ncert class 12 maths exercise 3.3 solutions | class 12 maths exercise 3.3 solutions | exercise 3.3 class 12 maths | ncert solutions matrices class 12 maths chapter 3 | class 12 math matrix ncert solution
Looking for NCERT Class 12 Maths Exercise 3.3 solutions? You’re in the right place! This section provides complete and accurate answers to all the questions from Exercise 3.3 Class 12 Maths, based on NCERT Solutions Matrices Class 12 Maths Chapter 3. Focused on the topic of matrix multiplication, these step-by-step solutions make it easy to understand key concepts like the order of matrices, multiplication rules, identity matrix, and associative property. Whether you’re preparing for board exams or building a strong foundation in algebra, the Class 12 Maths Exercise 3.3 solutions are perfect for reinforcing your understanding. Explore the detailed explanations in these Class 12 Math Matrix NCERT Solutions and master the concepts of matrices with confidence today!

ncert solutions matrices class 12 maths chapter 3 || class 12 math matrix ncert solution || ncert class 12 maths exercise 3.3 solutions || class 12 maths exercise 3.3 solutions || exercise 3.3 class 12 maths
Exercise 3.3
\(
\left[\begin{array}{c}
5 \\
\frac{1}{2} \\
-1
\end{array}\right]
\)
So, let \( \left[\begin{array}{c}5 \\ \frac{1}{2} \\ -1\end{array}\right]=\mathrm{A} \)
Therefore, transpose of the given matrix A is denoted by A '
Hence, \( A^{\prime}=\left[\begin{array}{lll}5 & \frac{1}{2} & -1\end{array}\right] \)
The transpose of the given matrix is \( \left[\begin{array}{lll}5 & \frac{1}{2} & -1\end{array}\right] \)
ncert solutions matrices class 12 maths chapter 3 || class 12 math matrix ncert solution || ncert class 12 maths exercise 3.3 solutions || class 12 maths exercise 3.3 solutions || exercise 3.3 class 12 maths
\(
\left[\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right]
\)
So, let \( \left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]=B \)
Therefore, transpose of the given matrix B is denoted by B'.
Hence, \( B^{\prime}=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right] \)
The transpose of the given matrix is \( \left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right] \).
\(
\left[\begin{array}{ccc}
-1 & 5 & 6 \\
\sqrt{3} & 5 & 6 \\
2 & 3 & -1
\end{array}\right]
\)
So, let \( \left[\begin{array}{ccc}-1 & 5 & 6 \\ \sqrt{3} & 5 & 6 \\ 2 & 6 & -1\end{array}\right]=\mathrm{C}, \mathrm{B}=\left[\begin{array}{ccc}-4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1\end{array}\right] \)
Therefore, the transpose of the given matrix C is denoted by C'.
Hence, \( C^{\prime}=\left[\begin{array}{ccc}-1 & \sqrt{3} & 2 \\ 5 & 5 & 3 \\ 6 & 6 & -1\end{array}\right] \)
The transpose of the given matrix is \( \left[\begin{array}{ccc}-1 & \sqrt{3} & 2 \\ 5 & 5 & 3 \\ 6 & 6 & -1\end{array}\right] \)
\( (\mathrm{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime} \)
Explanation: We will first calculate L.H.S i.e. (A+B)' and then consecutively we will calculate R.H.S and verify that both are equal.
So, \( A+B=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1\end{array}\right]+\left[\begin{array}{ccc}-4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1\end{array}\right] \)
\( =\mathrm{A}+\mathrm{B}=\left[\begin{array}{ccc}-1+(-4) & 2+1 & 3+(-5) \\ 5+1 & 7+2 & 9+0 \\ -2+1 & 1+3 & 1+1\end{array}\right] \)
\( =A+B=\left[\begin{array}{ccc}-5 & 3 & -2 \\ 6 & 9 & 9 \\ -1 & 4 & 2\end{array}\right] \)
Therefore, \( (A+B)=\left[\begin{array}{ccc}-5 & 6 & -1 \\ 3 & 9 & 4 \\ -2 & 9 & 2\end{array}\right] \rightarrow \ldots (1)\)
Now, \( A^{\prime}=\left[\begin{array}{ccc}-1 & 5 & -2 \\ 2 & 7 & 1 \\ 3 & 9 & 1\end{array}\right] \) and \( B^{\prime}=\left[\begin{array}{ccc}-4 & 1 & 1 \\ 1 & 2 & 3 \\ -5 & 0 & 1\end{array}\right] \)
So, \( A^{\prime}+\mathrm{B}^{\prime}=\left[\begin{array}{ccc}-1 & 5 & -2 \\ 2 & 7 & 1 \\ 3 & 9 & 1\end{array}\right]+\left[\begin{array}{ccc}-4 & 1 & 1 \\ 1 & 2 & 3 \\ -5 & 0 & 1\end{array}\right] \)
\( =A^{\prime}+\mathrm{B}^{\prime}=\left[\begin{array}{ccc}-1+(-4) & 5+1 & -2+1 \\ 2+1 & 7+2 & 1+3 \\ 3+(-5) & 9+0 & 1+1\end{array}\right] \)
\( A^{\prime}+\mathrm{B}^{\prime}=\left[\begin{array}{ccc}-5 & 6 & -1 \\ 3 & 9 & 4 \\ -2 & 9 & 2\end{array}\right]
\rightarrow \ldots (2)\)
From equation \( 1 \ \& \ 2 \) we verify that \( (\mathrm{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime} \).
