Ncert class 12 maths exercise 3.4 solutions | class 12 maths exercise 3.4 solutions | exercise 3.4 class 12 maths | ncert solutions matrices class 12 maths chapter 3 | class 12 math matrix ncert solution
Looking for NCERT Class 12 Maths Exercise 3.4 solutions? You’re in the right place! This section provides well-explained answers to all the questions from Exercise 3.4 Class 12 Maths, following the latest NCERT Solutions Matrices Class 12 Maths Chapter 3. This exercise focuses on finding the inverse of matrices using the elementary row or column operations method. The Class 12 Maths Exercise 3.4 solutions help students understand how to apply systematic steps to solve inverse-related problems accurately. Whether you’re aiming to score high in board exams or strengthen your grasp of matrix operations, these Class 12 Math Matrix NCERT Solutions are just what you need. Learn with step-by-step guidance and improve your confidence in matrix algebra today!

ncert solutions matrices class 12 maths chapter 3 || class 12 math matrix ncert solution || class 12 maths exercise 3.4 solutions || exercise 3.4 class 12 maths || ncert class 12 maths exercise 3.4 solutions
Exercise 3.4
\(\left[\begin{array}{cc}
1 & -1 \\
2 & 3 \end{array}\right]\)
For the inverse of a matrix A to exist,
Determinant of \( \mathrm{A} \neq 0 \)
Here \( |A|=(1)(3)-(-1)(2)=5 \)
So the matrix is invertible.
Now to find the inverse of the matrix,
We know \( \mathrm{AA}^{-1}=\mathrm{I} \)
Let's make augmented matrix-
\( \rightarrow[ \) A: I]
\( \rightarrow\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}: \begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1} \)
\( \rightarrow\left[\begin{array}{cc}1 & -1 \\ 0 & 5\end{array}: \begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow\frac{ \mathrm{R}_{2} }{ 5 } \)
\( \rightarrow\left[\begin{array}{cc:cc}1 & -1 \\ 0 & 1\end{array}: \begin{array}{cc}1 & 0 \\ -\frac{2}{5} & \frac{1}{5}\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2} \)
\( \rightarrow\left[\begin{array}{cc:cc}1 & 0 \\ 0 & 1\end{array}: \begin{array}{cc}\frac{3}{5} & \frac{1}{5} \\ -\frac{2}{5} & \frac{1}{5}\end{array}\right] \)
The matrix so obtained is of the form -
\(\rightarrow\left[\mathrm{I}: \mathrm{A}^{-1}\right]\)
Hence inverse of the given matrix-
\(\rightarrow\left[\begin{array}{cc}
\frac{3}{5} & \frac{1}{5} \\
-\frac{2}{5} & \frac{1}{5}
\end{array}\right]\)
\(\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\)
For the inverse of a matrix A to exist,
Determinant of \( \mathrm{A} \neq 0 \)
Here \( |\mathrm{A}|=(2)(1)-(1)(1)=1 \)
So the matrix is invertible.
Now to find the inverse of the matrix,
We know \( \mathrm{AA}^{-1}=\mathrm{I} \)
Let's make augmented matrix-
\( \rightarrow[ \) A: I]
\( \rightarrow\left[\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}: \begin{array}{ll} 1 & 0 \\ 0 & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2} \)
\( \rightarrow\left[\begin{array}{cc}1 & 0 \\ 1 & 1\end{array}: \begin{array}{ll}1 & -1 \\ 0 & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \)
\( \rightarrow\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}: \begin{array}{ll}1 & -1 \\ -1 & 2\end{array}\right] \)
The matrix so obtained is of the form -
\( \rightarrow\left[\right. \) I: \( \left.\mathrm{A}^{-1}\right] \)
Hence inverse of the given matrix-
\( \rightarrow\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right] \)
\( \left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right] \)
For the inverse of a matrix A to exist,
Determinant of \( \mathrm{A} \neq 0 \)
Here \( |\mathrm{A}|=(1)(7)-(2)(3)=1 \)
So the matrix is invertible.
