the sum of \( (m+n)^{\text {th}} \) and \( (m-n)^{\text {th}} \) terms of an A.P. is equal to twice the \( m^{\text {th}} \) term.
Answer
Let \( a \) and \( d \) be the first term and the common difference of the A.P. respectively. It is known that the kth term of an A. P. is given by
\(a_{k}={a}+({k}-1) {d}\)
\(\therefore {a}_{{m}+{n}}={a}+({m}+{n}-1) {d}\)
\({a}_{{m}-{n}}={a}+({m}-{n}-1) {d}\)
\({a}_{{m}}={a}+({m}-1) {d}\)
\(\therefore {a}_{{m}+{n}}+{a}_{{m}-{n}}={a}+({m}+{n}-1) {d}+{a}+({m}-{n}-1) {d}\)
\(=2 {a}+({m}+{n}-1+{m}-{n}-1) {d}\)
\(=2 {a}+(2 {m}-2) {d}\)
\(=2 {a}+2({m}-1) {d}\)
\(=2[{a}+({m}-1) {d}]\)
\(=2 {am}\)
Thus, the sum of \( (m+n)^{\text {th}} \) and \( (m-n)^{\text {th}} \) terms of an A.P. is equal to twice the \( m^{\text {th}} \) term.
2. If the sum of three numbers in A.P., is 24 and their product is 440, find the numbers.
Answer
Let the three numbers in A.P. be \( {a}-{d} \), a , and \( {a}+{d} \).
According to the given information,
\((a-d)+(a)+(a+d)=24 \ldots(1)\)
\(\Rightarrow 3 a=24\)
\(\therefore a=8\)
\((a-d) a(a+d)=440 \ldots(2)\)
\(\Rightarrow(8-d)(8)(8+d)=440\)
\(\Rightarrow(8-d)(8+d)=55\)
\(\Rightarrow 64-d^{2}=55\)
\(\Rightarrow d^{2}=64-55=9\)
\(\Rightarrow d= \pm 3\)
Therefore, when \( d=3 \), the numbers are 5, 8, and 11 and when \( d=-3 \), the numbers are 11, 8, and 5. 584
Thus, the three numbers are 5, 8, and 11.
3. Let the sum of \( n, 2 n, 3 n \) terms of an A.P. be \( S_{1}, S_{2} \) and \( S_{3} \), respectively, show that \( S_{3}=3\left(S_{2}-S_{1}\right) \)
Answer
Let a and b be the first term and the common difference of the A.P. respectively. Therefore,
\(S_{1}=\frac{n}{2}[2 a+(n-1) d] \ldots(1)\)
\(S_{2}=\frac{2 n}{2}[2 a+(2 n-1) d]=n[2 a+(2 n-1) d] \ldots(2)\)
\(S_{3}=\frac{3 n}{2}[2 a+(3 n-1) d] \ldots(3)\)
From (1) and (2), we obtain
\(\left.\left.{S}_{2}-{S}_{1}={n}[2 {a}++(2 {n}-1) {d})\right]-\frac{n}{2}[2 {a}+({n}-1) {d})\right]\)
\(={n}\left\{\frac{4 a+4 n d-2 d-2 a-n d+d}{2}\right\}\)
\(={n}\left\{\frac{2 a+3 n d-d}{2}\right\}\)
\(=\frac{n}{2}[\left(2 a+93 n-1) d\right]\)
\(\therefore 3\left({S}_{2}-{S}_{1}\right)=\frac{3 n}{2}[2 {a}+(3 {n}-1) {d}]={S}_{3}\quad[\text {from }(3)]\)
Hence, the given result is proved.
4. Find the sum of all numbers between 200 and 400 which are divisible by 7.
Answer
The numbers lying between \(200 \) and \(400\), which are divisible by \(7 ,\) are \(203, 210, 217 \ldots 399\)
\( \therefore \) First term, \( {a}=203 \)
Last term, \( 1=399 \)
Common difference, \( {d}=7 \)
Let the number of terms of the A.P. be \( n \).
\(\therefore {a}_{{n}}=399={a}+({n}-1) {d}\)
\(\Rightarrow 399=203+({n}-1) 7\)
\(\Rightarrow 7({n}-1)=196\)
\(\Rightarrow {n}-1=28\)
\(\Rightarrow {n}=29\)
\({S}_{29}=\frac{29}{2}(203+399)\)
\(=\frac{29}{2}(602)\)
\(=(29)(602)\)
\(=8729\)
Thus, the required sum is \(8729 \).
5. Find the sum of integers from 1 to 100 that are divisible by 2 or 5.
Answer
The integers from 1 to 100, which are divisible by 2, are \( 2,4,6 \ldots 100 \).
This forms an A.P. with both the first term and common difference equal to 2.
\(\Rightarrow 100=2+({n}-1)^{2}\)
\(\Rightarrow {n}=50\)
\(\therefore 2+4+6+\ldots+100=\frac{50}{2}[2(2)+(50-1)(2)]\)
\(=\frac{50}{2}[4+98]\)
\(=(25)(102)\)
\(=2550\)
The integers from 1 to 100, which are divisible by 5, are \( 5,10 \ldots 100 \).
This forms an A.P. with both the first term and common difference equal to 5.
\(\therefore 100=5+({n}-1)^{5}\)
\(\Rightarrow 5 {n}=100\)
\(\Rightarrow {n}=20\)
\(\therefore 5+10+\ldots+100=\frac{20}{2}[2(5)+(20-1) 5]\)
\(=10[10+(19) 5]\)
\(=10[10+95]=10 \times 105\)
\(=1050\)
The integers, which are divisible by both 2 and 5, are \( 10,20, \ldots 100 \).
This also forms an A.P. with both the first term and common difference equal to 10.
\(\therefore 100=10+({n}-1)(10)\)
\(\Rightarrow 100=10 {n}\)
\(\Rightarrow {n}=10\)
\(\therefore 10+20+\ldots+100=\frac{10}{2}[2(10)+(10-1)(10)]\)
\(=5[20+90]=5[110]=550\)
Required sum \( =2550+1050-550=3050 \)
Thus, the sum of the integers from 1 to 100, which are divisible by 2 or 5, is 3050.
