Miscellaneous Exercise Class 12 Chapter 11​

Miscellaneous exercise class 12 chapter 11​ | class 12 maths chapter 11 miscellaneous exercise solutions​ | miscellaneous exercise class 11 chapter 12​ | miscellaneous exercise ch 11 class 12​ | miscellaneous exercise chapter 11 class 12​ | miscellaneous exercise on chapter 11 class 12 ​| ncert solutions for class 12 maths chapter 11 | three dimensional geometry class 12 ncert solutions

Struggling with the trickiest problems in Three Dimensional Geometry? The Class 12 Maths Chapter 11 Miscellaneous Exercise Solutions are designed to help you master every important concept through a mix of application-based and advanced-level questions. Whether you’re searching for Miscellaneous Exercise Chapter 11 Class 12, Miscellaneous Exercise on Chapter 11 Class 12, or full NCERT Solutions for Class 12 Maths Chapter 11, this resource offers comprehensive, step-by-step answers that follow the latest CBSE pattern. With these expertly crafted solutions from the Three Dimensional Geometry Class 12 NCERT Solutions, you’ll gain the confidence to tackle any 3D geometry question with ease and precision.

miscellaneous exercise class 12 chapter 11
miscellaneous exercise class 11 chapter 12​ || ncert solutions for class 12 maths chapter 11 || miscellaneous exercise on chapter 11 class 12 ​ || miscellaneous exercise chapter 11 class 12​ || three dimensional geometry class 12 ncert solutions || class 12 maths chapter 11 miscellaneous exercise solutions​ || miscellaneous exercise class 12 chapter 11​ || miscellaneous exercise ch 11 class 12​
Download the Math Ninja App Now

Miscellaneous Exercise

1. Show that the line joining the origin to the point \( (2,1,1) \) is perpendicular to the line determined by the points \( (3,5,-1),(4,3,-1) \).
Answer
Let OA be the line joining the origin \( (0,0,0) \) and the point \( \mathrm{A}(2,1,1) \).
Let BC be the line joining the points \( \mathrm{B}(3,5,-1) \) and \( \mathrm{C}(4,3,-1) \)
\( \text{Direction ratios of} \ O A=\left(a_{1}, b_{1}, c_{1}\right) \equiv[(2-0),(1-0),(1-0)] \equiv(2,1,1) \)
\( \text{Direction ratios of} \ BC=\left(a_{2}, b_{2}, c_{2}\right) \equiv[(4-3),(3-5),(-1+1)] \) \( \equiv(1,-2,0) \)
Given-
OA is \( \perp \) to BC
\( \therefore \) we have to prove that -
\( a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0 \)
\( \text {L.H.S }=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=2 \times 1+1 \times(-2)+1 \times 0=2-2=0 \)
R.H.S \( =0 \)
Thus, L.H.S. \( = \text{R.H.S.} \ldots \text{PROVED}\)
Hence OA is \( \perp \) to BC .
2. If \(l_{1}, \mathrm{~m}_{1}, \mathrm{n}_{1} \) and \(l_{2}, \mathrm{~m}_{2}, \mathrm{n}_{2} \) are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are \( \left(m_{1} n_{2}-m_{2} n_{1}\right),\left(n_{1} l_{2}-n_{2} l_{1}\right),\left(l_{1} m_{2}-l_{2} m_{1}\right) \)
Answer
Let \( l, \mathrm{~m}, \mathrm{n} \) be the direction cosines of the line perpendicular to each of the given lines. Then,
\(ll_{1}+\mathrm{mm}_{1}+\mathrm{nn}_{1}=0\ldots (1)\)
and, \( ll_{2}+\mathrm{mm}_{2}+\mathrm{nn}_{2}=0 \ldots (2)\)
On solving (1) and (2) by cross - multiplication, we get -
\(\frac{l}{m_{1} n_{2}-m_{2} n_{1}}=\frac{m}{n_{1} l_{2}-n_{2} l_{1}}=\frac{n}{l_{1} m_{2}-l_{2} m_{1}}\)
Thus, the direction cosines of the given line are proportional to
\(\left(\mathrm{m}_{1} \mathrm{n}_{2}-\mathrm{m}_{2} \mathrm{n}_{1}\right),\left(\mathrm{n}_{1} l_{2}-\mathrm{n}_{2} l_{1}\right),\left(l_{1} \mathrm{~m}_{2}-l_{2} \mathrm{~m}_{1}\right)\)
So, its direction cosines are
\(\frac{m_{1} n_{2}-m_{2} n_{1}}{\lambda}, \frac{n_{1} l_{2}-n_{2} l_{1}}{\lambda}, \frac{l_{1} m_{2}-l_{2} m_{1}}{\lambda}\)
Where \( \lambda=\sqrt{\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}} \)
we know that -
\(\left(l_{1}^{2}+m_{1}^{2}+n_{1}^{2}\right)\left(l_{2}^{2}+m_{2}^{2}+n_{2}^{2}\right)-\left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right)^{2}\)
\(=\left(m_{1} n_{2}-m_{2} n_{1}\right)^{2}+\left(n_{1} l_{2}-n_{2} l_{1}\right)^{2}+\left(l_{1} m_{2}-l_{2} m_{1}\right)^{2}\ldots (3)\)
It is given that the given lines are perpendicular to each other. Therefore, \( l_{1} l_{2}+\mathrm{m}_{1} \mathrm{~m}_{2}+\mathrm{n}_{1} \mathrm{n}_{2}=0 \)
Also, we have
\(l_{1}^{2}+\mathrm{m}_{1}^{2}+\mathrm{n}_{1}^{2}=1\)
and, \( l_{2}^{2}+\mathrm{m}_{2}^{2}+\mathrm{n}_{2}^{2}=1 \)
Putting these values in (3), we get -
\(\left(\mathrm{m}_{1} \mathrm{n}_{2}-\mathrm{m}_{2} \mathrm{n}_{1}\right)^{2}+\left(\mathrm{n}_{1} l_{2}-\mathrm{n}_{2} l_{1}\right)^{2}+\left(l_{1} \mathrm{~m}_{2}-l_{2} \mathrm{~m}_{1}\right)^{2}=1\)
\(\Rightarrow \lambda=1\)
Hence, the direction cosines of the given line are \( \left(m_{1} n_{2}-m_{2} n_{1}\right),\left(n_{1} l_{2}-\right. \) \( \left.\mathrm{n}_{2} l_{1}\right),\left(l_{1} \mathrm{~m}_{2}-l_{2} \mathrm{~m}_{1}\right) \)
3. Find the angle between the lines whose direction ratios are a, \( \mathrm{b}, \mathrm{c} \) and \( \mathrm{b}-\mathrm{c}, \mathrm{c}-\mathrm{a}, \mathrm{a}-\mathrm{b} \).