Hence verified.
So, \( A-B=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 5 & 7 & 9 \\ -2 & 1 & 1\end{array}\right]-\left[\begin{array}{ccc}-4 & 1 & -5 \\ 1 & 2 & 0 \\ 1 & 3 & 1\end{array}\right] \)
\( =\mathrm{A}-\mathrm{B}=\left[\begin{array}{ccc}-1-(-4) & 2-1 & 3-(-5) \\ 5-1 & 7-2 & 9-0 \\ -2-1 & 1-3 & 1-1\end{array}\right] \)
\( =A-B=\left[\begin{array}{ccc}3 & 1 & 8 \\ 4 & 5 & 9 \\ -3 & -2 & 0\end{array}\right] \)
Therefore, \( (A-B)=\left[\begin{array}{ccc}3 & 4 & -3 \\ 1 & 5 & -2 \\ 8 & 9 & 0\end{array}\right] \rightarrow \ldots (1)\)
Now, \( A^{\prime}=\left[\begin{array}{ccc}-1 & 5 & -2 \\ 2 & 7 & 1 \\ 3 & 9 & 1\end{array}\right] \) and \( B^{\prime}=\left[\begin{array}{ccc}-4 & 1 & 1 \\ 1 & 2 & 3 \\ -5 & 0 & 1\end{array}\right] \)
So, \( A^{\prime}-\mathrm{B}^{\prime}=\left[\begin{array}{ccc}-1 & 5 & -2 \\ 2 & 7 & 1 \\ 3 & 9 & 1\end{array}\right]-\left[\begin{array}{ccc}-4 & 1 & 1 \\ 1 & 2 & 3 \\ -5 & 0 & 1\end{array}\right] \)
\( A^{\prime}-\mathrm{B}^{\prime}=\left[\begin{array}{ccc}-1-(-4) & 5-1 & -2-1 \\ 2-1 & 7-2 & 1-3 \\ 3-(-5) & 9-0 & 1-1\end{array}\right] \)
\( =A^{\prime}-B^{\prime}=\left[\begin{array}{ccc}3 & 4 & -3 \\ 1 & 5 & -2 \\ 8 & 9 & 0\end{array}\right] \rightarrow \ldots (2)\)
From equation \( 1 \ \& \ 2 \) we verify that \( (A-B)^{\prime}=A^{\prime}-B^{\prime} \).
Hence verified.
\( (\mathrm{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime} \)
Explanation: Calculate matrix A by taking transpose of A' and also find the transpose of matrix B and the solve L.H.S and R.H.S separately and then compare the result.
So, \( \mathrm{A}= \) transpose of \( \mathrm{A}^{\prime} \)
\(
\begin{array}{l}
=\mathrm{A}=\left[\begin{array}{ccc}
3 & -1 & 0 \\
4 & 2 & 1
\end{array}\right] \\
\mathrm{B}^{\prime}=\operatorname{transpose} \text { of } \mathrm{B} \\
=\mathrm{B}^{\prime}=\left[\begin{array}{cc}
-1 & 1 \\
2 & 2 \\
1 & 3
\end{array}\right]
\end{array}
\)
Now, \( A+B=\left[\begin{array}{ccc}3 & -1 & 0 \\ 4 & 2 & 1\end{array}\right]+\left[\begin{array}{ccc}-1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right] \)
\( =\mathrm{A}+\mathrm{B}=\left[\begin{array}{ccc}3+(-1) & -1+2 & 0+1 \\ 4+1 & 2+2 & 1+3\end{array}\right] \)
\( =A+B=\left[\begin{array}{lll}2 & 1 & 1 \\ 5 & 4 & 4\end{array}\right] \)
Therefore, \( (A+B)=\left[\begin{array}{ll}2 & 5 \\ 1 & 4 \\ 1 & 4\end{array}\right] \rightarrow \ldots (1)\)
Now, \( A^{\prime}+B^{\prime}=\left[\begin{array}{cc}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]+\left[\begin{array}{cc}-1 & 1 \\ 2 & 2 \\ 1 & 3\end{array}\right] \)
\( =A^{\prime}+B^{\prime}=\left[\begin{array}{ll}2 & 5 \\ 1 & 4 \\ 1 & 4\end{array}\right] \rightarrow \ldots (2)\)
From equation \( 1 \ \& \ 2 \) we verify that \( (\mathrm{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime}+\mathrm{B}^{\prime} \).