6. Find the sum of all two digit numbers which when divided by 4, yields 1 as remainder.
Answer
e two-digit numbers, which when divided by 4, yield 1 as remainder, are \( 13,17, \ldots 97 \).
This series forms an A.P. with first term 13 and common difference 4.
Let \( n \) be the number of terms of the A.P.
It is known that the nth term of an A.P. is given by, \( a n=a+(n-1) d \)
\(\therefore 97=13+({n}-1)(4)\)
\(\Rightarrow 4({n}-1)=84\)
\(\Rightarrow {n}-1=21\)
\(\Rightarrow {n}=22\)
Sum of \( n \) terms of an A.P. is given by,
\({S}_{{n}}=\frac{n}{2}[2 a+(n-1) d]\)
\({S}_{22}=\frac{22}{2}[22(13)+(22-1)(4)]\)
\(=11[26+84]\)
\(=1210\)
Thus, the required sum is 1210.
7. If \( f \) is a function satisfying \( f(x+y)=f(x) \). \( f(y) \) for all \( x, y \in N \), such that \( f(1)=3 \) and \( \sum f(x)=120 \), find the value of \( n \).
Answer
It is given that,
\( f(x+y)=f(x) \times f(y) \) for all \( x, y \in N\quad \ldots\ldots\text{(1)} \)
\( {f}(1)=3 \)
Taking \( x=y=1 \) in (1),
we obtain \( {f}(1+1)={f}(2)={f}(1) {f}(1)=3 \times 3=9 \)
Similarly,
\( {f}(1+1+1)={f}(3)={f}(1+2)={f}(1) {f}(2)=3 \times 9=27 \)
\( {f}(4)={f}(1+3)={f}(1) {f}(3)=3 \times 27=81 \)
\( \therefore {f}(1), {f}(2), {f}(3), \ldots \), that is \( 3,9,27, \ldots \), forms a G.P. with both the first term and common ratio equal to \(3 \).
It is known that, \( {Sn}=\frac{a\left(r^{n}-1\right)}{r-1} \)
It is given that, \( \sum_{x=1}^{n} f(x)=120 \)
\(=120=\frac{3\left(3^{n}-1\right)}{3-1}\)
\(=120=\frac{3}{2}\left(3^{n}-1\right)\)
\(=3 n-1=80\)
\(=3 n=81=34\)
\(=n=4\)
Thus, the value of n is \(4 \).
8. he sum of some terms of G.P. is 315 whose first term and the common ratio is 5 and 2, respectively. Find the last term and the number of terms.
Answer
Let the sum of \( n \) terms of the G.P. be 315.
It is known that, \( {S}_{{n}}=\frac{a\left(r^{n}-1\right)}{r-1} \)
It is given that the first term a is 5 and common ratio \( r \) is \(2 \).
\(\therefore 315=\frac{5\left(2^{n}-1\right)}{2-1}\)
\(=2 {n}-1=63\)
\(=2 {n}=64=(2)^{6}\)
\(={n}=6\)
Last term of the G.P \( =6^{\text {th}} \) term \( =ar^{6-1}=(5)(2)^{5}=(5)(32)=160 \)
Thus, the last term of the G.P. is \(160 \).
class 11 maths chapter 9 miscellaneous exercise​ || ncert solution for class 11 maths chapter 9 || class 11 maths ch 9 miscellaneous exercise solutions || miscellaneous exercise class 11 chapter 9 Sequences and Series || ncert exemplar class 11 maths || class 11 maths Sequences and Series
Download the Math Ninja App Now
9. The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Answer
Let \( a \) and \( r \) be the first term and the common ratio of the G.P. respectively.
\(a=1 a_{3}=a r^{2}=r^{2} a^{5}=a r^{4}=r^{4}\)
\(\therefore r^{2}+r^{4}=90\)
\(\Rightarrow r^{4}+r^{2}-90=0\)
\(=r^{2}=\frac{-1 \pm \sqrt{1+360}}{2}=\frac{-1 \pm \sqrt{361}}{2}=\frac{-1 \pm 19}{2}=-10 \text { or } 9\)
\(=r \pm 3 \text { (taking real roots) }\)
Thus, the common ratio of the G.P. is \( \pm 3 \).
10. The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an arithmetic progression. Find the numbers.
Answer
Let the three numbers in G.P. be \(a, ar,\) and \( ar ^{2} \)
From the given condition,
\({a}+a {r}+{ar}^{2}=56\)
\(\Rightarrow {a}\left(1+{r}+{r}^{2}\right)=56 \quad \ldots\ldots\text{(1)}\)
\({a}-1, a {r}-7, {ar}^{2}-21 \text { forms an A.P. }\)
\(\therefore(a r-7)-({a}-1)=\left({ar}^{2}-21\right)-(a r-7)\)
\(\Rightarrow a {r}-{a}-6={ar}^{2}-a {r}-14\)
\(\Rightarrow {ar}^{2}-2 {ar}+{a}=8\)
\(\Rightarrow {ar}^{2}-a {r}-{ar}+{a}=8\)
\(\Rightarrow {a}\left({r}^{2}+1-2 {r}\right)=8\)
\(\Rightarrow {a}({r}-1)^{2}=8\quad \ldots\ldots\text{(2)}\)
From (1) and (2), we get
\(\Rightarrow 7\left({r}^{2}-2 {r}+1\right)=1+{r}+{r}^{2}\)
\(\Rightarrow 7 {r}^{2}-14 {r}+7-1-{r}-{r}^{2}=0\)
\(\Rightarrow 6 {r}^{2}-15 {r}+6=0\)
\(\Rightarrow 6 {r}^{2}-12 {r}-3 {r}+6=0\)
\(\Rightarrow 6 {r}({r}-2)-3({r}-2)=0\)
\(\Rightarrow(6 {r}-3)({r}-2)=0\)
When \( {r}=2, {a}=8 \)
When
Therefore, when \( {r}=2 \), the three numbers in G.P. are 8, 16, and 32.
