Miscellaneous Exercise Class 12 Chapter 1

Miscellaneous exercise class 12 chapter 1 | class 12 maths chapter 1 miscellaneous exercise solutions | relations and functions class 12 ncert solutions

Looking for miscellaneous exercise Class 12 Chapter 1 solutions? Our comprehensive guide to Class 12 Maths Chapter 1 Miscellaneous Exercise Solutions covers all important concepts from Relations and Functions. These NCERT-based solutions help students build a strong foundation in types of relations, functions, domain, co-domain, and more. With step-by-step explanations and solved examples, these Relations and Functions Class 12 NCERT Solutions are perfect for board exam preparation and concept clarity.

miscellaneous exercise class 12 chapter 1
class 12 maths chapter 1 miscellaneous exercise solutions || miscellaneous exercise class 12 chapter 1 || relations and functions class 12 ncert solutions
Download the Math Ninja App Now

Miscellaneous Exercise

1. Let \( f: R \rightarrow R \) be defined as \( f(x)=10 x+7 \). Find the function \( g: R \rightarrow R \) such that \( \mathrm{g} \circ \mathrm{f}=\mathrm{f} \circ \mathrm{g}=1 \mathrm{R} \).
Answer
It is given that \( f: R \rightarrow R \) be defined as \( f(x)=10 x+7 \)
Let \( f(x)=f(y) \), where \( x, y \in R \).
\(
\Rightarrow 10 x+7=10 y+7\)
\(\Rightarrow x=y
\)
\( \Rightarrow \mathrm{f} \) is a one - one function.
For \( \mathrm{y} \in\mathrm{R} \), let \( \mathrm{y}=10 x+7 \).
\(
\Rightarrow x=\frac{y-7}{10} \in \mathrm{R}
\)
Therefore, for any \( \mathrm{y} \in \mathrm{R} \), there exists \( x=\frac{y-7}{10} \in \mathrm{R} \) such that
\(
f(x)=f\left(\frac{y-7}{10}\right)=10\left(\frac{y-7}{10}\right)+7=y-7+7=y
\)
\( \Rightarrow \mathrm{f} \) is onto.
\( \Rightarrow \mathrm{f} \) is an invertible function.
Let us define \( \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R} \) as \( \mathrm{g}(\mathrm{y})=\frac{y-7}{10} \)
Now, we get:
\(
\operatorname{g\circ f}(x)=\mathrm{g}(\mathrm{f}(x))=\mathrm{g}(10 x+7)\)
\(=\frac{(10 x+7)-7}{10}=\frac{10 x}{10}=10
\)
And,
\( f\circ g (\mathrm{y})=\mathrm{f}(\mathrm{g}(\mathrm{y}))=\mathrm{f}\left(\frac{y-7}{10}\right)=10\left(\frac{y-7}{10}\right)+7=\mathrm{y}-7+7=y \)
\( \Rightarrow g\circ f =\mathrm{IR} \) and \( \mathrm{g\circ f}=\mathrm{IR} \)
Therefore, the required function \( \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R} \) is defined as \( \mathrm{g}(\mathrm{y})=\frac{y-7}{10} \).
2. Let \( \mathrm{f}: \mathrm{W} \rightarrow \mathrm{W} \) be defined as \( \mathrm{f}(\mathrm{n})=\mathrm{n}-1 \), if n is odd and \( \mathrm{f}(\mathrm{n})=\mathrm{n}+1 \), if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.
Answer
It is given that \( \mathrm{f}: \mathrm{W} \rightarrow \mathrm{W} \) be defined as
\( \mathrm{f}(\mathrm{n})=\left\{\begin{array}{l}n-1,\text { if n is odd } \\ n+1, \text { if n is even}\end{array}\right. \)
Let \( \mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{m}) \)
We can see that if n is odd and m is even, then we will have \( \mathrm{n}-1=\mathrm{m}+1 \).
\(
\Rightarrow \mathrm{n}-\mathrm{m}=2
\)
\( \Rightarrow \) this is impossible
Similarly, the possibility of \( n \) being even and \( m \) being odd can also be ignored under a similar argument.