Hence verified.
\(B= \left[\begin{array}{ccc}-1 & 2 & 1 \\ 1 & 2 & 3\end{array}\right] \)
Explanation: Calculate matrix A by taking transpose of \( \mathrm{A}^{\prime} \) and also find the transpose of matrix B and the solve L.H.S and R.H.S separately and then compare the result.
\(
A-B=\left[\begin{array}{ccc}
3 & -1 & 0 \\
4 & 2 & 1
\end{array}\right]-\left[\begin{array}{ccc}
-1 & 2 & 1 \\
1 & 2 & 3
\end{array}\right]
\)
\(
\begin{array}{l}
=A-B=\left[\begin{array}{ccc}
3-(-1) & -1-2 & 0-1 \\
4-1 & 2-2 & 1-3
\end{array}\right] \\
=A-B=\left[\begin{array}{ccc}
4 & -3 & -1 \\
3 & 0 & -2
\end{array}\right]
\end{array}
\)
Therefore, \( (A-B)=\left[\begin{array}{cc}4 & 3 \\ -3 & 0
\\ -1 & -2\end{array}\right] \rightarrow \ldots (1)\)
\( A^{\prime}-B^{\prime}=\left[\begin{array}{cc}3 & 4 \\ -1 & 2 \\ 0 & 1\end{array}\right]-\left[\begin{array}{cc}-1 & 1 \\ 2 & 2 \\ 1 & 3\end{array}\right] \)
\( =A^{\prime}-B^{\prime}=\left[\begin{array}{cc}4 & 3 \\ -3 & 0 \\ -1 & -2\end{array}\right] \rightarrow \ldots (2)\)
From equation \( 1 \ \& \ 2 \) we verify that
\( (A-B)^{\prime}=A^{\prime}-B^{\prime} \).
Hence verified.
Explanation: Whenever a constant term is multiplied with a matrix then it implies that every element in each rows and columns are to be multiplied with that constant term. So in order to solve this question we have to multiplied every element of the matrix B with constant term that is 2 .
\(
\begin{array}{l}
\text { So, } A+2 B=\left[\begin{array}{cc}
-2 & 1 \\
3 & 2
\end{array}\right]+2\left[\begin{array}{cc}
-1 & 0 \\
1 & 2
\end{array}\right] \\
=A+2 B=\left[\begin{array}{cc}
-2 & 1 \\
3 & 2
\end{array}\right]+\left[\begin{array}{cc}
-2 & 0 \\
2 & 4
\end{array}\right]
\end{array}
\)
\( =\mathrm{A}+2 \mathrm{~B}=\left[\begin{array}{cc}-4 & 1 \\ 5 & 6\end{array}\right] \)
Now, \( (A+2 B)^{\prime}= \) transpose of \( A+2 B \)
\( =(\mathrm{A}+2 \mathrm{~B})=\left[\begin{array}{cc}-4 & 5 \\ 1 & 6\end{array}\right] \)
\( A=\left[\begin{array}{c}1 \\ -4 \\ 3\end{array}\right] \quad B=\left[\begin{array}{lll}-1 & 2 & 1\end{array}\right] \)
Explanation: The product of two matrices is defined or possible only if the number of columns of the former matrix is equal to number of rows of the latter matrix.
\(
\begin{array}{l}
\mathrm{AB}=\left[\begin{array}{c}
1 \\
-4 \\
3
\end{array}\right] \times\left[\begin{array}{lll}
-1 & 2 & 1
\end{array}\right] \\
=\mathrm{AB}=\left[\begin{array}{ccc}
1 \times(-1) & 1 \times 2 & 1 \times 1 \\
-4 \times(-1) & -4 \times 2 & -4 \times 1 \\
3 \times(-1) & 3 \times 2 & 3 \times 1
\end{array}\right] \\
=\mathrm{AB}=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
4 & -8 & -4 \\
-3 & 6 & 3
\end{array}\right]
\end{array}
\)
\(
\text { So, }(A B)=\left[\begin{array}{ccc}
-1 & 4 & -3 \\
2 & -8 & 6 \\
1 & -4 & 3
\end{array}\right] \rightarrow \ldots (1)\)
\( A^{\prime}=\left[\begin{array}{lll}1 & -4 & 3 \end{array}\right] \) and \( B^{\prime}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right] \)
Therefore, B'A' \( =\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right] \times\left[\begin{array}{lll}1 & -4 & 3\end{array}\right] \)
\( =\mathrm{B}^{\prime} \mathrm{A}^{\prime}=\left[\begin{array}{ccc}-1 \times 1 & -1 \times(-4) & -1 \times 3 \\ 2 \times 1 & 2 \times(-4) & 2 \times 3 \\ 1 \times 1 & 1 \times(-4) & 1 \times 3\end{array}\right] \)
\( =B^{\prime} A^{\prime}=\left[\begin{array}{ccc}-1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3\end{array}\right]
\rightarrow \ldots (2)\)
From equation \( 1 \ \& \ 2 \) we verify that \( (\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime} \).