When, \( {r}=\frac{ 1 }{ 2 } \), the three numbers in G.P. are 32, 16, and 8.
Thus, in either case, the three required numbers are 8, 16, and 32.
11. A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
Answer
Let the G.P. be \( T_{1}, T_{2}, T_{3}, T_{4} \ldots T_{2 n} \).
Number of terms \( =2 {n} \)
According to the given condition,
\({T}_{1}+{T}_{2}+{T}_{3}+\ldots+{T}_{2 {n}}=5\left[{T}_{1}+{T}_{3}+\ldots+{T}_{2 {n}-1}\right]\)
\(\Rightarrow {T}_{1}+{T}_{2}+{T}_{3}+\ldots+{T}_{2 {n}}-5\left[{T}_{1}+{T}_{3}+\ldots+{T}_{2 {n}-1}\right]=0\)
\(\Rightarrow {T}_{2}+{T}_{4}+\ldots+{T}_{2 {n}}=4\left[{T}_{1}+{T}_{3}+\ldots+{T}_{2 {n}-1}\right]\)
Let the G.P. be a, \( a r, a r^{2}, a r^{3} \ldots \)
\(\therefore \frac{\operatorname{ar}\left(r^{n}-1\right)}{r-1}=\frac{4 \times a\left(r^{n}-1\right)}{r-1}\)
\(=a {r}=4 {a}\)
\(={r}=4\)
Thus, the common ratio of the G.P. is 4.
12. The sum of the first four terms of an A.P. is 56. The sum of the last four terms are 112. If its first term is 11, then find the number of terms.
Answer
Let the A.P. be \( a, a+d, a+2 d, a +3 d \ldots a+(n-2) d, a+(n-1) d \).
Sum of first four terms \( =a+(a+d)+(a+2 d) +(a+3 d)=4 a+6 d \)
Sum of last four terms
\(=[a+(n-4) d]+[a+(n-3) d]+[a+(n-2) d]+[a+(n-1) d]\)
\(=4 a+(4 n-10) d\)
According to the given condition,
\(4 {a}+6 {d}=56\)
\(\Rightarrow 4(11)+6 {d}=56\quad[\text {Since } {a}=11 \text { (given)}]\)
\(\Rightarrow 6 {d}=12\)
\(\Rightarrow {d}=2\)
\(\therefore 4 {a}+(4 {n}-10) {d}=112\)
\(\Rightarrow 4(11)+(4 {n}-10)^{2}=112\)
\(\Rightarrow(4 {n}-10)^{2}=68\)
\(\Rightarrow 4 {n}-10=34\)
\(\Rightarrow 4 {n}=44\)
\(\Rightarrow {n}=11\)
Thus, the number of terms of the A.P. is 11.
13. If \( \frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}=\frac{c+d x}{c-d x}(x \neq 0) \) then show that \( {a}, {b}, {c} \) and \(d\) are in G.P.
Answer
It is given that,
\(\frac{a+b x}{a-b x}=\frac{b+c x}{b-c x}\)
\(=({a}+b {x})({b}-{cx})=({b}+{cx})({a}-{bx})\)
\(={ab}-a c x+{b}^{2} {x}-{bcx}^{2}={ab}-{b}^{2} {x}+a c x-{bcx}^{2}\)
\(=2 {b}^{2} {x}=2 {acx}\)
\(={b}^{2}={ac}\)
\(=\frac{b}{a}=\frac{c}{b} \ldots(1)\)
Also, \( \frac{b+c x}{b-c x}=\frac{c+d x}{c-d x} \)
\(=({b}+{cx})({c}-{dx})=({b}-{cx})({c}+{dx})\)
\(=b c-b d x+{c}^{2} {x}-{cdx}^{2}=b c+b d x-{c}^{2} {x}+{cdx}^{2}\)
\(=2 {c}^{2} {x}=2 {bdx}\)
\(={c}^{2}=b d\)
\(=\frac{c}{d}=\frac{b}{c} \ldots(2)\)
From (1) and (2), we obtain
\(=\frac{b}{a}=\frac{c}{b}=\frac{d}{c}\)
Thus, \( a, b, c \), and dare in G.P.
14. The \( p^{\text {th}}, q^{\text {th}} \) and \( r^{\text {th}} \) terms of an A.P. are \( {a}, {b}, {c} \) respectively. Show that \( (q-r) a+(r-p) b+(p-q) c=0 \)
Answer
Let, \( t \) and \( d \) be the first term and the common difference of the A.P. respectively.
The \(n^{th}\) term of an A.P. is given by, \( {an}={t}+({n}-1) {d} \)
Therefore,
\(=a_{{p}}={t}+({p}-1) {d}={a} \ldots(1)\)
\(=a_{{q}}={t}+({p}-1) {d}={b} \ldots(2)\)
\(=a_{{r}}={t}+({r}-1) {d}={c} \ldots(3)\)
Subtracting eq. (2) from (1), we obtain
\(({p}-1-{q}+1) {d}={a}-{b}\)
\(=({p}-{q}) {d}={a}-{b}\)
\(={d}=\frac{a-b}{p-q} \ldots (4)\)
Subtracting eq. (3) from (2), we obtain
\(({q}-1-{r}+1) {d}={b}-{c}\)
\(=({q}-{r}) {d}={b}-{c}\)
\(={d}=\frac{b-c}{q-r} \ldots (5)\)
Equating both the values of d obtained in (4) and (5), we obtain
\(=\frac{a-b}{p-q}=\frac{b-c}{q-r}\)
\(=({a}-{b})({q}-{r})=({b}-{c})({p}-{q})\)
\(=a q-a r-b q+b r=b p-b q-c p+c q\)
\(=b p-c p+c q-a q+a r-b r=0\)
\(=(-a q+a r)+(b p-b r)+(-c p+c q)=0 \text { [by rearranging terms] }\)
\(=-a(q-r)-b(r-p)-c(p-q)=0\)
\(=a(q-r)+b(r-p)+c(p-q)=0\)
Thus, the given result is proved.