Therefore, both n and m must be either odd or even.
Now, if both n and m are odd, then we get:
\(
\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{m})\)
\(\Rightarrow \mathrm{n}-1=\mathrm{m}-1\)
\(\Rightarrow \mathrm{n}=\mathrm{m}
\)
Again, if both n and m are even, the we get:
\(
\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{m})
\)
\(
\Rightarrow \mathrm{n}+1=\mathrm{m}+1\)
\(\Rightarrow \mathrm{n}=\mathrm{m}\)
\(\Rightarrow \mathrm{f} \text { is one }- \text { one. }
\)
Now, it is clear that any odd number \( 2 \mathrm{r}+1 \) in co-domain N is the image of 2r in domain N and any even number 2r in co - domain N is the image of \( 2 r+1 \) in domain \( N \).
\( \Rightarrow \mathrm{f} \) is onto.
\( \Rightarrow \mathrm{f} \) is an invertible function.
Now, let us define \( \mathrm{g}: \mathrm{W} \rightarrow \mathrm{W} \) be defined as
\(
g(m)=\left\{\begin{array}{l}
m+1, \text { if m is even } \\
m-1, \text { if m is odd }
\end{array}\right.
\)
Now, when n is odd:
\( \operatorname{g\circ f}(\mathrm{n})=\mathrm{g}(\mathrm{f}(\mathrm{n}))=\mathrm{g}(\mathrm{n}-1)=\mathrm{n}-1+1=\mathrm{n}( \)when n is odd, then \( \mathrm{n}-1 \) is even\( ) \)
And when n is even:
\( \operatorname{g\circ f}(\mathrm{n})=\mathrm{g}(\mathrm{f}(\mathrm{n}))=\mathrm{g}(\mathrm{n}+1)=\mathrm{n}+1-1=\mathrm{n} \) (when n is even, then \( \mathrm{n}+1 \) is odd)
Similarly, when \( m \) is odd:
\(
f \circ g(m)=f(g(m))=f(m-1)=m-1+1=m
\)
And when n is even:
\(
f \circ g(m)=f(g(m))=f(m+1)=m+1-1=m
\)
Therefore, \(g\circ f =\mathrm{IW} \) and \( \mathrm{f\circ g}=\mathrm{IW} \)
Therefore, \( f \) is invertible and the inverse of \( f \) is given by \( f^{-1}=g \), which is the same as f .
Thus, the inverse of f is f itself.
3. If \( f: R \rightarrow R \) is defined by \( f(x)=x^{2}-3 x+2 \), find \( f(f(x)) \).
Answer
It is given that \( f: R \rightarrow R \) is defined by \( f(x)=x^{2}-3 x+2 \).
\(
f(f(x))=f\left(x^{2}-3 x+2\right)\)
\(=\left(x^{2}-3 x+2\right)^{2}-3\left(x^{2}-3 x+2\right)+2\)
\(=x^{4}+9 x^{2}+4-6 x^{3}-12 x+4 x^{2}-3 x^{2}+9 x-6+2\)
\(=x^{4}-6 x^{3}+10 x^{2}-3 x
\)
4. Show that the function \( \mathrm{f}: \mathrm{R} \rightarrow\{x \in \mathrm{R}:-1 < x < 1\} \) defined by \( \mathrm{f}(x)= \) \( \frac{X}{1+|X|}, x \in \mathrm{R} \) is one-one and onto function.
Answer
It is given that \( \mathrm{f}: \mathrm{R} \rightarrow\{x \in \mathrm{R}:-1 < x < 1\} \) defined by \( f(x)=\frac{x}{1+|X|}, x \in \mathrm{R} \)
Now, suppose that \( f(x)=f(y) \), where \( x, y \in R \).
\(
=\frac{X}{1+|X|}=\frac{Y}{1+|y|}
\)
We can see that if x is positive and y is negative, then we get:
\(
\frac{x}{1+x}=\frac{y}{1+y}=2 x y=x-y
\)
Since, \( x \) is positive, and \( y \) is negative.
Then, \( 2 x y \neq x-y \).