Answer
Angle between the lines with direction ratios \( a_{1}, b_{1}, c_{1} \) and \( a_{2}, b_{2}, c_{2} \) is given by
\(\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|\)
Given -
\(\mathrm{a}_{1}=\mathrm{a}, \mathrm{b}_{1}=\mathrm{b}, \mathrm{c}_{1}=\mathrm{c}\)
\(\mathrm{a}_{2}=\mathrm{b}-\mathrm{c}, \mathrm{b}_{2}=\mathrm{c}-\mathrm{a}, \mathrm{c}_{2}=\mathrm{a}-\mathrm{b}\)
So,
\(\cos \theta=\left|\frac{a(b-c)+b(c-a)+c(a-b)}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{(b-c)^{2}+(c-a)^{2}+(a-b)^{2}}}\right|\)
\(=0\)
\(\therefore \cos \theta=0\)
So, \( \theta=90^{\circ} \)
Hence, Angle between the given pair of Lines is \( 90^{\circ} \).
4. Find the equation of a line parallel to \(x\) - axis and passing through the origin.
Answer
Equation of a line passing through \( \left(x_{1}, y_{1}, z_{1}\right) \) and parallel to a line with direction ratios \( \mathrm{a}, \mathrm{b}, \mathrm{c} \) is
\(\frac{x-x_{1}}{\mathrm{a}}=\frac{y-y_{1}}{\mathrm{~b}}=\frac{z-z_{1}}{\mathrm{c}}\)
Since the line passes through origin i.e. \( (0,0,0) \)
\(x_{1}=0, y_{1}=0, z_{1}=0\)
Since line is parallel to x - axis,
\(a=1, b=0, c=0\)
Equation of Line is given by -
\(\Rightarrow \frac{x-0}{0}=\frac{y-0}{0}=\frac{z-0}{0}\)
\(\Rightarrow \frac{x}{1}=\frac{y}{0}=0\)
5. If the coordinates of the points A, B, C, D be \( (1,2,3),(4,5 \), \( 7),(-4,3,-6) \) and \( (2,9,2) \) respectively, then find the angle between the lines AB and CD .
Answer
Angle between the lines with direction ratios \( a_{1}, b_{1}, c_{1} \) and \( a_{2}, b_{2}, c_{2} \) is given by
\(\cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|\)
A line passing through \( \mathrm{A}\left(x_{1}, y_{1}, z_{1}\right) \) and \( \mathrm{B}\left(x_{2}, y_{2}, z_{2}\right) \) has direction ratios \( \left(x_{1}-x_{2}\right),\left(y_{1}-y_{2}\right),\left(z_{1}-z_{2}\right) \)
Direction ratios of line joining the points \( \mathrm{A}(1,2,3) \) and \( \mathrm{B}(4,5,7) \)
\(=(4-1),(5-2),(7-3)\)
\(=(3,3,4)\)
\(\therefore \mathrm{a}_{1}=3, \mathrm{~b}_{1}=3, \mathrm{c}_{1}=4\)
Direction ratios of line joining the points \( \mathrm{C}(-4,3,-6) \) and \( \mathrm{B}(2,9,2) \)
\(=(2-(-4)),(9-3),(2-(-6))\)
\(=(6,6,8)\)
\(\therefore \mathrm{a}_{2}=6, \mathrm{~b}_{2}=6, \mathrm{c}_{2}=8\)
Now,
\(\Rightarrow \cos \theta=\left|\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right|\)
\(\Rightarrow \cos \theta=\left|\frac{3 \times 6+3 \times 6+4 \times 8}{\sqrt{3^{2}+3^{2}+4^{2}} \sqrt{6^{2}+6^{2}+8^{2}}}\right|\)
\(=\left|\frac{18+18+32}{\sqrt{9+9+16} \sqrt{36+36+64}}\right|\)
\(=\left|\frac{68}{\sqrt{34} \sqrt{4 \times 34}}\right|\)
\(=\left|\frac{68}{34 \times 2}\right| \therefore \cos \theta=1\)
So, \( \theta=0^{\circ} \)
Hence, Angle between the lines AB and CD is \( 0^{\circ} \).
miscellaneous exercise class 11 chapter 12​ || ncert solutions for class 12 maths chapter 11 || miscellaneous exercise on chapter 11 class 12 ​ || miscellaneous exercise chapter 11 class 12​ || three dimensional geometry class 12 ncert solutions || class 12 maths chapter 11 miscellaneous exercise solutions​ || miscellaneous exercise class 12 chapter 11​ || miscellaneous exercise ch 11 class 12​
Download the Math Ninja App Now
6. If the lines \( \frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2} \) and \( \frac{x-1}{3 k}=\frac{y-2}{1}=\frac{z-3}{-5} \) are perpendicular, find the value of k .
Answer
Two lines \( \frac{x-x_{1}}{\mathrm{a}_{1}}=\frac{y-y_{1}}{\mathrm{~b}_{1}}=\frac{z-z_{1}}{\mathrm{c}_{1}} \) and \( \frac{x-x_{2}}{\mathrm{a}_{2}}=\frac{y-y_{2}}{\mathrm{~b}_{2}}=\frac{z-z_{2}}{\mathrm{c}_{2}} \) is are perpendicular to each other if
\(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\)
Given -
\(\frac{x-1}{-3}=\frac{y-2}{2 k}=\frac{z-3}{2}\)
comparing with
\(\Rightarrow \frac{x-x_{1}}{\mathrm{a}_{1}}=\frac{y-y_{1}}{\mathrm{~b}_{1}}=\frac{z-z_{1}}{\mathrm{c}_{1}}\)
We get -
\(\begin{array}{l}
x_{1}=1, y_{1}=2, z_{1}=3 \\
\& \ \mathrm{a}_{1}=-3, \mathrm{~b}_{1}=2 \mathrm{k}, \mathrm{c}_{1}=2
\end{array}\)
Similarly,
\(\Rightarrow \frac{x-1}{3 k}=\frac{y-2}{1}=\frac{z-3}{-5}\)
comparing with
\(\Rightarrow \frac{x-x_{2}}{\mathrm{a}_{2}}=\frac{y-y_{2}}{\mathrm{~b}_{2}}=\frac{z-z_{2}}{\mathrm{c}_{2}}\)
we get -
\(x_{2}=1, y_{2}=2, z_{2}=3\)
\( \& \ \mathrm{a}_{2}=3 \mathrm{k}, \mathrm{b}_{2}=1, \mathrm{c}_{2}=-5 \)
Since the two lines are perpendicular,
\(\mathrm{a}_{1} \mathrm{a}_{2}+\mathrm{b}_{1} \mathrm{~b}_{2}+\mathrm{c}_{1} \mathrm{c}_{2}=0\)
\(\Rightarrow(-3) \times 3 \mathrm{k}+2 \mathrm{k} \times 1+2 \times(-5)=0\)
\(\Rightarrow-9 \mathrm{k}+2 \mathrm{k}-10=0\)
\(\Rightarrow-7 \mathrm{k}=10\)
\(\therefore \mathrm{k}=-\frac{10}{7}\)
Hence, the value of k is \( -\frac{10}{7} \).
7. Find the vector equation of the line passing through (1, 2, 3 ) and perpendicular to the plane \( \overrightarrow{\mathrm{r}} \cdot(\hat{i}+2 \hat{j}-5 \hat{k})+9=0 \).