15. If a \( \left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right) \) are in A.P., prove that \(a, {b}, {c} \) are in A.P.
Answer
It is given that \( {a}\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right) \) are in A.P.
\({b}\left(\frac{1}{c}+\frac{1}{a}\right)-a\left(\frac{1}{b}+\frac{1}{c}\right)=c\left(\frac{1}{a}+\frac{1}{b}\right)-b\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{b(a+c)}{a c}-\frac{a(b+c)}{b c}=\frac{c(a+b)}{a b}-\frac{b(a+c)}{a c}\)
\(=\frac{b^{2} a+b^{2} c-a^{2} b-a^{2} c}{a b c}=\frac{c^{2} a+c^{2} b-b^{2} a-b^{2} c}{a b c}\)
\(={b}^{2} {a}-{a}^{2} {b}+{b}^{2} {c}-{a}^{2} {c}={c}^{2} {a}-{b}^{2} {a}+{c}^{2} {b}-{b}^{2} {c}\)
\(={ab}({b}-{a})+{c}\left({b}^{2}-{a}^{2}\right)={a}\left({c}^{2}-{b}^{2}\right)+b c({c}-{b})\)
\(={ab}({b}-{a})+{c}({b}-{a})({b}+{a})={a}({c}-{b})({c}+{b})+b c({c}-{b})\)
\(=({b}-{a})({ab}+c b+{ca})=({c}-{b})({ac}+{ab}+b c)\)
\(={b}-{a}={c}-{b}\)
Thus, \( a, b \), and \( c \), are in A.P.
16. If \(a, b, c, d\) are in G.P, prove that \( \left(a^{n}+b^{n}\right),\left(b^{n}+ c^{n}\right),\left(c^{n}+d^{n}\right) \) are in G.P.
Answer
It is given that \( {a}, {b}, {c} \) and \(d\) are in G.P.
\({b}^{2}={ac} \ldots(1)\)
\({c}^{2}=b d \ldots(2)\)
\({ad}=b c \ldots(3)\)
It has to be proved that \( \left({a}^{{n}}+b^{{n}}\right),\left(b^{{n}}+c^{{n}}\right),\left(c^{{n}}+d^{{n}}\right) \) are in G.P. i.e.,
\(=\left(b^{{n}}+c^{{n}}\right)^{2}=\left({an}+b^{{n}}\right)\left(c^{{n}}+d^{{n}}\right)\)
Consider L.H.S.
\(=\left(b^{{n}}+c^{{n}}\right)^{2}={b}^{2} {n}+2 {b}^{2} {cn}+{c}^{2} {n}\)
\(=({ac})^{{n}}+2 {b}^{{n}} {c}^{{n}}+(b d)^{{n}}\quad[\text {using (1) and (2)}] \)
\(={a}^{{n}} c^{{n}}+b^{{n}} c^{{n}}+b^{{n}} c^{{n}}+b^{{n}} d^{{n}}\)
\(={a}^{{n}} c^{{n}}+b^{{n}} c^{{n}}+{a}^{{n}} d^{{n}}+b^{{n}} d^{{n}}\quad[\text {using (3)}]\)
\(=c^{{n}}\left({a}^{{n}}+b^{{n}}\right)+d^{{n}}\left({a}^{{n}}+b^{{n}}\right)\)
\(=\left({a}^{{n}}+b^{{n}}\right)\left(c^{{n}}+d^{{n}}\right) \text { R.H.S. }\)
Thus, \( \left({a}^{{n}}+b^{{n}}\right),\left(b^{{n}}+c^{{n}}\right) \), and \( \left(c^{{n}}+d^{{n}}\right) \) are in G.P.
17. If \( a \) and \( b \) are the roots of are roots of \( x^{2}-3 x+p=0 \) and \( c , d\) are roots of \( {x}^{2}-12 {x}+{q}=0 \), where \( {a}, {b}, {c}, d , \) form a G.P.
Prove that \( (q+p):(q-p)=17: 15 \).
Answer
It is given that \( a \) and \( b \) are the roots of \( x^{2}-3 x+p=0 \)
\( {a}+{b}=3 \) and \( {ab}={p} \quad \ldots\ldots\text{(1)} \)
Also, \( c \) and \( d \) are the roots of \( x^{2}-12 x+q=0 \)
\( {c}+{d}=12 \) and \( {cd}={q} \quad \ldots\ldots\text{(2)}\)
It is given that \( a, b, c, d \), are in G.P.
Let \( {a}={x}, {b}=x {r}, {c}={xr}^{2}, {d}={xr}^{3} \) from (1) and (2)
We obtain \( x+x r=3={x}(1+{r})=3 \)
\( ={xr}^{2}+{xr}^{3}=12 \)
\( ={xr}^{2}(1+{r})=12 \)
On dividing, we obtain
\(=\frac{x r^{2}(1+r)}{x(1+r)}=\frac{12}{3}\)
\(={r}^{2}=4\)
\(={r}= \pm 2\)
When \( {r}=2, {x}=\frac{3}{1+2}=\frac{3}{3}=1 \)
Where \( r=-2, x=\frac{3}{1-2}=\frac{3}{-1}=-3 \)
Case I
When \( r=2 \) and \( x=1, a b=x^{2} r=2, c d=x^{2} r^{5}=32 \)
\(=\frac{q+p}{q-p}=\frac{32+2}{32-2}=\frac{34}{30}=\frac{17}{15}\)
i.e., \( (q+p):(q-p)=17: 15 \)
case II
When \( r=-2, x=-3, a d=x^{2} r=-18, c d=x^{2} r^{5}=-288 \)
\(=\frac{q+p}{q-p}=\frac{-288-18}{-288+18}=\frac{-306}{-270}=\frac{17}{15}\)
Thus, in both the cases, we obtain \( (q+p):(q-p)=17: 15 \)
18. The ratio of the A.M and G.M. of two positive numbers a and b, is \( {m}: {n} \). Show that \({a}: {b}=\left(m+\sqrt{m^{2}+n^{2}}\right):\left(m-\sqrt{m^{2}-n^{2}}\right)\)
Answer
Let the two numbers be a and b.