Thus, the case of \( x \) being positive and \( y \) being negative can be ruled out.
Similarly, \(x\) being negative and \(y\) being positive can also be ruled out.
Therefore, \(x\) and \(y\) have to be either positive or negative.
When \(x\) and \(y\) are both positive, we get:
\(
\mathrm{f}(x)=\mathrm{f}(\mathrm{y})\)
\(=\frac{x}{1+x}=\frac{y}{1+y}=x+x\mathrm{y}=\mathrm{y}+x\mathrm{y}=x=\mathrm{y}
\)
And when \(x\) and \( y\) are both negative, we get:
\( \mathrm{f}(x)=\mathrm{f}(\mathrm{y}) \)
\( =\frac{x}{1-x}=\frac{y}{1-y}=x-x y=y-x y=x=y \)
\( \Rightarrow \mathrm{f} \) is one- one.
Now, let \( y \in R \) such that \( -1 < \mathrm{y} < 1 \).
It y is negative, then there exists \( x=\frac{y}{1+y} \in \mathrm{R} \), such that
\(
\mathrm{f}(x)=\mathrm{f}\left(\frac{y}{1-y}\right)=\frac{\left(\frac{y}{1-y}\right)}{1+\left(\frac{y}{1-y}\right)}=\frac{\frac{y}{1-y}}{1+\frac{y}{1-y}}=\frac{y}{1-y+y}
\)
\( \Rightarrow \mathrm{f} \) is onto.
Therefore, f is one - one and onto.
5. Show that the function \( f: R \rightarrow R \) given by \( f(x)=x^{3} \) is injective.
Answer
Let \( f: R \rightarrow R \) given by \( f(x)=x^{3} \).
Suppose \( f(x)=f(y) \), where \( x, y \in R \).
\(
\Rightarrow x^{3}=y^{3} \quad \ldots\ldots\text{(1)}\)
Now, we need to show that \( x=y \).
Suppose \( x \neq y \), their cubes will also not be equal.
\(
\Rightarrow x^{3} \neq y^{3}
\)
However, this will be contraction to (1).
Thus, \( x=y \)
Therefore, f is injective.
6. Give examples of two functions \( \mathrm{f}: \mathrm{N} \rightarrow \mathrm{Z} \) and \( \mathrm{g}: \mathrm{Z} \rightarrow \mathrm{Z} \) such that \(g\circ f\) is injective but \( g \) is not injective.
Answer
Define \( \mathrm{f}: \mathrm{N} \rightarrow \mathrm{Z} \) as \( \mathrm{f}(x)=x \) and \( \mathrm{g}: \mathrm{Z} \rightarrow \mathrm{Z} \) as \( \mathrm{g}(x)=|x| \)
Now, we can see that
\(
\mathrm{G}(-1)=|-1|=1\)
\(\mathrm{g}(1)=|1|=1\)
\(\Rightarrow \mathrm{g}(-1)=\mathrm{g}(1), \text { but }-1 \neq 1
\)
\( \Rightarrow \mathrm{g} \) is not injective.
Now, \(g\circ f: N \rightarrow Z \) is defined as \( g\circ f(x)=\mathrm{g}(\mathrm{f}(x))=\mathrm{g}(x)=|x| \)
Let \( x, y \in N \) such that \( \operatorname{g\circ f}(x)=\operatorname{g\circ f}(\mathrm{y}) \).
\(\Rightarrow|x|=|y|\)
\(\Rightarrow x=y
\)
Therefore, \(g\circ f\) is injective.
7. Give examples of two functions \( f: N \rightarrow N \) and \( g: N \rightarrow N \) such that g o f is onto but f is not onto.
Answer
It is given that \( f: N \rightarrow N \) by, \( f(x)=x+1 \)
And, \( \mathrm{g}: \mathrm{N} \rightarrow \mathrm{N} \) by,
\( \mathrm{g}(x)=\left\{\begin{array}{c}x-l\text { if } x > 1 \\ l\text { if } x=1\end{array}\right. \)
Now, consider element 1 in co-domain N. So, it is clear that this element is not an image of any of the elements in domain N.
\( \Rightarrow \mathrm{f} \) is onto.