Answer
The vector equation of a line passing through a point with position vector \( \overrightarrow{a} \) and parallel to vector \( \overrightarrow{b} \) is
\(\Rightarrow \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}\)
Given, the line passes through \( (1,2,3) \)
So, \( \overrightarrow{a}=1 \hat{i}+2 \hat{j}+3 \hat{k} \)
Finding normal of plane
\(\overrightarrow{\mathrm{r}}(\hat{i}+2 \hat{j}-5 \hat{\mathrm{k}})+9=0\)
\(\Rightarrow \overrightarrow{\mathrm{r}} \cdot(\hat{i}+2 \hat{j}-5 \hat{\mathrm{k}})=-9\)
\(\Rightarrow-\overrightarrow{\mathrm{r}}(\hat{i}+2 \hat{j}-5 \hat{\mathrm{k}})=9\)
\(=\overrightarrow{\mathrm{r}}(-1 \hat{i}+2 \hat{j}+3 \hat{k})+9=0\)
Comparing with \( \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{n}}=\mathrm{d} \)
\(\overrightarrow{n}=-\hat{i}-2 \hat{j}+5 \hat{k}\)
Since line is perpendicular to plane, the line will be parallel of the plane
\(\therefore \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{n}}=-\hat{i}-2 \hat{j}+5 \hat{\mathrm{k}}\)
Hence,
\(\overrightarrow{r} =(1 \hat{i}+2 \hat{j}+3 \hat{k})+\lambda(-\hat{i}-2 \hat{j}+5 \hat{k})\)
\(\overrightarrow{r} =(1 \hat{i}+2 \hat{j}+3 \hat{k})-\lambda(\hat{i}+2 \hat{j}-5 \hat{k})\)
This is the required vector equation of line.
8. Find the equation of the plane passing through ( \( a, b, c) \) and parallel to the plane \( \overrightarrow{\mathrm{r}} .(\hat{i}+\hat{j}+\hat{k})=2 \).
Answer
The equation of a plane passing through \( \left(x_{1}, y_{1}, z_{1}\right) \) and perpendicular to a line with direction ratios \( \mathrm{A}, \mathrm{B}, \mathrm{C} \) is
\( \mathrm{A}\left(x-x_{1}\right)+\mathrm{B}\left(y-y_{1}\right)+\mathrm{C}\left(z-z_{1}\right)=0 \)
The plane passes through \( (a, b, c) \)
So, \( x_{1}=\mathrm{a}, y_{1}=\mathrm{b}, z_{1}=\mathrm{c} \)
Since both planes are parallel to each other, their normal will be parallel
\( \therefore \) Direction ratios of normal
\( = \) Direction ratios of normal of \( \overrightarrow{r} .(\hat{i}+\hat{j}+\hat{k})=2 \)
Direction ratios of normal \( =(1,1,1) \)
\(\therefore \mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=1\)
Thus,
Equation of plane in cartesian form is
\(\mathrm{A}\left(x-x_{1}\right)+\mathrm{B}\left(y-y_{1}\right)+\mathrm{C}\left(z-z_{1}\right)=0\)
\(\Rightarrow 1(x-\mathrm{a})+1(y-\mathrm{b})+1(z-\mathrm{c})=0\)
\(\Rightarrow x+y+z-(\mathrm{a}+\mathrm{b}+\mathrm{c})=0\)
Thus, \( x+y+z=\mathrm{a}+\mathrm{b}+\mathrm{c} \) is the required equation of plane.
9. Find the shortest distance between lines
\(\overrightarrow{r}=(6 \hat{i}+2 \hat{j}+2 \hat{k})+\lambda(1 \hat{i}-2 \hat{j}+\hat{2}) \text { and } \overrightarrow{r}=(-4 \hat{i}-\hat{k})+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k})\)
Answer
Shortest distance between lines with vector equations \( \overrightarrow{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}} \) and \( \overrightarrow{r}=\overrightarrow{a_{2}}+\lambda \overrightarrow{b_{2}} \) is
\(\Rightarrow\left|\frac{\left(\overrightarrow{b_{1}} \times {\overrightarrow{b}_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right|\)
Given -
\(\overrightarrow{r}=(6 \hat{i}+2 \hat{j}+2 \hat{k})+\lambda(1 \hat{i}-2 \hat{j}+\hat{2})\)
Comparing with \( \overrightarrow{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}} \), we get -
\(\overrightarrow{a_{1}}=(6 \hat{i}+2 \hat{j}+2 \hat{k}) \& \ \overrightarrow{b_{1}}=(1 \hat{i}-2 \hat{j}+\hat{2})\)
Similarly,
\(\overrightarrow{\mathrm{r}}=(-4 \hat{i}-\hat{\mathrm{k}})+\mu(3 \hat{i}-2 \hat{j}-2 \hat{\mathrm{k}})\)
Comparing with \( \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}_{2}}+\lambda \overrightarrow{\mathrm{b}_{2}} \), we get -
\(\overrightarrow{a_{1}}=(-4 \hat{i}-\hat{k}) \& \ \overrightarrow{b_{1}}=(3 \hat{i}-2 \hat{j}-2 \hat{k})\)
Now,
\(\Rightarrow\left(\overrightarrow{\mathrm{a}_{2}}-\overrightarrow{\mathrm{a}_{1}}\right)=(-4 \hat{i}-\hat{\mathrm{k}})-(6 \hat{i}+2 \hat{j}+2 \hat{\mathrm{k}}) \\
=((-4-6) \hat{i}+(0-2) \hat{j}+(-1-2) \hat{\mathrm{k}}) \\
=(-10 \hat{i}-2 \hat{j}-3 \hat{\mathrm{k}}) \)
\(\begin{array}{l} \Rightarrow\left(\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right)=\left|\begin{array}{rrr}
\hat{i} & \hat{j} & \hat{k} \\
1 & -2 & 2 \\
3 & -2 & -2
\end{array}\right| \end{array}\)
\(\Rightarrow=\hat{i}[(-2 \times-2)-(-2 \times 2)]-\hat{j}[(1 \times-2)-(3 \times 2)] \hat{k}[(1 \times-2)-(3x \times 2)] \)
\(\Rightarrow=\hat{i}[4+4]-\hat{j}[-2-6]+\hat{\mathrm{k}}[-2+6] \)
\(\Rightarrow=8 \hat{i}+8 \hat{j}+4 \hat{\mathrm{k}}\)
\( \text{Magnitude of }\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}=\left|\overrightarrow{\mathrm{b}_{1}} \times \overrightarrow{\mathrm{b}_{2}}\right|=\sqrt{8^{2}+8^{2}+4^{2}}=\sqrt{64+64+16} \)
\(=\sqrt{144}\)
\(=12\)
Also,
\(\Rightarrow\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)=(8 \hat{i}+8 \hat{j}+4 \hat{k}) \cdot(-10 \hat{i}-2 \hat{j}-3 \hat{k})\)
\(=-80+(-16)+(-12)\)
\(=-108\)
Shortest Distance \( =\left|\frac{\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right) \cdot\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right)}{\left|\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right|}\right|=\left|\frac{-108}{12}\right|=|-9|=9 \)
Hence, the shortest distance between the given two lines is 9 .