A.M. \( =\frac{a+b}{2} \) and G.M. \( =\sqrt{a b} \)
According to the given condition,
\( \frac{a+b}{2 \sqrt{a b}}=\frac{m}{n}\)
\(= \frac{(a+b)^{2}}{4(a b)}=\frac{m^{2}}{n^{2}}\)
\(= (a+b)^{2}=\frac{4 a b m^{2}}{n^{2}}\)
\(= (a+b)=\frac{2 \sqrt{a b} m}{n} \ldots(1)\)
\(= (a-b)^{2}=\frac{4 a b m^{2}}{n^{2}}-4 a b=\frac{4 a b\left(m^{2}-n^{2}\right)}{n^{2}}\)
\(= (a-b)=\frac{2 \sqrt{a b} \sqrt{m^{2}+n^{2}}}{n} \ldots(2)\)
Adding (1) and (2), we obtain
\(2 {a}=\frac{2 \sqrt{a b}}{n}\left(m+\sqrt{m^{2}-n^{2}}\right)\)
\(={a}=\frac{\sqrt{a b}}{n}\left(m+\sqrt{m^{2}-n^{2}}\right)\)
Substituting the value of a in (1), we obtain
\(={b}=\frac{2 \sqrt{a b}}{n} m-\frac{\sqrt{a b}}{n}\left(m+\sqrt{m^{2}-n^{2}}\right)\)
\(=\frac{\sqrt{a b}}{n} m-\frac{\sqrt{a b}}{n} \sqrt{m^{2}-n^{2}}\)
\(=\frac{\sqrt{a b}}{n}\left(m-\sqrt{m^{2}-n^{2}}\right)\)
\(={a}: {b}=\frac{\frac{\sqrt{a b}}{n}\left(m+\sqrt{m^{2}+n^{2}}\right)}{\frac{\sqrt{a b}}{n}\left(m-\sqrt{m^{2}-n^{2}}\right)}=\frac{\left(m+\sqrt{m^{2}+n^{2}}\right)}{\left(m-\sqrt{m^{2}-n^{2}}\right)}\)
Thus, \( {a} ; {b}=\left({m}+\sqrt{m^{2}+n^{2}}\right):\left({m}-\sqrt{m^{2}-n^{2}}\right) \)
19. If \( {a}, {b}, {c} \) are in A.P; \( {b}, {c}, {d} \) are in G.P and \(\frac{1}{c}, \frac{1}{d}, \frac{1}{e} \) are in A.P. prove that \( {a}, {c}, {e} \) is in G.P.
Answer
It is given that \( a, b, c \) is in A.P.
\( {b}-{a}={c}-{b} \quad \ldots\ldots\text{(1)}\)
It is given that \( {b}, {c}, {d} \), are in G.P.
\(=c^{2}=b d \quad \ldots\ldots\text{(2)}\)
Also, \( \frac{1}{c}, \frac{1}{d}, \frac{1}{e} \) are in A.P.
\(=\frac{1}{d}-\frac{1}{c}=\frac{1}{e}-\frac{1}{d}\)
\(=\frac{2}{d}=\frac{1}{c}+\frac{1}{e} \quad \ldots\ldots\text{(3)}\)
It has to be proved that \( {a}, {c} , e ,\) are in G.P. i.e., \( {c}^{2}={ae} \)
From (1), we obtain
\(2 b=a+c\)
\(=b=\frac{a+c}{2}\)
From (2), we obtain
\(={d}=\frac{c^{2}}{b}\)
Subtracting this value in (3), we obtain
\(=\frac{2 b}{c^{2}}=\frac{1}{c}+\frac{1}{e}\)
\(=\frac{2(a+c)}{2 c^{2}}=\frac{1}{c}+\frac{1}{e}\)
\(=\frac{a+c}{c^{2}}=\frac{e+c}{e c}\)
\(=\frac{a+c}{c}=\frac{e+c}{e}\)
\(=({a}+{c}) {e}=({e}+{c}) {c}\)
\(={ae}+c e=e c+{c}^{2}\)
\(={c}^{2}={ae}\)
Thus, a, c, and e are in G.P.

20.

class 11 maths chapter 9 miscellaneous exercise​ || ncert solution for class 11 maths chapter 9 || class 11 maths ch 9 miscellaneous exercise solutions || miscellaneous exercise class 11 chapter 9 Sequences and Series || ncert exemplar class 11 maths || class 11 maths Sequences and Series
Download the Math Ninja App Now
(i) Find the sum of the following series up to n terms: \( 5+55+555+\ldots \)
Answer
\( 5+55+555+\ldots \)
Let, \( {Sn}=5+55+555+\ldots \) to n terms
\(=\frac{5}{9}[9+99+999+\ldots \text { to } {n} \text { terms}]\)
\(=\frac{5}{9}\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\ldots \text { to n terms}\right]\)
\(=\frac{5}{9}\left[\left(10+10^{2}+10^{3}+\ldots {n} \text { terms }\right)-(1+1+\ldots {n} \text { terms})\right]\)
\(=\frac{5}{9}\left[\frac{\left[10\left(10^{n}-1\right)\right.}{10-1}-n\right]\)
\(=\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)}{9}\right]\)
\(=\frac{50}{81}\left(10^{n}-1\right)-\frac{5 n}{9}\)
(ii) Find the sum of the following series up to n terms: \( .6+.66+.666+\ldots \)
Answer
\( .6+.66+.666+\ldots \)
Let, \( {Sn}=0.6+0.66+0.666+\ldots \) to n terms
\( =6[0.1+0.11+0.111+\ldots \) to n terms\( ] \)
\(=\frac{6}{9}[0.9+0.99+0.999+\text { to n terms}]\)
\(=\frac{6}{9}\left[\left(1-\frac{1}{10}\right)+\left(1-\frac{1}{10^{2}}\right)+\left(1-\frac{1}{10^{3}}\right)+\cdots \text { to } n \text { terms}\right]\)
\(=\frac{2}{3}\left[(1+1+\cdots n \text { terms})-\frac{1}{10}\left(1+\frac{1}{10}+\frac{1}{10^{2}}+\cdots n\text { terms}\right)\right]\)
\(=\frac{2}{3}\left[n-\frac{1}{10}\left(\frac{1-\left(\frac{1}{10}\right)^{n}}{1-\frac{1}{10}}\right)\right]\)
\(=\frac{2}{3} n-\frac{2}{30} \times \frac{10}{9}\left(1-10^{-n}\right)\)
\(=\frac{2}{3} n-\frac{2}{27}\left(1-10^{-n}\right)\)