Hence verified.
\(
\mathrm{B}=\left[\begin{array}{lll}
1 & 5 & 7
\end{array}\right] \mathrm{A}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
\)
A=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] \text { and } B=\left[\begin{array}{lll}
1 & 5 & 7
\end{array}\right]
\)
Explanation: The product of two matrices is defined or possible only if the number of columns of the former matrix is equal to number of rows of the latter matrix.
\(
\mathrm{AB}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] \times\left[\begin{array}{lll}
1 & 5 & 7
\end{array}\right]
\)
\(
\begin{array}{l}
=\mathrm{AB}=\left[\begin{array}{lll}
0 \times 1 & 0 \times 5 & 0 \times 7 \\
1 \times 1 & 1 \times 5 & 1 \times 7 \\
2 \times 1 & 2 \times 5 & 2 \times 7
\end{array}\right] \\
=\mathrm{AB}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 5 & 7 \\
2 & 10 & 14
\end{array}\right]
\end{array}
\)
Therefore, \( (A B)=\left[\begin{array}{ccc}0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14\end{array}\right] \rightarrow \ldots (1)\)
Now, \( A^{\prime}=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right] \) and \( B^{\prime}=\left[\begin{array}{l}1 \\ 5 \\ 7\end{array}\right] \)
Therefore, \( B^{\prime} A^{\prime}=\left[\begin{array}{l}1 \\ 5 \\ 7\end{array}\right] \times\left[\begin{array}{lll}0 & 1 & 2\end{array}\right] \)
\( =\mathrm{B}^{\prime} \mathrm{A}^{\prime}=\left[\begin{array}{lll}1 \times 0 & 1 \times 1 & 1 \times 2 \\ 5 \times 0 & 5 \times 1 & 5 \times 2 \\ 7 \times 0 & 7 \times 1 & 7 \times 2\end{array}\right] \)
\( =B^{\prime} A^{\prime}=\left[\begin{array}{ccc}0 & 1 & 2 \\ 0 & 5 & 10 \\ 0 & 7 & 14\end{array}\right] \rightarrow \ldots (2)\)
From equation \( 1 \ \& \ 2 \) we verify that \( (\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime} \).
Hence verified.
Therefore, \( \mathrm{A}^{\prime}=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right] \)
Now multiply A and A'. So,
\(
\begin{array}{l}
\mathrm{AA}^{\prime}=\left[\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right] \times\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right] \\
=\mathrm{AA}^{\prime}= \\
{\left[\begin{array}{cc}
(\cos \alpha \times \cos \alpha)+(\sin \alpha) \times(\sin \alpha) & \cos \alpha \times(-\sin \alpha)+(\sin \alpha) \times \cos \alpha \\
-\sin \alpha \times \cos \alpha+\cos \alpha \sin \alpha & -\sin \alpha \times(-\sin \alpha)+\cos \alpha \times \cos \alpha
\end{array}\right]} \\
=\mathrm{AA}^{\prime}=\left[\begin{array}{cc}
\cos ^{2} \alpha+\sin ^{2} \alpha & -\sin \alpha \cos \alpha+\cos \alpha \sin \alpha \\
-\sin \alpha \cos \alpha+\cos \alpha \sin \alpha & \sin^{2} \alpha+\cos ^{2} \alpha
\end{array}\right] \\
=\mathrm{AA}^{\prime}=\left[\begin{array}{cc}
1 & 0 \\
1 & 0 \end{array}\right] \rightarrow \ldots (1) \quad \left(\therefore \cos \alpha^{2}+\sin \alpha^{2}=1\right)
\end{array}
\)
And we know ' \( I \) ' represents an identity matrix
Therefore, \( I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end {array}\right] \rightarrow \ldots(2)\)
From equation \( 1 \ \& \ 2 \) we can say that
\(
\mathrm{AA}^{\prime}=\mathrm{I}
\)
\( A^{\prime}{ }^{\prime}=I \). Hence verified.