10. Find the coordinates of the point where the line through (5, \( 1,6) \) and \( (3,4,1) \) crosses the \(YZ \)- plane.
Answer
The vector equation of a line passing through two points with position vectors \( \overrightarrow{a} \& \overrightarrow{b} \) is
\(\Rightarrow \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}})\)
The position vector of point \( \mathrm{A}(5,1,6) \) is given as -
\(\Rightarrow \overrightarrow{a}=5 \hat{i}+\hat{j}+6 \hat{k}\)
The position vector of point B \( (3,4,1) \) is given as -
\(\Rightarrow \overrightarrow{\mathrm{b}}=3 \hat{i}+4 \hat{j}+\hat{k}\)
\(\Rightarrow(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}})=(3 \hat{i}+4 \hat{j}+\hat{k})-(5 \hat{i}+\hat{j}+6 \hat{k})\)
\(=(3-5) \hat{i}+(4-1) \hat{j}+(1-6) \hat{k}\)
\(=(-2 \hat{i}+3 \hat{j}-5 \hat{k})\)
\(\therefore \overrightarrow{\mathrm{r}}=(5 \hat{i}+\hat{j}+6 \hat{k})+\lambda(-2 \hat{i}+3 \hat{j}-5 \hat{k})\ldots (1)\)
Let the coordinates of the point where the line crosses the \(YZ\) plane be \( (0 \), \( y, z \) )
So, \( \overrightarrow{\mathrm{r}}=(0 \hat{i}+y \hat{j}+z \hat{\mathrm{k}}) \ldots (2)\)
Since point lies in line, it will satisfy its equation,
Putting (2) in (1)
\((0 \hat{i}+y \hat{j}+z \hat{\mathrm{k}})=(5 \hat{i}+\hat{j}+6 \hat{\mathrm{k}})+\lambda(-2 \hat{i}+3 \hat{j}-5 \hat{\mathrm{k}})\)
\(\Rightarrow(0 \hat{i}+y \hat{j}+z \hat{\mathrm{k}})=(5-2 \lambda) \hat{i}+(1+3 \lambda) \hat{j}+(6-5 \lambda) \hat{\mathrm{k}}\)
Two vectors are equal if their corresponding components are equal
So,
\(0=5-2 \lambda\ldots (3)\)
\(y=1+3 \lambda \ldots (4)\)
and, \( z=6-5 \lambda \ldots (5)\)
From equation (3), we get -
\(\lambda=\frac{5}{2}\)
Substitute the value of \( \lambda \) in equation (4) and (5), we get -
\(y=1+3 \lambda=1+3 \times(\frac{5}{2})=1+(\frac{15}{2})=\frac{17}{2}\)
and
\(z=6-5 \lambda=6-5 \times(\frac{5}{2})=6-(\frac{25}{2})=-\frac{13}{2}\)
Therefore, the coordinates of the required point are \( (0,\frac{17}{2},-\frac{13}{2}) \).
11. Find the coordinates of the point where the line through (5, \( 1,6) \) and \( (3,4,1) \) crosses the \(ZX\) - plane.
Answer
The vector equation of a line passing through two points with position vectors \( \overrightarrow{a} \& \overrightarrow{b} \) is
\(\Rightarrow \overrightarrow{r}=\overrightarrow{a}+\lambda(\overrightarrow{b}-\overrightarrow{a})\)
The position vector of point \( \mathrm{A}(5,1,6) \) is given as -
\(\Rightarrow \overrightarrow{a}=5 \hat{i}+\hat{j}+6 \hat{k}\)
The position vector of point \( B(3,4,1) \) is given as -
\(\Rightarrow \overrightarrow{\mathrm{b}}=3 \hat{i}+4 \hat{j}+\hat{\mathrm{k}}\)
\(\Rightarrow(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}})=(3 \hat{i}+4 \hat{j}+\hat{\mathrm{k}})-(5 \hat{i}+\hat{j}+6 \hat{\mathrm{k}})\)
\(=(3-5) \hat{i}+(4-1) \hat{j}+(1-6) \hat{k}\)
\(=(-2 \hat{i}+3 \hat{j}-5 \hat{k})\)
\(\therefore \overrightarrow{\mathrm{r}}=(5 \hat{i}+\hat{j}+6 \hat{k})+\lambda(-2 \hat{i}+3 \hat{j}-5 \hat{k})\ldots (1)\)
Let the coordinates of the point where the line crosses the YZ plane be \( (0 \), \( y, z) \)
So, \( \overrightarrow{\mathrm{r}}=(x \hat{i}+0 \hat{j}+z \hat{\mathbf{k}}) \ldots (2)\)
Since point lies in line, it will satisfy its equation,
Putting (2) in (1)
\((x \hat{i}+0 \hat{j}+z \hat{k})=(5 \hat{i}+\hat{j}+6 \hat{\mathrm{k}})+\lambda(-2 \hat{i}+3 \hat{j}-5 \hat{\mathrm{k}})\)
\(\Rightarrow(x \hat{i}+0 \hat{j}+z \hat{\mathrm{k}})=(5-2 \lambda) \hat{i}+(1+3 \lambda) \hat{j}+(6-5 \lambda) \hat{\mathrm{k}}\)
Two vectors are equal if their corresponding components are equal
So,
\( x=5-2 \lambda \ldots (3)\)
\( 0=1+3 \lambda \ldots (4)\)
and, \( z=6-5 \lambda \ldots (5)\)
From equation (3), we get -
\( \lambda=-\frac{1}{3}\)
Substitute the value of \( \lambda \) in equation (4) and (5), we get \( x=5-2 \lambda=5-2 \times(-\frac{1}{3})=5+(\frac{2}{3})=\frac{17}{3} \)
and
\(z=6-5 \lambda=6-5 \times(-\frac{1}{3})=6+(\frac{5}{3})=\frac{23}{3}\)
Therefore, the coordinates of the required point are \( (\frac{17}{3},0,\frac{23}{3}) \).
12. Find the coordinates of the point where the line through (3, \( -4,-5) \) and \( (2,-3,1) \) crosses the plane \( 2 x+y+z=7 \).