21. Find the \( 20^{\text {th}} \) term of the series \( 2 \times 4+4 \times 6+6 \times 8+\ldots+ n\) terms.
Answer
The given series is \( 2 \times 4+4 \times 6+6 \times 8+\ldots+{n} \) terms
\({n}^{\text {th}} \text { term }={a}_{{n}}=2 {n} \times(2 {n}+2)=4 {n}^{2}+4 {n}\)
\({a}_{20}=4(20)^{2}+4(20)=4(400)+80=1600+80=1680\)
Thus, the \( 20^{\text {th}} \) term of the series is 1680.
22. Find the sum of the first n terms of the series: \( 3+7+13+21+31+\ldots \)
Answer
The given series is \( 3+7+13+21+31+\ldots \)
\(S=3+7+13+21+31+\ldots+a_{n-1}+a_{n}\)
\(S=3+7+13+21+\ldots+a_{n-2}+a_{n-1}+a_{n}\)
On subtracting both the eq., we obtain
\({S}-{S}=\left[3+\left(7+13+2131+\ldots+{a}_{{n}-1}+{a}_{{n}}\right)\right]\)\(-[(3+7+13+21+31+\ldots+{a}_{{n}-1}+{a}_{{n}})]\)
\({S}-{S}=3+\left[(7-3)+(13-7)+(21-13) +\ldots+\left({a}_{{n}}-{a}_{{n}-1}\right)\right]-{a}_{{n}}\)
\(0=3+[4+6+8+\ldots({n}-1) \text { terms}]-{a}_{{n}}\)
\({a}_{{n}}=3+[4+6+8+\ldots({n}-1) \text { terms}]\)
\({a}_{{n}}=3+\left(\frac{n-1}{2}\right)[2 \times 4+({n}-1-1) 2]\)
\(=3+\left(\frac{n-1}{2}\right)[8+({n}-2) 2]\)
\(=3+\left(\frac{n-1}{2}\right)[2 {n}+4]\)
\(=3+({n}-1)({n}-2)\)
\(=3+\left({n}^{2}+{n}-2\right)\)
\(={n}^{2}+{n}+1\)
\(\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} k^{2}+\sum_{k=1}^{n} k+\sum_{k=1}^{n} 1\)
\(=\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}+n\)
\(={n}\left[\frac{(n+1)(2 n+1)+3(n+1)+6}{6}\right]\)
\(={n}\left[\frac{2 n^{2}+3 n+1+3 n+3+6}{6}\right]\)
\(={n}\left(\frac{2 n^{2}+6 n+10}{6}\right)\)
\(=\frac{n}{3}\left(n^{2}+3 n+5\right)\)
23. If \( S_{1}, S_{2}, S_{3} \) are the sum of first n natural numbers, their squares and their cubes, respectively, show that \( 9 S_{2}^{2}=S_{3}\left(1+8 S_{1}\right) \)
Answer
From the given information
\({S}_{1}=\frac{n(n+1)}{2}\)
\({S}_{2}=\frac{n^{2}(n+1)^{2}}{4}\)
Here, \( {S}_{3}\left(1+8 {S}_{1}\right)=\frac{n^{2}(n+1)^{2}}{4}\left[1+\frac{8 n(n+1)}{2}\right] \)
\(=\frac{n^{2}(n+1)^{2}}{4}\left[4 n^{2}+4 n+1\right]\)
\(=\frac{n^{2}(n+1)^{2}}{4}(2 n+1)^{2}\)
\(=\frac{[n(n+1)(2 n+1)]^{2}}{4} \ldots(1)\)
Also, \( 9 S_{2}^{2}=9 \frac{[n(n+1)(2 n+1)]^{2}}{6^{2}} \)
\(=\frac{9}{36}[n(n+1)(2 n+1)]^{2}\)
\(=\frac{[n(n+1)(2 n+1)]^{2}}{4} \ldots(2)\)
Thus, from (1) and (2), we obtain \( 9 S_{2}^{2}={S}_{3}\left(1+8 {S}_{1}\right) \)
24. Find the sum of the following series up to n terms: \(\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\cdots\)
Answer
The \(n^{th}\) term of the given series is \( \frac{1^{3}+2^{3}+3^{3}+\cdots+n^{3}}{1+3+5+\cdots+(2 n-1)}=\frac{\left[\frac{n(n+1)}{2}\right]^{2}}{1+3+5+\cdots+(2 n-1)} \)
Here, \( 1,3,5, \ldots(2 {n}-1) \) is an A.P. with first term a, last term \( (2 {n}-1) \) and number of terms as \( n \)
\(=1+3+5+\ldots .+(2 {n}-1)=\frac{n}{2}[2 \times 1+({n}-1) 2]={n}^{2}\)
\({a}_{{n}}=\frac{n^{2}(n+1)^{2}}{4 n^{2}}=\frac{(n+1)^{2}}{4}=\frac{1}{4} n^{2}+\frac{1}{2} n+\frac{1}{4}\)
\({S}_{{n}}=\sum_{k=1}^{a} a_{k}=\sum_{k=1}^{n}\left(\frac{1}{4} k^{2}+\frac{1}{2} k+\frac{1}{4}\right)\)
\(=\frac{1}{4} \frac{n(n+1)(2 n+1)}{6}+\frac{1}{2} \frac{n(n+1)}{2}+\frac{1}{4} n\)
\(=\frac{n[(n+1)(2 n+1)+6(n+1)+6]}{24}\)
\(=\frac{n\left[2 n^{2}+3 n+1+6 n+6+6\right]}{24}\)
\(=\frac{n\left(2 n^{2}+9 n+12\right)}{24}\)
25. Show that \( \frac{1 \times 2^{2}+2 \times 3^{2}+\cdots+n \times(n+1)^{2}}{1^{2} \times 2+2^{2} \times 3+\cdots+n^{2} \times(n+1)}=\frac{3 n+5}{3 n+1} \)