Now to find the inverse of the matrix,
We know \( \mathrm{AA}^{-1}=\mathrm{I} \)
Let's make augmented matrix-
\(\rightarrow\left[\mathrm{A}: \mathrm{I}\right]\)
\( \rightarrow\left[\begin{array}{cc}1 & 3 \\ 2 & 7\end{array}: \begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1} \)
\( \rightarrow\left[\begin{array}{cc}1 & 3 \\ 0 & 1\end{array}: \begin{array}{ll}1 & 0 \\ -2 & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-3 \mathrm{R}_{2} \)
\( \rightarrow\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}: \begin{array}{ll}7 & -3 \\ 2 & 0\end{array}\right] \)
The matrix so obtained is of the form -
\(\rightarrow\left[\mathrm{I}: \mathrm{A}^{-1}\right]\)
Hence inverse of the given matrix-
\(\rightarrow\left[\begin{array}{cc}
7 & -3 \\
-2 & 1
\end{array}\right]\)
\(\left[\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right]\)
For the inverse of a matrix A to exist,
\(\begin{array}{l}
\rightarrow \text { [A: I] }
\end{array}\)
Determinant of \( \mathrm{A} \neq 0 \)
Here \( |\mathrm{A}|=(2)(7)-(5)(3)=-1 \)
So the matrix is invertible.
Now to find the inverse of the matrix,
We know \( \mathrm{AA}^{-1}=\mathrm{I} \)
Let's make augmented matrix-
\( \rightarrow \) [A: I]
\( \rightarrow\left[\begin{array}{llll}2 & 3 & 1 & 0 \\ 5 & 7 & 0 & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\frac{5}{2} \mathrm{R} 1 \)
\( \rightarrow\left[\begin{array}{cccc}2 & 3 & 1 & 0 \\ 0 & -\frac{1}{2} & -\frac{5}{2} & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \frac{ \mathrm{R}_{1} }{ 2 } \)
\( \rightarrow\left[\begin{array}{cccc}1 & \frac{3}{2} & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & -\frac{5}{2} & 1\end{array}\right] \)
Apply row operation- \( R_{1} \rightarrow R_{1}+3 R_{2} \)
\( \rightarrow\left[\begin{array}{cccc}1 & 0 & -7 & 3 \\ 0 & -\frac{1}{2} & -\frac{5}{2} & 1\end{array}\right] \)
Apply row operation- \( R_{2} \rightarrow-2 R_{2} \)
\( \rightarrow\left[\begin{array}{cccc}1 & 0 & -7 & 3 \\ 0 & 1 & 5 & -2\end{array}\right] \)
The matrix so obtained is of the form -
\( \rightarrow\left[\mathrm{I}: \mathrm{A}^{-1}\right] \)
Hence inverse of the given matrix-
\(\rightarrow\left[\begin{array}{cc}
-7 & 3 \\
5 & -2
\end{array}\right]\)
\(\left[\begin{array}{ll}
2 & 1 \\
7 & 4
\end{array}\right]\)
For the inverse of a matrix A to exist,
Determinant of \( \mathrm{A} \neq 0 \)
Here \( |A|=(2)(4)-(1)(7)=1 \)
So the matrix is invertible.