Now, \( g\circ f:\mathrm{N} \rightarrow \mathrm{N} \) is defined as:
\(
\operatorname{g\circ f}(x)=g(f(x))=g(x+1)=(x+1)-1[x \in N= > (x+1) > 1]
\)
Then we can see that for \( y \in N \), there exists \( x=y \in N \) such that \( \operatorname{g\circ f}(x)= y\).
Therefore, \(g\circ f\) is onto.
8. Given a non-empty set \(X\), consider \( \mathrm{P}(X) \) which is the set of all subsets of \(X\).
Define the relation R in \( \mathrm{P}(X) \) as follows:
For subsets \( A, B \) in \( P(X) \), \( A R B \) if and only if \( A \subset B \). Is \( R \) an equivalence relation on \( \mathrm{P}(X) \) ? Justify your answer.
Answer
We know that every set is a subset of itself, ARA for all \( A \in P(X) \).
\( \Rightarrow \mathrm{R} \) is reflexive.
This cannot be implied to \( \mathrm{B} \subset \mathrm{A} \).
So, if \( \mathrm{A}=\{1,2\} \) and \( \mathrm{B}=\{1,2,3\} \), then it cannot be implied that B is related to A.
\( \Rightarrow \mathrm{R} \) is not symmetric.
So, if ARB and BRC, then \( \mathrm{A} \subset \mathrm{B} \) and \( \mathrm{B} \subset \mathrm{C} \).
\( \Rightarrow \mathrm{A} \subset \mathrm{C} \)
\( \Rightarrow \mathrm{R} \) is transitive.
Therefore, R is not an equivalence relation since it is not symmetric.
9. Given a non-empty set \(X \), consider the binary operation \( *: \mathrm{P}(X) \times \mathrm{P}(X) \) \( \rightarrow \mathrm{P}(X) \) given by \( \mathrm{A} * \mathrm{B}=\mathrm{A} \cap \mathrm{B} \forall \mathrm{A} ,\mathrm{B}\) in \( \mathrm{P}(X) \), where \( \mathrm{P}(X) \) is the power set of \( X \). Show that \( X \) is the identity element for this operation and \(X\) is the only invertible element in \( \mathrm{P}(X) \) with respect to the operation \(*\).
Answer
It is given that \( *: \mathrm{P}(X) \times \mathrm{P}(X) \rightarrow \mathrm{P}(X) \) given by
\( \mathrm{A} * \mathrm{B}=\mathrm{A} \cap \mathrm{B} \forall \mathrm{A}, \mathrm{B} \in \mathrm{P}(X) \).
As we know that,
\(
\Rightarrow \mathrm{A} * X=\mathrm{A}=X * \mathrm{A} \forall \mathrm{A} \in \mathrm{P}(X)
\)
Thus, \(X\) is the identity element for the given binary operation \(*\).
Now, an element \( A \in P(X) \) is invertible if there exists \( B \in P(X) \) such that
\( \mathrm{A} * \mathrm{B}=X=\mathrm{B} * \mathrm{A} \) (As \(X\) is the identity element)
\( \mathrm{A} \cap \mathrm{B}=X=\mathrm{B} \cap \mathrm{A} \)
This can be possible only when \( \mathrm{A}=X=\mathrm{B} \).
Therefore, \(X\) is the only invertible element in \( \mathrm{P}(X) \) w.r.t. given operation \(*\).
Hence Proved.
10. Find the number of all onto functions from the set \( \{1,2,3, \ldots, n\} \) to itself.
Answer
Onto function from the set \( \{1,2,3, \ldots, \mathrm{n}\} \) to itself is simply a permutation on n symbols \( 1,2,3, \ldots, \mathrm{n} \).
Therefore, the total number of onto maps from \( \{1,2,3, \ldots, \mathrm{n}\} \) to itself is the same as the total number of permutations on \( n \) symbols \( 1,2,3, \ldots, n \), which is \(n !\)
11 A. Let \( \mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \) and \( \mathrm{T}=\{1,2,3\} \). Find \( \mathrm{F}^{-1} \) of the following functions \(F\) from \( S \) to \( T \), if it exists.