Answer
\( {n}^{\text {th}} \) term of the numerator \( ={n}({n}+1)^{2}={n}^{3}+2 {n}^{2}+{n} \)
\( {n}^{\text {th}} \) term of the denominator \( ={n}^{2}({n}+1)={n}^{3}+{n}^{2} \)
\(\frac{1 \times 2^{2}+2 \times 3^{2}+\cdots+n \times(n+1)^{2}}{1^{2} \times 2+2^{2} \times 3+\cdots+n^{2} \times(n+1)}=\frac{\sum_{k=1}^{n} n_{k}}{\sum_{k=1}^{n} n_{k}}=\frac{\sum_{k=1}^{n}\left(k^{3}+2 k^{2}+k\right)}{\sum_{k=1}^{n}\left(k^{3}+k^{2}\right)} \ldots(1)\)
Here, \( \sum_{k=1}^{n}\left(k^{3}+2 k^{2}+k\right) \)
\(=\frac{n^{n}(n+1)^{2}}{6}=\frac{2 n(n+1)(2 n+1)}{4}=\frac{n(n+1)}{2}\)
\(=\frac{n(n+1)}{2}\left[\frac{n(n+1)}{2}+\frac{2}{3}(2 n+1)+1\right]\)
\(=\frac{n(n+1)}{2}\left[\frac{3 n^{2}+3 n+8 n+4+6}{6}\right]\)
\(=\frac{n(n+1)}{12}\left[3 n^{2}+11 n+10\right]\)
\(=\frac{n(n+1)}{12}\left[3 n^{2}+6 n+5 n+10\right]\)
\(=\frac{n(n+1)}{12}[3 n(n+2)+5(n+2)]\)
\(=\frac{n(n+1)(n+2)(3 n+5)}{12} \ldots(2)\)
\(\text { Also, } \sum_{k=1}^{n}\left(k^{2}+k^{2}\right)=\frac{n^{2}(n+1)^{2}}{4}+\frac{n(n+1)(2 n+1)}{6}\)
\(=\frac{n(n+1)}{2}\left[\frac{n(n+1)}{2}+\frac{2 n+1}{3}\right]\)
\(=\frac{n(n+1)}{2}\left[\frac{3 n^{2}+3 n+4 n+2}{6}\right]\)
\(=\frac{n(n+1)}{12}\left[3 n^{2}+7 n+2\right]\)
\(=\frac{n(n+1)}{12}\left[3 n^{2}+6 n+n+2\right]\)
\(=\frac{n(n+1)}{12}[3 n(n+2)+1(n+2)]\)
\(=\frac{n(n+1)(n+2)(3 n+1)}{12} \ldots(3)\)
From (1), (2) and (3), we obtain
\(=\frac{1 \times 2^{2}+2 \times 3^{2}+\cdots+n \times(n+1)^{2}}{1^{2} \times 2+2^{2} \times 3+\cdots+n^{2} \times(n+1)}=\frac{\frac{n(n+1)(n+2)(3 n+5)}{12}}{\frac{n(n+1)(n+2)(3 n+1)}{12}}\)
\(=\frac{3 n+5}{3 n+1}\)
Hence, proved.
class 11 maths chapter 9 miscellaneous exercise​ || ncert solution for class 11 maths chapter 9 || class 11 maths ch 9 miscellaneous exercise solutions || miscellaneous exercise class 11 chapter 9 Sequences and Series || ncert exemplar class 11 maths || class 11 maths Sequences and Series
Download the Math Ninja App Now
26. A farmer buys a used tractor for ₹ 12000. He pays ₹ 6000 cash and agrees to pay the balance in annual installments of ₹500 plus \( 12 \% \) interest on the unpaid amount. How much will be the tractor cost him?
Answer
It is given the farmer pays \( ₹ 6000 \) in cash.
Therefore, unpaid amount \( =₹ 12000-₹ 6000=₹ 6000 \)
According to the given conditions, the interest paid annually is \( 12 \% \) of \( 6000,12 \% \) of \( 5500,12 \% \) of \( 5000 \ldots 12 \% \) of 500
Thus, total interest to be paid
\(=12 \% \text { of } 6000+12 \% \text { of } 5500+12 \% \text { of } 5000+\ldots+12 \% \text { of } 500\)
\(=12 \% \text { of }(6000+5500+5000+\ldots+500)\)
\(=12 \% \text { of }(500+1000+1500+\ldots+6000)\)
Now, the series \( 500,1000,1500,6000 \) is an A.P. with both the first term and common difference equal to \(500\)
Let, the number of terms of the A.P. be \(n\).
\(6000=500+({n}-1) 500\)
\(=1+({n}-1)=12\)
\(={n}=12\)
Sum of A.P.
\(=\frac{12}{2}[2(500)+(12-1)(500)]=6[1000+5500]=6[6500]=39000\)
Thus total interest to be paid
\(=12 \% \text { of }(500+1000+1500+\ldots+6000))\)
\(=12 \% \text { of } 39000=₹ 4680\)
Thus, cost of tractor \( =(₹ 12000+₹ 4680)=₹ 16680 \)
27. Sham shed Ali buys a scooter for ₹ 22000. He pays ₹ 4000 cash and agrees to pay the balance in annual installment of ₹ 1000 plus \( 10 \% \) interest on the unpaid amount. How much will the scooter cost him?