Now to find the inverse of the matrix,
We know \( \mathrm{AA}^{-1}=\mathrm{I} \)
Let's make augmented matrix-
\( \rightarrow \) [A: I]
\( \rightarrow\left[\begin{array}{llll}2 & 1 & 1 & 0 \\ 7 & 4 & 0 & 1\end{array}\right] \)
Apply row operation- \( R_{2} \rightarrow R_{2}-\frac{7}{2} R_{1} \)
\( \rightarrow\left[\begin{array}{cccc}2 & 1 & 1 & 0 \\ 0 & \frac{1}{2} & -\frac{7}{2} & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow 2 \mathrm{R}_{2} \)
\( \rightarrow\left[\begin{array}{llcc}2 & 1 & 1 & 0 \\ 0 & 1 & -7 & 2\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2} \)
\( \rightarrow\left[\begin{array}{llcc}2 & 0 & 8 & -2 \\ 0 & 1 & -7 & 2\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \frac{1}{2} \mathrm{R}_{1} \)
\( \rightarrow\left[\begin{array}{cccc}1 & 0 & 4 & -1 \\ 0 & 1 & -7 & 2\end{array}\right] \)
The matrix so obtained is of the form -
\( \rightarrow\left[\mathrm{I}: \mathrm{A}^{-1}\right] \)
Hence inverse of the given matrix-
\( \rightarrow\left[\begin{array}{cc}4 & -1 \\ -7 & 2\end{array}\right] \)
\( \left[\begin{array}{ll}2 & 5 \\ 1 & 3\end{array}\right] \)
For the inverse of a matrix A to exist,
Determinant of \( \mathrm{A} \neq 0 \)
Here \( |A|=(2)(3)-(1)(5)=1 \)
So the matrix is invertible.
Now to find the inverse of the matrix,
We know \( \mathrm{AA}^{-1}=\mathrm{I} \)
Let's make augmented matrix-
\( \rightarrow[ \) A: I]
\( \rightarrow\left[\begin{array}{llll}2 & 5 & 1 & 0 \\ 1 & 3 & 0 & 1\end{array}\right] \)
Apply row operation- \( R_{2} \rightarrow R_{2}-\frac{1}{2} R_{1} \)
\( \rightarrow\left[\begin{array}{cccc}2 & 5 & 1 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \frac{ \mathrm{R}_{1} }{ 2 } \)
\( \rightarrow\left[\begin{array}{cccc}1 & \frac{5}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 1\end{array}\right] \)
Apply row operation- \( R_{1} \rightarrow R_{1}-5 R_{2} \)
\( \rightarrow\left[\begin{array}{cccc}1 & 0 & 3 & -5 \\ 0 & \frac{1}{2} & \frac{-1}{2} & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow 2 \mathrm{R}_{2} \)
\( \rightarrow\left[\begin{array}{cccc}1 & 0 & 3 & -5 \\ 0 & 1 & -1 & 2\end{array}\right] \)
The matrix so obtained is of the form -
\( \rightarrow\left[\right. \) I: \( \left.\mathrm{A}^{-1}\right] \)
Hence inverse of the given matrix-
\( \rightarrow\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right] \)
\(\left[\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right]\)
For the inverse of a matrix A to exist,
Determinant of \( \mathrm{A} \neq 0 \)
Here \( |A|=(3)(2)-(5)(1)=1 \)
So the matrix is invertible.
Now to find the inverse of the matrix,
We know \( \mathrm{AA}^{-1}=\mathrm{I} \)
Let's make augmented matrix-
\( \rightarrow[ \) A: I]
\( \rightarrow\left[\begin{array}{cccc}3 & 1 & 1 & 0 \\ 5 & 2 & 0 & 1\end{array}\right] \)
Apply row operation- \( R_{2} \rightarrow R_{2}-\frac{5}{3} R_{1} \)
\( \rightarrow\left[\begin{array}{cccc}3 & 1 & 1 & 0 \\ 0 & \frac{1}{3} & -\frac{5}{3} & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow 3 \mathrm{R}_{2} \)
\( \rightarrow\left[\begin{array}{cccc}3 & 1 & 1 & 0 \\ 0 & 1 & -5 & 3\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2} \)
\( \rightarrow\left[\begin{array}{cccc}3 & 1 & 6 & -3 \\ 0 & 1 & -5 & 3\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \frac{1}{3} \mathrm{R}_{2} \)
\(\rightarrow\left[\begin{array}{cccc}
1 & 0 & 2 & -1 \\
0 & 1 & -5 & 3
\end{array}\right]\)
The matrix so obtained is of the form -
\(\rightarrow\left[\mathrm{I}: \mathrm{A}^{-1}\right]\)
Hence inverse of the given matrix-
\(\rightarrow\left[\begin{array}{cc}
2 & -1 \\
-5 & 3
\end{array}\right]\)
ncert solutions matrices class 12 maths chapter 3 || class 12 math matrix ncert solution || class 12 maths exercise 3.4 solutions || exercise 3.4 class 12 maths || ncert class 12 maths exercise 3.4 solutions
\(\left[\begin{array}{ll}
4 & 5 \\
3 & 4
\end{array}\right]\)
For the inverse of a matrix A to exist,
Determinant of \( \mathrm{A} \neq 0 \)
Here \( |A|=(4)(4)-(5)(3)=1 \)
So the matrix is invertible.