ncert solutions matrices class 12 maths chapter 3 || class 12 math matrix ncert solution || ncert class 12 maths exercise 3.3 solutions || class 12 maths exercise 3.3 solutions || exercise 3.3 class 12 maths
\(
\begin{array}{l}
\mathrm{AA}^{\prime}=\left[\begin{array}{cc}
\sin \alpha & \cos \alpha \\
-\cos \alpha & \sin \alpha
\end{array}\right] \times\left[\begin{array}{cc}
\sin \alpha & -\cos \alpha \\
\cos \alpha & \sin \alpha
\end{array}\right] \\
=\mathrm{AA}^{\prime}= \\
{\left[\begin{array}{cc}
\sin \alpha \times \sin \alpha+\cos \alpha \times \cos \alpha & \sin \alpha \times(-\cos \alpha)+\cos \alpha \times \sin \alpha \\
-\cos \alpha \times \sin \alpha+\sin \alpha \times \cos \alpha & -\cos \alpha \times(-\cos \alpha)+\sin \alpha \times \sin \alpha
\end{array}\right]}
\end{array}
\)
\( =\mathrm{AA}^{\prime}=\left[\begin{array}{cc}\sin^{2} \alpha+\cos ^{2} \alpha & -\sin \alpha \cos \alpha+\cos \alpha \sin \alpha \\ -\cos \alpha \sin \alpha+\sin \alpha \cos \alpha & \cos ^{2} \alpha+\sin ^{2} \alpha\end{array}\right] \)
\( =\mathrm{AA}^{\prime}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \ldots(1) \quad \left(\therefore \cos ^{2} \alpha^{2}+\sin 2 \alpha=1\right) \)
And we know ' \( I \) ' represents an identity matrix
Therefore, \( I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end {array}\right] \rightarrow \ldots(2)\)
From equation \( 1 \ \& \ 2 \) we can say that
\( \mathrm{AA}^{\prime}=\mathrm{I} \)
\( A^{\prime}{ }^{\prime}=I \). Hence verified.
\( A=\left[\begin{array}{ccc}1 & -1 & 5 \\ -1 & 2 & 1 \\
5 & 1 & 3\end{array}\right] \ldots (1)\)
Now, we know that the transpose of matrix A is
\( A^{\prime}=\left[\begin{array}{ccc}1 & -1 & 5 \\ -1 &
2 & 1 \\ 5 & 1 & 3\end{array}\right] \ldots (2) \)
So, from equation \( 1 \ \& \ 2 \) we get
\( \mathrm{A}=\mathrm{A}^{\prime} \), hence we can say that Matrix A is a symmetric matrix.
Hence proved.
\( A=\left[\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\
1 & -1 & 0\end{array}\right] \ldots (1)\)
Now, we know that the transpose of matrix A is
\( \mathrm{A}^{\prime}=\left[\begin{array}{ccc}0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0\end{array}\right] \ldots (2)\)
Now if we carefully look at the equation 2 we can rewrite it as
\( A^{\prime}=(-1)\left[\begin{array}{ccc}0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0\end{array}\right] \) (by taking -1 common)
So, \( \mathrm{A}^{\prime}=(-1) \times \mathrm{A} \) (from equation 1\( ) \)
\( \Rightarrow A^{\prime}=-A \), hence we can say that Matrix \( A \) is a skew symmetric matrix.
Hence proved
\( \left(\mathrm{A}+\mathrm{A}^{\prime}\right) \) is a symmetric matrix.
So, \( A=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right] \) and \( A^{\prime}=\left[\begin{array}{ll}1 & 6 \\ 5 & 7\end{array}\right] \)
On adding them we get,
\( A+A^{\prime}=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right]+\left[\begin{array}{ll}1 & 6 \\ 5 & 7\end{array}\right] \)
\( =A+A^{\prime}=\left[\begin{array}{ll}1+1 & 5+6 \\ 6+5 & 7+7\end{array}\right] \)
\( =A+A^{\prime}=\left[\begin{array}{cc}2 & 11 \\ 11 &
14\end{array}\right] \rightarrow \ldots (1)\)
Explanation: Now to show that the matrix obtained i.e. \( \left(A+A^{\prime}\right) \) is symmetric we need to calculate its transpose and prove that the matrix \( \left(A^{\prime}+A^{\prime}\right) \) and its transpose are equal. This means that \( \left(A+A^{\prime}\right)=(A+ \) \( \left.A^{\prime}\right)^{\prime} \).
Therefore, \( \left(A+A^{\prime}\right)=\left[\begin{array}{cc}2 & 11 \\ 11 & 14\end{array}\right] \rightarrow \ldots (2)\)
So, from equation \( 1 \ \& \ 2 \) we get,
\( \left(\mathrm{A}+\mathrm{A}^{\prime}\right)=\left(\mathrm{A}+\mathrm{A}^{\prime}\right)^{\prime} \), hence we can say that \( \left(\mathrm{A}+\mathrm{A}^{\prime}\right) \) is a symmetric matrix.