\(
\mathrm{F}=\{(\mathrm{a}, 3),(\mathrm{b}, 2),(\mathrm{c}, 1)\}
\)
Answer
It is given that \( \mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \) and \( \mathrm{T}=\{1,2,3\} \)
\( \mathrm{F}: \mathrm{S} \rightarrow \mathrm{T} \) is defined as:
\(
\mathrm{F}=\{(\mathrm{a}, 3),(\mathrm{b}, 2),(\mathrm{c}, 1)\}\)
\(= > \mathrm{F}(\mathrm{a})=3, \mathrm{F}(\mathrm{b})=2, \mathrm{F}(\mathrm{c})=1
\)
Therefore, \( \mathrm{F}^{-1}: \mathrm{T} \rightarrow \mathrm{S} \) is given by:
\(
\mathrm{F}^{-1}=\{(3, \mathrm{a}),(2, \mathrm{b}),(1, \mathrm{c})\}
\)
class 12 maths chapter 1 miscellaneous exercise solutions || miscellaneous exercise class 12 chapter 1 || relations and functions class 12 ncert solutions
Download the Math Ninja App Now
11 B. Let \( \mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \) and \( \mathrm{T}=\{1,2,3\} \). Find \( \mathrm{F}^{-1} \) of the following functions \(F\) from \( S \) to \( T \), if it exists.
\(
\mathrm{F}=\{(\mathrm{a}, 2),(\mathrm{b}, 1),(\mathrm{c}, 1)\}
\)
Answer
It is given that \( \mathrm{S}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \) and \( \mathrm{T}=\{1,2,3\} \)
\( \mathrm{F}: \mathrm{S} \rightarrow \mathrm{T} \) is defined as:
\( \mathrm{F}=\{(\mathrm{a}, 2),(\mathrm{b}, 1),(\mathrm{c}, 1)\} \)
\( = > \mathrm{F}(\mathrm{b})=1, \mathrm{~F}(\mathrm{c})=1, \mathrm{~F} \) is not one-one.
Therefore, \( F \) is not invertible
\( \Rightarrow \mathrm{F}^{-1} \) does not exist.
12. Consider the binary operations \( *: \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R} \) and \( \circ: \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R} \) defined as \( \mathrm{a} * \mathrm{b}=|\mathrm{a}-\mathrm{b}| \) and \( a \circ\mathrm{b}=\mathrm{a}, \forall \mathrm{a}, \mathrm{b} \in R \). Show that \( * \) is commutative but not associative, \( \circ \) is associative but not commutative. Further, show that \( \forall a, b, c \in R, a *(b \circ c)=(a * b) \circ(a * c) \). [If it is so, we say that the operation \( * \) distributes over the operation \(\circ\)]. Does o distribute over \( * \) ? Justify your answer.
Answer
It is given that \( *: \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R} \) and \(\circ : \mathrm{R} \times \mathrm{R} \rightarrow \mathrm{R} \) defined as \( \mathrm{a} * \mathrm{b}=|\mathrm{a}-\mathrm{b}| \) and \(\mathrm{a}\circ \mathrm{b}=\mathrm{a}, \forall \mathrm{a}, \mathrm{b} \in R \).
For \( a, b \in R \), we get:
\(
a* b=|a-b|\)
\(b*a=|b-a|=|-(a-b)|=|a-b|
\)
Therefore, \( a * b=b * a \)
\( \Rightarrow \) the operation \(*\) is commutative.
We can see that
\(
(1 * 2) * 3=(|1-2|) * 3=|1-3|=2\)
\(1 *(2 * 3)=1 *(|2-3|)=1 * 1=1
\)
Therefore, the operation \(*\) is not associative.
Now, consider the operation \(\circ\):
We can have observed that \( 1\circ 2=1 \) and \( 2 \circ 1=2 \).
\( \Rightarrow 1 \circ 2 \neq 2\circ 1 \) (where \( 1,2 \in \mathrm{R} \))
\( \Rightarrow \) the operation \(\circ\) is not commutative.