Answer
The equation of a line passing through two points \( \mathrm{A}\left(x_{1}, y_{1}, z_{1}\right) \) and \( \mathrm{B}\left(x_{2}\right. \), \( \left.y_{2}, z_{2}\right) \) is
\(\Rightarrow \frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}\)
Given the line passes through the points A \( (3,-4,-5) \) and
B \( (2,-3,1) \)
\(\therefore x_{1}=3, y_{1}=-4, z_{1}=-5\)
and, \( x_{2}=2, y_{2}=-3, z_{2}=1 \)
So, the equation of line is
\(\Rightarrow \frac{x-3}{2-3}=\frac{y-(-4)}{-3-(-4)}=\frac{z-(-5)}{1-(-5)}\)
\(\Rightarrow \frac{x-3}{-1}=\frac{y+4}{1}=\frac{z+5}{6}=k\)
So,
\(x=-\mathrm{k}+3|y=\mathrm{k}-4| z=6 \mathrm{k}-5\ldots (1)\)
Let \( (x, y, z) \) be the coordinates of the point where the line crosses the plane
\(2 x+y+z+7=0\)
Putting the value of \( x, y, z \) from (1) in the equation of plane,
\(2 x+y+z+7=0\)
\(\Rightarrow 2(-\mathrm{k}+3)+(\mathrm{k}-4)+(6 \mathrm{k}-5)=7\)
\(\Rightarrow 5 \mathrm{k}-3=7\)
\(\Rightarrow 5 \mathrm{k}=10\)
\(\therefore \mathrm{k}=2\)
Putting the value of k in \( x, y, z \)
\(x=-\mathrm{k}+3=-2+3=1\)
\(y=\mathrm{k}-4=2-4=-2\)
\(z=6 \mathrm{k}-5=12-5=7\)
Hence, the coordinates of the required point are \( (1,-2,7) \).
13. Find the equation of the plane passing through the point (\( 1,3,2) \) and perpendicular to each of the planes \( x+2 y+3 z=5 \) and \( 3 x+ \) \( 3 y+z=0 \).
Answer
The equation of a plane passing through \( \left(x_{1}, y_{1}, z_{1}\right) \) is given by
\( \mathrm{A}\left(x-x_{1}\right)+\mathrm{B}\left(y-y_{1}\right)+\mathrm{C}\left(z-z_{1}\right)=0 \)
where, \( \mathrm{A}, \mathrm{B}, \mathrm{C} \) are the direction ratios of normal to the plane.
Now the plane passes through \( (-1,3,2) \)
So, equation of plane is
\(A(x+1)+B(y-3)+C(z-2)=0\ldots(1)\)
Since this plane is perpendicular to the given two planes.
So, their normal to the plane would be perpendicular to normal of both planes.
we know that -
\( \overrightarrow{a} \times \overrightarrow{b} \) is perpendicular to both \( \overrightarrow{a} \& \overrightarrow{b} \)
So, required normal is cross product of normal of planes
\(x+2 y+3 z=5 \text { and } 3 x+3 y+z=0 \)
\(\begin{array}{l} \text { required Normal }=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{j} & \hat{\mathrm{k}} \\
1 & 2 & 3 \\
3 & 3 & 1
\end{array}\right| \end{array}\)
\(=\hat{i}[2(1)-3(3)]-\hat{j}[1(1)-3(3)]+\hat{\mathrm{k}}[1(3)-3(2)] \)
\(=\hat{i}[2-9]-\hat{j}[1-9]+\hat{\mathrm{k}}[3-6]\)
\(=-7 \hat{i}+8 \hat{j}-3 \hat{\mathrm{k}}\)
Hence, direction ratios \( =-7,8,-3 \)
\(\therefore A=-7, B=8, C=-3\)
Putting above values in (1), we get -
\(\begin{array}{l}
\mathrm{A}(\mathrm{x}+1)+\mathrm{B}(\mathrm{y}-3)+\mathrm{C}(\mathrm{z}-2)=0 \\
\Rightarrow-7(x+1)+8(y-3)+(-3)(\mathrm{z}-2)=0 \\
\Rightarrow-7 x-7+8 y-24-3 z+6=0
\end{array}\)
\(\begin{array}{l}
\Rightarrow-7 x+8 y-3 z-25=0 \\
\therefore 7 x-8 y+3 z+25=0
\end{array}\)
Therefore, equation of the required plane is \( 7 x-8 y+3 z+25=0 \).
14. If the points \( (1,1, p) \) and \( (-3,0,1) \) be equidistant from the plane \( \overrightarrow{r} .(3 \hat{i}+4 \hat{j}-12 \hat{k})+13=0 \), then find the value of \( p \).
Answer
The distance of a point with position vector \( \overrightarrow{a} \) from the plane \( \overrightarrow{r} \cdot \overrightarrow{n}=d \) is \( \left|\frac{\overrightarrow{a} \cdot \overrightarrow{\mathrm{n}}-\mathrm{d}}{|\overrightarrow{\mathrm{n}}|}\right| \).
The position vector of point \( (1,1, p) \) is given as -
\(\Rightarrow \overrightarrow{a_{1}}=1 \hat{i}+1 \hat{j}-p \hat{k}\)
The position vector of point \( (-3,0,1) \) is given as -
\(\Rightarrow \overrightarrow{\mathrm{a}_{2}}=-3 \hat{i}+0 \hat{j}+1 \hat{\mathrm{k}}\)
It is given that the points \( (1,1, \mathrm{p}) \) and \( (-3,0,1) \) are equidistant from the plane
\(\overrightarrow{\mathrm{r}} \cdot(3 \hat{i}+4 \hat{j}-12 \hat{\mathrm{k}})+13=0\)
\(\therefore\left|\frac{(1 \hat{i}+1 \hat{j}-\mathrm{p} \hat{k}) \cdot(3 \hat{i}+4 \hat{j}-12 \mathrm{k})+13}{\sqrt{3^{2}+4^{2}+(-12)^{2}}}\right|=\left|\frac{(-3 \hat{i}+0 \hat{j}+1 \hat{k}) \cdot(3 \hat{i}+4 \hat{j}-12 \hat{k})+13}{\sqrt{3^{2}+4^{2}+(-12)^{2}}}\right|\)
\(\Rightarrow\left|\frac{3+4-12 \mathrm{p}+13}{\sqrt{9+16+44}}\right|=\left|\frac{-9+0-12+13}{\sqrt{9+16+44}}\right|\)
\(\Rightarrow\left|\frac{20-12 \mathrm{p}}{\sqrt{169}}\right|=\left|\frac{-8}{\sqrt{169}}\right|\)
\(\Rightarrow 20-12 \mathrm{p}= \pm 8\)
\(\Rightarrow 20-12 \mathrm{p}=8 \text { or, } 20-12 \mathrm{p}=-8\)
\(\Rightarrow 12 \mathrm{p}=12 \text { or, } 12 \mathrm{p}=28\)
\(\therefore \mathrm{p}=1 \text { or, } \mathrm{p}=\frac{ 7 }{ 3 }\)
us, the possible values of \( p \) are 1 and \( \frac{ 7 }{ 3 } \).
miscellaneous exercise class 11 chapter 12​ || ncert solutions for class 12 maths chapter 11 || miscellaneous exercise on chapter 11 class 12 ​ || miscellaneous exercise chapter 11 class 12​ || three dimensional geometry class 12 ncert solutions || class 12 maths chapter 11 miscellaneous exercise solutions​ || miscellaneous exercise class 12 chapter 11​ || miscellaneous exercise ch 11 class 12​
Download the Math Ninja App Now
15. Find the equation of the plane passing through the line of intersection of the planes \( \overrightarrow{r} \cdot(\hat{i}+\hat{j}+\hat{k})=1 \) and \( \overrightarrow{r} \cdot(2 \hat{i}+3 \hat{j}-\hat{k})+4=0 \) and parallel to x -axis.