Hence proved.
So, \( A=\left[\begin{array}{ll}1 & 5 \\ 6 & 7\end{array}\right] \) and \( A^{\prime}=\left[\begin{array}{ll}1 & 6 \\ 5 & 7\end{array}\right] \)
subtracting \( \mathrm{A}^{\prime} \) from A , we get,
\(
\begin{array}{l}
A-A^{\prime}=\left[\begin{array}{ll}
1 & 5 \\
6 & 7
\end{array}\right]-\left[\begin{array}{ll}
1 & 6 \\
5 & 7
\end{array}\right] \\
=A-A^{\prime}=\left[\begin{array}{ll}
1-1 & 5-6 \\
6-5 & 7-7
\end{array}\right]
\end{array}
\)
Explanation: Now to show that the matrix obtained i.e. \( \left(\mathrm{A}+\mathrm{A}^{\prime}\right) \) is skew symmetric we need to calculate its transpose and prove that the matrix \( \left(A+A^{\prime}\right) \) is equal to the negative of its transpose are equal. This means that \( \left(A+A^{\prime}\right)=-\left(A+A^{\prime}\right)^{\prime} \).
Therefore, \( \left(A-A^{\prime}\right)=\left[\begin{array}
{cc}0 & 1 \\ -1 & 0\end{array}\right] \ldots (1)\)
We can rewrite above equation as
\(
\left(A-A^{\prime}\right)=(-1)\left[\begin{array}{cc}
0 & -1 \\
1 & 0 \end{array}\right] \ldots (2)\)
Also, \( \left(\mathrm{A}-\mathrm{A}^{\prime}\right)^{\prime}=(-1) \times\left(\mathrm{A}-\mathrm{A}^{\prime}\right)( \) from equation 1\( ) \)
\( \left(A-A^{\prime}\right)^{\prime}=-\left(A-A^{\prime}\right) \), hence we can say that Matrix \( A \) is a skew symmetric matrix.
Hence proved.
\mathrm{A}=\left[\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right]
\)
(i) \( \frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\prime}\right) \)
\( \mathrm{A}=\left[\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right] \) and \( \mathrm{A}^{\prime}=\left[\begin{array}{ccc}0 & -a & -b \\ a & 0 & -c \\ b & c & 0\end{array}\right] \)
On adding A and A ', we get,
\( \mathrm{A}+\mathrm{A}^{\prime}=\left[\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right]+\left[\begin{array}{ccc}0 & -a & -b \\ a & 0 & -c \\ b & c & 0\end{array}\right] \)
\( =\mathrm{A}+\mathrm{A}^{\prime}=\left[\begin{array}{ccc}0+0 & a+(-a) & b+(-b) \\ -a+a & 0+0 & c+(-c) \\ -b+b & -c+c & 0+0\end{array}\right] \)
\( =A+A^{\prime}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \)
\( =A+A^{\prime}=0 \) (as \( \left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \) a null or zero matrix is represented by ' 0 ')
Therefore, \( \left(\mathrm{A}^{\prime}+\mathrm{A}^{\prime}\right)=0 \)
Now, \( \frac{1}{2}\left(A+A^{\prime}\right)=\frac{1}{2}(0) \)
\( =\frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\prime}\right)=0 \)
\( \frac{1}{2}\left(A+A^{\prime}\right)=0 \)
(ii) \( \frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\prime}\right) \)
\( \mathrm{A}=\left[\begin{array}{ccc}0 & a & b \\ -a & 0 &
c \\ -b & -c & 0\end{array}\right] \ldots (1) \quad \) and \( \mathrm{A}^{\prime}=\left[\begin{array}{ccc}0 & -a & -b \\ a & 0 & -c \\ b & c & 0\end{array}\right] \)
On adding A and A ', we get,
\( \mathrm{A}-\mathrm{A}^{\prime}=\left[\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right]-\left[\begin{array}{ccc}0 & -a & -b \\ a & 0 & -c \\ b & c & 0\end{array}\right] \)
\( =\mathrm{A}-\mathrm{A}^{\prime}=\left[\begin{array}{ccc}0-0 & a-(-a) & b-(-b) \\ -a-a & 0-0 & c-(-c) \\ -b-b & -c-c & 0-0\end{array}\right] \)
\( =\mathrm{A}-\mathrm{A}^{\prime}=\left[\begin{array}{ccc}0 & 2 a & 2 b \\ -2 a & 0 & 2 c \\ -2 b & -2 c & 0\end{array}\right] \)
We can rewrite the above equation as'
\( \mathrm{A}-\mathrm{A}^{\prime}=(2)\left[\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right] \)
Therefore, \( \left(A^{\prime}-A^{\prime}\right)=2(A)( \) from equation 1\( ) \)
Now, \( \frac{1}{2}\left(A-A^{\prime}\right)=\frac{1}{2}(2(A) \)
\( =\frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\prime}\right)=\mathrm{A} \)
Ans. \( \frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\prime}\right)=\mathrm{A} \).