Let \( a, b, c \in R \). Then, we get:
\((a \circ b) \circ\mathrm{c}=a\circ c=\mathrm{a} \)
\( a \circ(\mathrm{b} \circ c)=\mathrm{a} \circ \mathrm{b}=\mathrm{a} \)
\( \Rightarrow(\mathrm{a} \circ \mathrm{b}) \circ\mathrm{c}=\mathrm{a} \circ(b\circ c) \)
\( \Rightarrow \) the operation \(\circ\) is associative.
Now, let \( a, b, c \in R \), then we have:
\( \mathrm{a} *(\mathrm{b} \circ c)=\mathrm{a} * \mathrm{b}=|\mathrm{a}-\mathrm{b}| \)
\( (\mathrm{a} * \mathrm{b}) \circ(\mathrm{a} * \mathrm{c})=(|\mathrm{a}-\mathrm{b}|) \circ(|\mathrm{a}-\mathrm{c}|=|\mathrm{a}-\mathrm{b}|) \)
Thus, \( a *(b \circ c )=(\mathrm{a} * \mathrm{b}) \circ(\mathrm{a} * \mathrm{c}) \)
Now,
\( 1 \circ (2 * 3)=1 \circ (|2-3|)=1 \circ 1=1 \)
\( (1 \circ 2 ) *(1 \circ 3)=1 * 1=|1-1|=0 \)
Therefore, \( 1 \circ(2 * 3) \neq(1 \circ 2) *(1 \circ 3) \) (where \(1, 2,3 \in \mathrm{R} \))
Therefore, the operation \(\circ\) does not distribute over \(*\).
13. Given a non-empty set \(X \), let \( *: \mathrm{P}(X) \times \mathrm{P}(X) \rightarrow \mathrm{P}(X) \) be defined as \( A * B=(A-B) \cup(B-A), \forall A, B \in P(X) \). Show that the empty set \( \varphi \) is the identity for the operation \( * \) and all the elements \(A\) of \( \mathrm{P}(X) \) are invertible with
\(
\mathrm{A}^{-1}=\mathrm{A} .
\)
Answer
It is given that \( *: \mathrm{P}(X) \times \mathrm{P}(X) \rightarrow \mathrm{P}(X) \) be defined as
\(
A * B=(A-B) \cup(B-A), A, B \in P(X)
\)
Now, let \( \mathrm{A} \in \mathrm{P}(X) \). Then, we get,
\(
\mathrm{A} * \phi =(\mathrm{A}-\phi ) \cup(\phi -\mathrm{A})=\mathrm{A} \cup \phi =\mathrm{A}\)
\(\phi * \mathrm{A}=(\phi -\mathrm{A}) \cup(\mathrm{A}-\phi )=\phi \cup \mathrm{A}=\mathrm{A}\)
\(\Rightarrow \mathrm{A} * \phi =\mathrm{A}=\phi * \mathrm{A}, \mathrm{A} \in \mathrm{P}(X)
\)
Therefore, \( \phi \) is the identity element for the given operation \(*\).
Now, an element \( A \in P(X) \) will be invertible if there exists \( B \in P(X) \) such that
\( \mathrm{A} * \mathrm{B}=\phi=\mathrm{B} * \mathrm{A} \). (as \( \phi \) is an identity element.)
Now, we can see that \( \mathrm{A} * \mathrm{A}=(\mathrm{A}-\mathrm{A}) \cup(\mathrm{A}-\mathrm{A})=\phi \cup \phi=\phi \mathrm{A} \in \mathrm{P}(X) \).
Therefore, all the element \( A \) of \( P(X) \) are invertible with \( A^{-1}=A \).
14. Define a binary operation \( * \) on the set \( \{0,1,2,3,4,5\} \) as \( \mathrm{a} * \mathrm{b}= \left\{\begin{array}{c}a+b, \text { if } a+b<6 \\ a+b-6, \text { if } a+b \geq 6\end{array}\right. \)
Show that zero is the identity for this operation and each element \( \mathrm{a} \neq 0 \) of the set is invertible with \( 6- a\) being the inverse of a.