Answer
It is given that sham shed Ali buys a scooter for ₹ 22000 and pays ₹ 4000 in cash.
Unpaid amount \( =₹ 22000-₹ 4000=₹ 18000 \)
According to the given condition, the interest paid annually is \( 10 \% \) of \( 18000,10 \% \) of \( 17000,10 \% \) of \( 16000 \ldots .10 \% \) of 1000 .
Thus, total interest to be paid
\(=10 \% \text { of } 18000,10 \% \text { of } 17000,10 \% \text { of } 16000 \ldots .10 \% \text { of } 1000\)
\(=10 \% \text { of }(18000+17000+16000+\ldots+1000)\)
\(=10 \% \text { of }(1000+200+3000+\ldots+18000)\)
Here, \( 1000,2000,3000 \ldots 18000 \) forms an A.P. with first term and common difference both equal to \(1000\).
Let, the numbers of terms be \( n \).
\(=18000=1000+({n}-1)(1000)\)
\(={n}=18\)
\(1000+2000+\ldots+18000=\frac{18}{2}[2(1000)+(18-1)(1000)]\)
\(=9[2000+17000]\)
\(=171000\)
Total interest paid \( =10 \% \) of \( (18000+17000+16000+\ldots+1000) \)
\( =10 \% \) of ₹ \( 171000= \) ₹ \(17100\)
Cost of scooter \( =₹ 22000+₹ 17100=₹ 39100 \)
28. A person writes a letter to four of his friends. He asks each one of them to copy the letter and mail to four different persons with instruction that they move the chain similarly. Assuming that the chain is not broken and that it costs 50 paisa to mail one letter. Find the amount spent on the postage when \( 8^{\text {th}} \) set of letter is mailed.
Answer
The numbers of letters mailed forms a G.P. \( 4,42, \ldots 48 \)
First term \( =4 \)
Common ratio \( =4 \)
Numbers of item \( =8 \)
It is known that the sum of n terms of a G.P. is given by
\( {S}_{{n}}=\frac{a\left(r^{n}-1\right)}{1-r} \)
\( {S}_{8}=\frac{4\left(4^{8}-1\right)}{4-1}=\frac{4(65536-1)}{3}=\frac{4(65535)}{3}=4(21845)=87380 \)
It is given that the cost to mail one letter is 50 paisa.
Cost of mailing 87380 letters \( =₹ 87380 \times \frac{50}{100}=₹ 43690 \)
Thus, the amount spent when \( 8^{\text {th}} \) set of letter is mailed is ₹ \(43690 \).
29. A man deposited ₹ 10000 in a bank at the rate of \( 5 \% \) simple interest annually. Find the amount in \(15^{\text {th}}\) year since he deposited the amount and also calculate the total amount after 20 years.
Answer
It is given that the man deposited ₹ 10000 in a bank at the rate of \( 5 \% \)
Simple interest annually \( =\frac{5}{100} \times ₹ 10000=₹ 500 \)
Interest in first year \( =10000+500+500+\ldots+500 \)
Amount in \( 15^{\text {th}} \) year \( =₹ \)
\(=₹ 10000+14 \times ₹ 500\)
\(=₹ 10000+₹ 7000\)
\(=₹ 17000\)
Amount after 20 years \( =₹ 10000+500+500+\ldots+500 \)
\(=₹ 10000+20 \times ₹ 500\)
\(=₹ 10000+₹ 10000\)
\( =₹ 20000 \)
30. A manufacturer reckons that the value of a machine, which costs him Rs 15625, will depreciate each year by \( 20 \% \). Find the estimated value at the end of 5 years.
Answer
Cost of machine \( =₹ 15625 \)
Machine depreciates by \( 20 \% \) every year.
Therefore, its value after every year is \( 80 \% \) of the original cost i.e., \( \frac{4}{5} \) of the original cost.
Value at the end of 5 years \( =15625 \times \frac{4}{5} \times \frac{4}{5} \ldots \times \frac{4}{5}=5 \times 1024=5120 \)
Thus, the value of the machine at the end of 5 years is \( ₹=5120 \).
31. 150 workers were engaged to finish a job in a certain number of days. 4 workers dropped out on second day, 4 more workers dropped out on third day and so on. It took 8 more days to finish the work. Find the number of days in which the work was completed.
Answer
Let, \(x\) be the numbers of days in which 150 workers finish the work.
According to the given information,
\( 150 {x}=150+146+142+\ldots({x}+8) \) terms
The series \( 150+146+142+\ldots({x}+8) \) terms is an A.P. with first term \(146\), common differences \(-4\) and number of terms as \(( x+8 )\)
\(=150 {x}=\frac{(x+8)}{2}[2(150)+({x}+8-1)(-4)]\)
\(=150 {x}=({x}+8)[150+({x}+7)(-2)]\)
\(=150 {x}=({x}+8)(150-2 {x}-14)\)
\(=150 x=(x+8)(136-2 x)\)
\(=75 x=69 x-x^{2}+544-8 x\)
\(=x^{2}+15 x-544=0\)
\(=x^{2}+32 x-17 x-544=0\)
\(=x(x+32)-17(x+32)=0\)
\(=(x+32)(x-17)=0\)
\(=x=17 \text { or } x=-32\)
However, \( x \) cannot be
\( = \) negative \( {x}=17 \)
Therefore, originally, the number of days in which the work was completed is \(17 \). Thus, required number of days \( =(17+8)=25 \)
class 11 maths chapter 9 miscellaneous exercise​ || ncert solution for class 11 maths chapter 9 || class 11 maths ch 9 miscellaneous exercise solutions || miscellaneous exercise class 11 chapter 9 Sequences and Series || ncert exemplar class 11 maths || class 11 maths Sequences and Series
Download the Math Ninja App Now

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top