Answer
The equation of any plane through the line of intersection of the planes \( \overrightarrow{r} . \overrightarrow{n_{1}}=d_{1} \) and \( \overrightarrow{r} . \overrightarrow{n_{2}}=d_{2} \) is given by -
\(\overrightarrow{r} \cdot \overrightarrow{n_{1}}=d_{1}+\lambda\left(\overrightarrow{r} \cdot \overrightarrow{n_{2}}=d_{2}\right)=0\)
So, the equation of any plane through the line of intersection of the given planes is
\({[\overrightarrow{\mathrm{r}} \cdot(\hat{i}+\hat{j}+\hat{\mathrm{k}})-1]+\lambda[\overrightarrow{\mathrm{r}} \cdot(2 \hat{i}+3 \hat{j}-\hat{\mathrm{k}})-4]=0}\)
\(\overrightarrow{\mathrm{r}} \cdot((1-2 \lambda) \hat{i}+(1-3 \lambda) \hat{j}+(1+\lambda) \hat{\mathrm{k}})-1-4 \lambda=0\)
\(\therefore \overrightarrow{\mathrm{r}} \cdot((1-2 \lambda) \hat{i}+(1-3 \lambda) \hat{j}+(1+\lambda) \hat{\mathrm{k}})=1-4 \lambda \ldots(1)\)
Since this plane is parallel to \(x\) -axis.
So, the normal vector of the plane (1) will be perpendicular to x -axis.
\( \text{Direction ratios of Normal}\left(a_{1}, b_{1}, c_{1}\right) \equiv[(1-2 \lambda),(1-3 \lambda),(1+)] \)
Direction ratios of x -axis \( \left(\mathrm{a}_{2}, \mathrm{~b}_{2}, \mathrm{c}_{2}\right) \equiv(1,0,0) \)
Since the two lines are perpendicular,
\(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\)
\((1-2 \lambda) \times 1+(1-3 \lambda) \times 0+(1+\lambda) \times 0=0\)
\(\Rightarrow(1-2 \lambda)=0\)
\(\therefore \lambda=\frac{ 1 }{ 2 }\)
Putting the value of \( \lambda \) in (1), we get -
\(\Rightarrow \overrightarrow{r} \cdot((1-2 \lambda) \hat{i}+(1-3 \lambda) \hat{j}+(1+\lambda) \hat{k})=1+4 \lambda\)
\(\overrightarrow{r} \cdot\left(\left(1-2\left(\frac{1}{2}\right)\right) \hat{i}+\left(1-3\left(\frac{1}{2}\right)\right) \hat{j}+\left(1+\left(\frac{1}{2}\right)\right) \hat{k}\right)=1-4\left(\frac{1}{2}\right)\)
\(\Rightarrow \overrightarrow{r} \cdot(0 \hat{i}-\hat{j}+3 \hat{k})=6\)
Hence, the equation of the required plane is
\(\overrightarrow{r} \cdot(0 \hat{i}-\hat{j}+3 \hat{k})=6\)
16. If \( O \) be the origin and the coordinates of \( P \) be \( (1,2,-3) \), then find the equation of the plane passing through P and perpendicular to OP .
Answer
The equation of a plane passing through \( \left(x_{1}, y_{1}, z_{1}\right) \) and perpendicular to a line with direction ratios \( \mathrm{A}, \mathrm{B}, \mathrm{C} \) is
\(\mathrm{A}\left(x-x_{1}\right)+\mathrm{B}\left(y-y_{1}\right)+\mathrm{C}\left(z-z_{1}\right)=0\)
The plane passes through \( \mathrm{P}(1,2,3) \)
So, \( x_{1}=1, y_{1}=2, z_{1}=-3 \)
Normal vector to plane \( =\overrightarrow{\mathrm{OP}} \)
where \( \mathrm{O}(0,0,0), \mathrm{P}(1,2,-3) \)
Direction ratios of \( \overrightarrow{\mathrm{OP}}=(1-0),(2-0),(-3-0) \)
\(=(1,2,-3)\)
\(\therefore A=1, B=2, C=-3\)
Equation of plane in cartesian form is
\(1(\mathrm{x}-1)+2(\mathrm{y}-2)-3(\mathrm{z}-(-3))=0\)
\(\Rightarrow \mathrm{x}-1+2 \mathrm{y}-4-3 \mathrm{z}-9=0\)
\(\Rightarrow \mathrm{x}+2 \mathrm{y}-3 \mathrm{z}-14=0\)
17. Find the equation of the plane which contains the line of intersection of the planes \( \overrightarrow{r} .(\hat{i}+2 \hat{j}+3 \hat{k})-4=0 \) and \( \overrightarrow{r} \cdot(\hat{i}+2 \hat{j}+3 \hat{k})+ \) \( 5=0 \). And which is perpendicular to the plane \( \overrightarrow{\mathrm{r}} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8= \) 0 .
Answer
The equation of any plane through the line of intersection of the planes \( \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{n}_{1}}=\mathrm{d}_{1} \) and \( \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{n}_{2}}=\mathrm{d}_{2} \) is given by -
\(\Rightarrow\left(\overrightarrow{r} \cdot \overrightarrow{n_{1}}=d_{1}\right)+\lambda\left(\overrightarrow{r} \cdot \overrightarrow{n_{2}}=d_{2}\right)=0\)
So, the equation of any plane through the line of intersection of the given planes is
\({[\overrightarrow{\mathrm{r}} \cdot(\hat{i}+2 \hat{j}+3 \hat{\mathrm{k}})-4]+\lambda[\overrightarrow{\mathrm{r}} \cdot(-2 \hat{i}-\hat{j}+\hat{\mathrm{k}})-5]=0}\)
\(\overrightarrow{\mathrm{r}} \cdot((1-2 \lambda) \hat{i}+(2-\lambda) \hat{j}+(3+\lambda) \hat{\mathrm{k}})-4-5 \lambda=0\)
\(\therefore \overrightarrow{\mathrm{r}} \cdot((1-2 \lambda) \hat{i}+(2-\lambda) \hat{j}+(3+\lambda) \hat{\mathrm{k}})=4+5 \lambda\ \ldots (1)\)
Since this plane is perpendicular to the plane
\(\overrightarrow{\mathrm{r}} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})+8=0\)
\(\overrightarrow{\mathrm{r}} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})=-8\)
\(-\overrightarrow{\mathrm{r}} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})=8\)
\(\overrightarrow{\mathrm{r}} \cdot(5 \hat{i}+3 \hat{j}-6 \hat{k})=8 \ldots (2)\)
So, the normal vector of the plane (1) will be perpendicular to the normal vector of plane (2).