Answer
Let \( X=\{0,1,2,3,4,5\} \)
The operation \(*\) on \(X\) is defined as
\( \mathrm{a} * \mathrm{b}=\left\{\begin{array}{c}a+b,\text{ if }a+b<6 \\ a+b-6,\text{ if }a+b \geq 6\end{array}\right. \)
An element \( e \in x \) is the identity element for the operation \(*\),
If \( a * e=a=e * a \forall a \in X \)
For \( a \in X \), we can see that:
Therefore, \( o \) is the identity element for the given operation \(*\).
An element \( a \in X \) is invertible if there exists \( b \in X \) such that
\(a * b = 0 = b * a\).
\( =\left\{\begin{array} {lll} a+b =0=b+a, \text { if }a+b < 6 \\ a+b-6 =0=b+a-6, \text { if } a \geq b \geq 6\end{array}\right. \)
\( a=-b \) or \( b=6-a \)
But, \( X=\{0,1,2,3,4,5\} \) and \( \mathrm{a}, \mathrm{b} \in X \). Then, \( \mathrm{a} \neq-\mathrm{b} \).
Therefore, \( b=6-a \) is the inverse of \( a \in X \).
Thus, the inverse of an element \( a \in X, a \neq 0 \) is \( 6-a, a-1=6-a \).
15. Let \( \mathrm{A}=\{-1,0,1,2\}, \mathrm{B}=\{-4,-2,0,2\} \) and \( \mathrm{f}, \mathrm{g}: \mathrm{A} \rightarrow \mathrm{B} \) be functions defined by \( \mathrm{f}(x)=x^{2}-x, x \in \) A and \( \mathrm{g}(x)=2\left|x-\frac{1}{2}\right|-1, x \in \mathrm{A} \). Are f and \( g \) equal?
Justify your answer.
Answer
It is given that \( A=\{-1,0,1,2\}, B=\{-4,-2,0,2\} \)
And also, it is given that \( f, g: A \rightarrow B \) be functions defined by \( f(x)=x^{2}- \) \( x, x \in \mathrm{A} \) and \( \mathrm{g}(x)=2\left|x-\frac{1}{2}\right|-1, x \in \mathrm{A} \)
We can see that
\(
f(-1)=(-1)^{2}-(-1)=1+1=2\)
\(g(-1)=2\left|(-1)-\frac{1}{2}\right|-1=2\left(\frac{3}{2}\right)-1=3-1=2\)
\(\Rightarrow f(-1)=\mathrm{g}(-1)\)
\(\mathrm{F}(0)=(0) 2-0=0+0=0\)
\(\mathrm{g}(-1)=2\left|0-\frac{1}{2}\right|-1=2\left(\frac{1}{2}\right)-1=1-1=0\)
\(\Rightarrow \mathrm{f}(0)=\mathrm{g}(0)\)
\(\mathrm{f}(1)=(1)^{2}-1=1-1=0\)
\(\mathrm{~g}(1)=2\left|1-\frac{1}{2}\right|-1=2\left(\frac{1}{2}\right)-1=1-1=0\)
\(\Rightarrow \mathrm{f}(1)=\mathrm{g}(1)\)
\(\mathrm{F}(2)=(2)^{2}-2=4-2=2\)
\(\mathrm{g}(2)=2\left|2-\frac{1}{2}\right|-1=2\left(\frac{3}{2}\right)-1=3-1=2\)
\(\mathrm{f}(2)=\mathrm{g}(2)
\)
Thus, \( \mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a}) \forall . \mathrm{a} \in \mathrm{A} \)
Therefore, the functions \( f \) and \( g \) are equal.
16. Let \( \mathrm{A}=\{1,2,3\} \). Then number of relations containing \( (1,2) \) and \( (1,3) \) which are reflexive and symmetric but not transitive is
A. 1 B. 2 C. 3 D. 4
Answer
This is because relation \( R \) is reflexive as \( (1,1),(2,2),(3,3) \in R \).
Relation \(R\) is symmetric as \( (1,2),(2,1) \in \mathrm{R} \) and \( (1,3),(3,1) \in \mathrm{R} \).