ncert solutions matrices class 12 maths chapter 3 || class 12 math matrix ncert solution || ncert class 12 maths exercise 3.3 solutions || class 12 maths exercise 3.3 solutions || exercise 3.3 class 12 maths
\( \left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right] \)
Now, let \( A=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right] \)
Therefore, \( A^{\prime}=\left[\begin{array}{cc}3 & 1 \\ 5 & -1\end{array}\right] \)
Now, on adding A and A' we will get,
\( A+A^{\prime}=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]+\left[\begin{array}{cc}3 & 1 \\ 5 & -1\end{array}\right] \)
\( =A+A^{\prime}=\left[\begin{array}{cc}3+3 & 5+1 \\ 1+5 & -1+(-1)\end{array}\right] \)
\( =\mathrm{A}+\mathrm{A}^{\prime}=\left[\begin{array}{cc}6 & 6 \\ 6 & -2\end{array}\right] \)
Now, let \( \mathrm{M}=\frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\prime}\right) \)
Therefore, \( M=\frac{1}{2}\left[\begin{array}{cc}6 & 6 \\ 6 & -2\end{array}\right] \)
Now, \( \mathrm{M}^{\prime}=\left[\begin{array}{cc}3 & 3 \\ 3 & -1\end{array}\right] \)
\( =M^{\prime}=M \) thus \( M=\frac{1}{2}\left(A+A^{\prime}\right) \) is a symmetric matrix as \( M^{\prime}=M N \), on subtracting A' from A we will get,
\( A-A^{\prime}=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]-\left[\begin{array}{cc}3 & 1 \\ 5 & -1\end{array}\right] \)
\( =A-A^{\prime}=\left[\begin{array}{cc}0 & 4 \\ -4 & 0\end{array}\right] \)
Now, let \( \mathrm{N}=\frac{1}{2}\left(\mathrm{~A}-\mathrm{A}^{\prime}\right) \)
Therefore, \( \mathrm{N}=\frac{1}{2}\left[\begin{array}{cc}0 & 4 \\ -4 & 0\end{array}\right] \)
\( =\mathrm{N}=\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right] \)
Now, \( \mathrm{N}^{\prime}=\left[\begin{array}{cc}0 & -2 \\ 2 & 0\end{array}\right] \)
\(
\begin{array}{l}
=N^{\prime}=(-1)\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right] \\
=N^{\prime}=-N
\end{array}
\)
Thus, \( \mathrm{M}=\frac{1}{2}\left(\mathrm{~A}^{+}+\mathrm{A}^{\prime}\right) \) is a skew symmetric matrix as \( \mathrm{N}^{\prime}=-\mathrm{N} \)
Now, Add M and N, we get,
\(
\begin{array}{l}
M+N=\left[\begin{array}{cc}
3 & 3 \\
3 & -1
\end{array}\right]+\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right] \\
=M+N=\left[\begin{array}{cc}
3+0 & 3+2 \\
3+(-2) & -1+0
\end{array}\right] \\
=M+N=\left[\begin{array}{cc}
3 & 5 \\
1 & -1
\end{array}\right]
\end{array}
\)
So, we see here, \( M+N=\left[\begin{array}{cc}3 & 5 \\ 1 & -1\end{array}\right]=A \)
us, A is represented as the sum of a symmetric matrix M and a skew symmetric matrix N .