Direction ratios of Normal of plane \( (1)=\left(a_{1}, b_{1}, c_{1}\right) \)
\(\equiv[(1-2 \lambda),(2-\lambda),(3+\lambda)]\)
Direction ratios of Normal of plane \( (2)=\left(a_{2}, b_{2}, c_{2}\right) \)
\(\equiv(-5,-3,6)\)
Since the two lines are perpendicular,
\(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0\)
\(\Rightarrow(1-2 \lambda) \times(-5)+(2-\lambda) \times(-3)+(3+\lambda) \times 6=0\)
\(\Rightarrow-5+10 \lambda-6+3 \lambda+18+6 \lambda=0\)
\(\Rightarrow 19 \lambda+7=0\)
\(\therefore \lambda=-\frac{ 7 }{ 19 }\)
Putting the value of \( \lambda \) in (1), we get -
\(\overrightarrow{\mathrm{r}} \cdot\left(\left(1-2\left(\frac{-7}{19}\right)\right) \hat{i}+\left(2-\left(\frac{-7}{19}\right)\right) \hat{j}+\left(3+\left(\frac{-7}{19}\right)\right) \hat{\mathrm{k}}\right)=4+5\left(\frac{-7}{19}\right)\)
\(\Rightarrow \overrightarrow{\mathrm{r}} \cdot\left(\frac{33}{19} \hat{i}+\frac{45}{19} \hat{j}+\frac{50}{19} \hat{\mathrm{k}}\right)=\frac{41}{19}\)
\(\Rightarrow \overrightarrow{\mathrm{r}} \cdot(33 \hat{i}+45 \hat{j}+50 \hat{\mathrm{k}})=41\)
Hence, the equation of the required plane is
\(\overrightarrow{r} \cdot(33 \hat{i}+45 \hat{j}+50 \hat{k})=41\)
18. Find the distance of the point \( (-1,-5,-10) \) from the point of intersection of the line \( \overrightarrow{r} \cdot(2 \hat{i}-\hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k}) \) and the plane \( \overrightarrow{\mathrm{r}} .(\hat{i}-\hat{j}+\hat{k})=5 \).
Answer
Given -
The equation of line is
\(\overrightarrow{r} \cdot(2 \hat{i}-\hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})\)
and the equation of the plane is
\(\overrightarrow{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5\)
To find the intersection of line and plane, putting value of \( \overrightarrow{r} \) from equation of line into equation of plane, we get -
\(\Rightarrow[(2 \hat{i}-\hat{j}+2 \hat{\mathrm{k}})+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{\mathrm{k}})] \cdot(\hat{i}-\hat{j}+\hat{\mathrm{k}})=5\)
\(\Rightarrow[(2+3 \lambda) \hat{i}+(-1+4 \lambda) \hat{j}+(2+2 \lambda) \hat{\mathrm{k}}] \cdot(\hat{i}-\hat{j}+\hat{\mathrm{k}})=5\)
\(\Rightarrow(2+3 \lambda) \times 1+(-1+4 \lambda) \times(-1)+(2+2 \lambda) \times 1=5\)
\(\Rightarrow 2+3 \lambda+1-4 \lambda+2+2 \lambda=5\)
\(\Rightarrow \lambda=0\)
So, the equation of line is
\(\overrightarrow{r}=(2 \hat{i}-\hat{j}+2 \hat{k})\)
Let the point of intersection be \( (x, y, z) \)
So, \( \overrightarrow{\mathrm{r}}=x \hat{\mathrm{i}}+y \hat{j}+z \hat{\mathrm{k}} \)
\(\therefore x \hat{i}+y \hat{j}+z \hat{\mathrm{k}}=2 \hat{i}-\hat{j}+2 \hat{\mathrm{k}}\)
Hence, \( x=2, y=-1, z=2 \)
Therefore, the point of intersection is \( (2,-1,2) \).
Now, the distance between points \( \left(x_{1}, y_{1}, z_{1}\right) \) and \( \left(x_{2}, y_{2}, z_{2}\right) \) is given by- \( \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}} \) units
Distance between the points A \( (2,-1,2) \) and \( B(-1,-5,-10) \) is given by-
\(\mathrm{AB}=\sqrt{(2-(-1))^{2}+(-1-(-5))^{2}+(2-(-10))^{2}}\)
\(=\sqrt{(3)^{2}+(4)^{2}+(12)^{2}}\)
\(=\sqrt{9+16+144}\)
\(=\sqrt{169}\)
\(=13 \text { units }\)
miscellaneous exercise class 11 chapter 12​ || ncert solutions for class 12 maths chapter 11 || miscellaneous exercise on chapter 11 class 12 ​ || miscellaneous exercise chapter 11 class 12​ || three dimensional geometry class 12 ncert solutions || class 12 maths chapter 11 miscellaneous exercise solutions​ || miscellaneous exercise class 12 chapter 11​ || miscellaneous exercise ch 11 class 12​
Download the Math Ninja App Now
19. Find the vector equation of the line passing through (1, 2 , 3 ) and parallel to the planes \( \overrightarrow{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5 \) and \( \overrightarrow{r} \cdot(3 \hat{i}-\hat{j}+\hat{k})=6 \).
Answer
The vector equation of a line passing through a point with position vector \( \overrightarrow{a} \) and parallel to a vector \( \overrightarrow{b} \) is
\(\Rightarrow \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}})\)
Given, the line passes through \( (1,2,3) \)
So, \( \overrightarrow{a}=1 \hat{i}+2 \hat{j}+3 \hat{k} \)
Given, line is parallel to both planes
\( \therefore \) Line is perpendicular to normal of both planes.
i.e. \( \overrightarrow{b} \) is perpendicular to normal of both planes.
we know that -
\( \overrightarrow{a} \times \overrightarrow{b} \) is perpendicular to both \( \overrightarrow{a} \& \overrightarrow{b} \)
So, \( \overrightarrow{b} \) is cross product of normal of planes
\( \overrightarrow{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=5 \) and \( \overrightarrow{r} \cdot(3 \hat{i}-\hat{j}+\hat{k})=6 \)
\(\begin{array}{l}
\text { Required Normal }=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -1 & 2 \\
3 & 1 & 1
\end{array}\right| \end{array}\)
\(=\hat{i}[(-1)(1)-1(3)]-\hat{j}[1(1)-3(2)]+\hat{k}[1(1)-3(-1)] \)
\(=\hat{i}[-1-2]-\hat{j}[1-6]+\hat{\mathrm{k}}[1+3] \)
\(=-3 \hat{i}+5 \hat{j}+4 \hat{\mathrm{k}}\)
Thus, \( \overrightarrow{b}=-3 \hat{i}+5 \hat{j}+4 \widehat{k} \)
Now, putting the value of \( \overrightarrow{a} \& \overrightarrow{b} \) in formula
\(\begin{array}{l}
\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}} \\
=(1 \hat{i}+2 \hat{j}+3 \hat{k})+\lambda(-3 \hat{i}+5 \hat{j}+4 \hat{k})
\end{array}\)
Therefore, the equation of the line is
\(\overrightarrow{\mathrm{r}}=(1 \hat{i}+2 \hat{j}+3 \hat{k})+\lambda(-3 \hat{i}+5 \hat{j}+4 \hat{k})\)
20. Find the vector equation of the line passing through the point \( (1,2,-4) \) and perpendicular to the two lines.
\(\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7} \text { and } \frac{x-15}{3}=\frac{y+29}{8}=\frac{z-5}{-5}\)
Answer
The vector equation of a line passing through a point with position vector \( \overrightarrow{a} \) and parallel to a vector \( \overrightarrow{b} \) is
\(\Rightarrow \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}\)
Given, the line passes through \( (1,2,-4) \)
So, \( \overrightarrow{a}=1 \hat{i}+2 \hat{j}-4 \hat{k} \)
Given, line is parallel to both planes
\( \therefore \) Line is perpendicular to normal of both planes.