But relation \( R \) is not transitive as \( (3,1),(1,2) \in R \) but \( (3,2) \in R \).
Now, if we add any one of the two pairs \( (3,2) \) and \( (2,3) \) (or both) to relation \( R \),
Then, relation R will become transitive.
Therefore, the total number of desired relations is one.
class 12 maths chapter 1 miscellaneous exercise solutions || miscellaneous exercise class 12 chapter 1 || relations and functions class 12 ncert solutions
Download the Math Ninja App Now
17. Let \( \mathrm{A}=\{1,2,3\} \). Then number of equivalence relations containing (1, 2) is
A. 1 B. 2 C. 3 D. 4
Answer
It is given that \( \mathrm{A}=\{1,2,3\} \).
An equivalence relation is reflexive, symmetric and transitive.
The smallest equivalence relations containing \( (1,2) \) is equal to
\(
\mathrm{R}_{1}=\{(1,1),(2,2),(3,3),(1,2),(2,1)\}
\)
Now, only four pairs are left \( (2,3),(3,2),(1,3) \) and \( (3,1) \).
So, if we add one pair to R, then for symmetry we must add \( (3,2) \).
Also, for transitivity we required to add \( (1,3) \) and \( (3,1) \).
Thus, the only equivalence relation is the universal relation.
Therefore, the total number of equivalence relations containing \( (1,2) \) is \(2 \).
18. Let \( \mathrm{f}: \mathrm{R} \rightarrow \mathrm{R} \) be the Signum Function defined as
\( \mathrm{f}(x)=\left\{\begin{array}{c}1, x > 0 \\ 0, x=0 \\ -1, x < 0\end{array}\right. \)
and \( g: R \rightarrow R \) be the Greatest Integer Function given by \( g(x)=[x] \), where \( [x] \) is greatest integer less than or equal to \(x \). Then, does \(f\circ g\) and \(g\circ f\) coincide in \( (0,1] \) ?
Answer
It is given that
\( f: R \rightarrow R \) be the Signum Function defined as
\( \mathrm{f}(x)=\left\{\begin{array}{c}1, x > 0 \\ 0, x=0 \\ -1, x < 0\end{array}\right. \)
Also, \( \mathrm{g}: \mathrm{R} \rightarrow \mathrm{R} \) is defined as \( \mathrm{g}(x)=[x] \), where \( [x] \) is the greatest integer less than or equal to \( x \).
Now, let \( x \in(0,1] \)
Then, we get,
\( [x]=1 \) if \( x=1 \) and \( [x]=0 \) if \( 0 < x < 1 \)
Therefore, \( \operatorname{f\circ g}(x)=f(g(x))=f([x]) \)
\( \begin{array}{l}=\left\{\begin{array}{c}f(1),\text{ if }x=1 \\ f(0),\text{ if }x \in(0,1)\end{array}=\left\{\begin{array}{c}1, \text { if } x=1 \\ 0,\text{ if }x \in(0,1)\end{array}\right.\right. \\ \operatorname{g\circ f}(x)=\mathrm{g}(\mathrm{f}(x)) \\ =\mathrm{g}(1)[x>0] \\ =[1]=1\end{array} \)
Then, when \( x \in(0,1) \), we get \( f\circ g(x)=0 \) and \( g\circ f(x)=1 \)
But \(f\circ g (1) \neq g\circ f(1)\)
Therefore, \(f\circ g\) and \(g\circ f\) do not coincide in \( (0,1] \).
19. Number of binary operations on the set \( \{\mathrm{a}, \mathrm{b}\} \) are
A. 10 B. 16 C. 20 D. 8
Answer
A binary option \(*\) on \( \{a, b\} \) is a function from
\(
\{\mathrm{a}, \mathrm{b}\} \times\{\mathrm{a}, \mathrm{b}\} \rightarrow\{\mathrm{a}, \mathrm{b}\}
\)
i.e. y
Therefore, the total number of binary operations on the set \( \{a, b\} \) is 24 that is 16.
class 12 maths chapter 1 miscellaneous exercise solutions || miscellaneous exercise class 12 chapter 1 || relations and functions class 12 ncert solutions
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top