Hence proved
\(
\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
\)
Now, let \( \mathrm{A}=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right] \)
Therefore, \( A^{\prime}=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right] \)
Now, on adding A and A' we will get,
\(
\begin{array}{l}
A+A^{\prime}=\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]+\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right] \\
=A+A^{\prime}=\left[\begin{array}{ccc}
6+6 & -2+(-2) & 2+2 \\
-2+(-2) & 3+3 & -1+(-1) \\
2+2 & -1+(-1) & 3+3
\end{array}\right] \\
=A+A^{\prime}=\left[\begin{array}{ccc}
12 & -4 & 4 \\
-4 & 6 & -2 \\
2 & -2 & 6
\end{array}\right]
\end{array}
\)
Therefore, \( M=\frac{1}{2}\left[\begin{array}{ccc}12 & -4 & 4 \\ -4 & 6 & -2 \\ 2 & -2 & 6\end{array}\right] \)
\( =M=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & 1 & 3\end{array}\right] \)
Now, \( M^{\prime}=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & 1 & 3\end{array}\right] \)
\( =\mathrm{M}^{\prime}=\mathrm{M} \)
Thus, \( \mathrm{M}=\frac{1}{2}\left(\mathrm{A}+\mathrm{A}^{\prime}\right) \) is a symmetric matrix as \( \mathrm{M}^{\prime}=\mathrm{M} \)
Now, on subtracting A' from A we will get,
\(
\begin{array}{l}
A-A^{\prime}=\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]-\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right] \\
=A-A^{\prime}=\left[\begin{array}{ccc}
6-6 & -2-(-2) & 2-2 \\
-2-(-2) & 3-3 & -1-(-1) \\
2-2 & -1-(-1) & 3-3
\end{array}\right] \\
=A-A^{\prime}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{array}
\)
Now, let \( \mathrm{N}=\frac{1}{2}\left(-\mathrm{A}^{\prime}\right) \)
Therefore, \( N=\frac{1}{2}\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \)
\(
\begin{array}{l}
\mathrm{N}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
=\mathrm{N}^{\prime}=(-1)\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
=\mathrm{N}=-\mathrm{N}
\end{array}
\)
Thus \( \mathrm{M}=\frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{\prime}\right) \) is a skew symmetric matrix as \( \mathrm{N}^{\prime}=-\mathrm{N} \)
Now, Add M and N, we get,
\(
\begin{aligned}
M+N & =\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
M+N & =\left[\begin{array}{ccc}
6+0 & -2+0 & 2+0 \\
-2+0 & 3+0 & -1+0 \\
2+0 & -1+0 & 3+0
\end{array}\right]
\end{aligned}
\)
\(
=M+N=\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
\)
So, we see here, \( M+N=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]=A \)
Thus, A is represented as the sum of a symmetric matrix M and a skew symmetric matrix N .
A. Skew symmetric matrix B. Symmetric matrix C. Zero matrix D. Identity matrix
\(
\Rightarrow \mathrm{A}=\mathrm{A}^{\prime} \rightarrow \ldots(1)\)
\(\Rightarrow \mathrm{B}=\mathrm{B}^{\prime} \rightarrow \ldots(2)\)
So, \( \mathrm{AB}-\mathrm{BA}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}-\mathrm{B}^{\prime} \mathrm{A}^{\prime}( \) from \( 1 \& 2) \)
\(\Rightarrow \mathrm{AB}-\mathrm{BA}=(\mathrm{BA})^{\prime}-(\mathrm{AB})^{\prime}\left(\therefore(\mathrm{AB})^{\prime}=\mathrm{B}^{\prime} \mathrm{A}^{\prime}\right)\)
\(\Rightarrow \mathrm{AB}-\mathrm{BA}=(-1)\left((\mathrm{AB})^{\prime}-(\mathrm{BA})^{\prime}\right) \text { (taking }-1 \text { common) }\)
\(\Rightarrow \mathrm{AB}-\mathrm{BA}=-(\mathrm{AB}-\mathrm{BA})^{\prime}\left(\therefore(\mathrm{A}-\mathrm{B})^{\prime}=\mathrm{A}^{\prime}-\mathrm{B}^{\prime}\right)
\)
Here we see that the relation between \( (A B-B A) \) and its transpose i.e. \( (A B-B A)^{\prime} \) is \( (A B-B A)=-(A B-B A)^{\prime} \), this implies that \( (A B-B A) \) is a skew symmetric matrix.
Hence proved.
A. \( \frac{3 \pi}{2} \) B. \( \frac{\pi}{3} \) C. \( \pi \) D. \( \frac{3 \pi}{2} \)
Therefore, \( A^{\prime}=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right] \)
Also given that \( \mathrm{A}+\mathrm{A}^{\prime}=\mathrm{I} \)
(Putting the values in the above equation)
\(
\begin{array}{l}
{\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]+\left[\begin{array}{cc}
\cos \alpha & \text { si } n \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
=\left[\begin{array}{cc}
\cos \alpha+\cos \alpha & -\sin \alpha+\sin \alpha \\
\sin \alpha-\sin \alpha & \cos \alpha+\cos \alpha
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
=\left[\begin{array}{cc}
2 \cos \alpha & 0 \\
0 & 2 \cos \alpha
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]
\end{array}
\)
We know when two matrices are equal only when all their corresponding elements or entries are equal i.e. if \( \mathrm{A}=\mathrm{B} \), then \( aij =\mathrm{bij} \) for all i and j .
This implies,
\(2 \cos \alpha=1\)
\(=\cos \alpha=\frac{1}{2}\)
\( =\cos \alpha=\cos \frac{\pi}{3}\left(\therefore \cos \frac{\pi}{3}=\frac{1}{2}\right)\)
\(=\alpha=\frac{\pi}{3} \)