i.e. \( \overrightarrow{b} \) is perpendicular to normal of both planes.
we know that -
\( \overrightarrow{a} \times \overrightarrow{b} \) is perpendicular to both \( \overrightarrow{a} \& \overrightarrow{b} \)
So, \( \overrightarrow{b} \) is cross product of normal of planes
\(\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7} \text { and } \frac{x-15}{3}=\frac{y+29}{8}=\frac{z-5}{-5} \)
\(\begin{array}{l}\text { Required Normal }=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{\mathrm{k}} \\
3 & -16 & 7 \\
3 & 8 & -5
\end{array}\right|\end{array}\)
\(=\hat{i}[(-16)(-5)-8(7)]-\hat{j}[3(-5)-3(7)]+\hat{\mathrm{k}}[3(8)-3(-16)]\)
\(=\hat{i}[80-56]-\hat{j}[-15-21]+\hat{\mathrm{k}}[24+48]\)
\(=24 \hat{i}+36 \hat{j}+72 \hat{\mathrm{k}}\)
Thus, \( \overrightarrow{b}=24 \hat{i}+36 \hat{j}+72 \hat{k} \)
Now, putting the value of \( \overrightarrow{a} \& \overrightarrow{b} \) in formula
\(\begin{array}{l}
\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}} \\
=(1 \hat{i}+2 \hat{j}-4 \hat{k})+\lambda(24 \hat{i}+36 \hat{j}+72 \hat{k}) \\
=(1 \hat{i}+2 \hat{j}-4 \hat{k})+12 \lambda(2 \hat{i}+3 \hat{j}+6 \hat{k}) \\
=(1 \hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})
\end{array}\)
Therefore, the equation of the line is
\(\overrightarrow{\mathrm{r}}=(1 \hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})\)
21. Prove that if a plane has the intercepts \( a, b, c \) and is at a distance of \( p \) units from the origin, then \( \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}} \)
Answer
Distance of the point \( \left(x_{1}, y_{1}, z_{1}\right) \) from the plane \( \mathrm{Ax}+\mathrm{By}+\mathrm{Cz}=\mathrm{D} \) is
\(\Rightarrow\left|\frac{\mathrm{Ax}_{1}+\mathrm{By}_{1} \mathrm{Cz}_{1}-\mathrm{D}}{\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}}}\right|\)
The equation of a plane having intercepts \( \mathrm{a}, \mathrm{b}, \mathrm{c} \) on the \( x-, y \)-, \( z \) - axis respectively is
\(\Rightarrow \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
Comparing with \( \mathrm{Ax}+\mathrm{By}+\mathrm{Cz}=\mathrm{D} \), we get -
\(A=\frac{ 1 }{a} ,B= \frac{1}{b}, C=\frac{1 }{c}, D=1\)
Given, the plane is at a distance of ' p ' units from the origin.
So, the point is \( O(0,0,0) \)
\(\therefore x_{1}=0, y_{1}=0, z_{1}=0\)
Now,
Distance \( =\left|\frac{\mathrm{Ax}_{1}+\mathrm{By}_{1}+\mathrm{Cz}_{1}-\mathrm{D}}{\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}}}\right| \)
Substituting all values, we get -
\(\Rightarrow \mathrm{p}=\left|\frac{\frac{1}{a} \times 0+\frac{1}{b} \times 0+\frac{1}{c} \times 0-1}{\sqrt{\left(\frac{1}{a}\right)^{2}+\left(\frac{1}{b}\right)^{2}+\left(\frac{1}{c}\right)^{2}}}\right|\)
\(\Rightarrow \mathrm{p}=\left|\frac{0+0+0-1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}\right|\)
\(\Rightarrow \mathrm{p}=\left|\frac{1}{\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}}\right|\)
\(\Rightarrow \frac{1}{\mathrm{p}}=\sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}}\)
squaring both sides, we get -
\(\Rightarrow \frac{1}{\mathrm{p}^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\)
Hence Proved.
22. Distance between the two planes: \( 2 x+3 y+4 z=4 \) and \( 4 x+ \) \( 6 y+8 z=12 \) is
A. 2 units
B. 4 units
C. 8 units
D. \( \frac{2}{\sqrt{29}} \) units
Answer
Distance between two parallel planes \( \mathrm{Ax}+\mathrm{B} y+\mathrm{Cz}=\mathrm{d}_{1} \) and \( \mathrm{Ax}+\mathrm{B} y+ \) \( \mathrm{C} z=\mathrm{d}_{2} \) is
\(\Rightarrow\left|\frac{\mathrm{d}_{1}-\mathrm{d}_{2}}{\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+\mathrm{C}^{2}}}\right|\)
Given -
First Plane is
\(2 x+3 y+4 z=4\)
Comparing with \( \mathrm{Ax}+\mathrm{B} y+\mathrm{C} z=\mathrm{d}_{1} \), we get -
\(A=2, B=3, C=4, d_{1}=4\)
Second Plane is
\(4 x+6 y+8 z=12\)
After Dividing by 2,
\(2 x+3 y+4 z=6\)
Comparing with \( \mathrm{A} x+\mathrm{B} y+\mathrm{Cz}=\mathrm{d}_{1} \), we get -
\(A=2, B=3, C=4, d_{2}=6\)
So,
Distance between two planes
\(=\left|\frac{4-6}{\sqrt{2^{2}+3^{2}+4^{2}}}\right|\)
\(=\left|\frac{-2}{\sqrt{4+9+16}}\right|\)
\(= \frac{ 2 }{ \sqrt{29} }\)
Hence, (D) is the correct option.
23. The planes: \( 2 x-y+4 z=5 \) and \( 5 x-2.5 y+10 z=6 \) are
A. Perpendicular
B. Parallel
C. intersect y-axis
D. passes through
Answer
Given -
First Plane is
\(2 x-y+4 z=5\)
Multiply both sides by 2.5 , we get -
\(5 x-2.5 y+10 z=12.5\ldots (1)\)
Second Plane is
\(5 x-2.5 y+10 z=6 \ldots (2)\)
Clearly, the direction ratios of normal of both the plane (1) and (2) are same.
Hence, Both the given planes are parallel.
miscellaneous exercise class 11 chapter 12​ || ncert solutions for class 12 maths chapter 11 || miscellaneous exercise on chapter 11 class 12 ​ || miscellaneous exercise chapter 11 class 12​ || three dimensional geometry class 12 ncert solutions || class 12 maths chapter 11 miscellaneous exercise solutions​ || miscellaneous exercise class 12 chapter 11​ || miscellaneous exercise ch 11 class 12​
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top