Now to find the inverse of the matrix,
We know \( \mathrm{AA}^{-1}=\mathrm{I} \)
Let's make augmented matrix-
\( \rightarrow[ \) A: I]
\( \rightarrow\left[\begin{array}{llll}4 & 5 & 1 & 0 \\ 0 & 4 & 0 & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\frac{3}{4} \mathrm{R}_{1} \)
\( \rightarrow\left[\begin{array}{cccc}4 & 5 & 1 & 0 \\ 0 & \frac{1}{4} & -\frac{3}{4} & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \frac{ \mathrm{R}_{1} }{ 4 } \)
\( \rightarrow\left[\begin{array}{cccc}1 & \frac{5}{4} & \frac{1}{4} & 0 \\ 0 & \frac{1}{4} & -\frac{3}{4} & 1\end{array}\right] \)
Apply row operation- \( R_{1} \rightarrow R_{1}-5 R_{2} \)
\( \rightarrow\left[\begin{array}{llcc}1 & 0 & 4 & -5 \\ 0 & \frac{1}{4} \vdots & -\frac{3}{4} & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow 4 \mathrm{R}_{2} \)
\( \rightarrow\left[\begin{array}{cccc}1 & 0 & 4 & -5 \\ 0 & 1 & -3 & 4\end{array}\right] \)
The matrix so obtained is of the form -
\( \rightarrow\left[\right. \) I: \( \left.\mathrm{A}^{-1}\right] \)
Hence inverse of the given matrix -
\( \rightarrow\left[\begin{array}{cc}4 & -5 \\ -3 & 4\end{array}\right] \)
\( \left[\begin{array}{cc}3 & 10 \\ 2 & 7\end{array}\right] \)
For the inverse of a matrix A to exist,
Determinant of \( \mathrm{A} \neq 0 \)
Here \( |A|=(3)(7)-(2)(10)=1 \)
So the matrix is invertible.
Now to find the inverse of the matrix,
We know \( \mathrm{AA}^{-1}=\mathrm{I} \)
Let's make augmented matrix-
\( \rightarrow[\mathrm{A}: \mathrm{I}] \)
\( \rightarrow\left[\begin{array}{cccc}3 & 10 & 1 & 0 \\ 2 & 7 & 0 & 1\end{array}\right] \)
Apply row operation- \( R_{2} \rightarrow R_{2}-\frac{2}{3} R_{1} \)
\( \rightarrow\left[\begin{array}{cccc}3 & 10 & 1 & 0 \\ 0 & \frac{1}{3} & -\frac{2}{3} & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \frac{ \mathrm{R}_{1} }{ 3 } \)
\( \rightarrow\left[\begin{array}{cccc}1 & \frac{10}{3} & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & -\frac{2}{3} & 1\end{array}\right] \)
Apply row operation- \( R_{1} \rightarrow R_{1}-10 R_{2} \)
\( \rightarrow\left[\begin{array}{ccrc}1 & 0 & 7 & -10 \\ 0 & \frac{1}{3} & -\frac{2}{3} & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow 3 \mathrm{R}_{2} \)
\( \rightarrow\left[\begin{array}{cccc}1 & 0 & 7 & -10 \\ 0 & 1 & -2 & 3\end{array}\right] \)
The matrix so obtained is of the form -
\(\rightarrow\left[\mathrm{I}: \mathrm{A}^{-1}\right]\)
Hence inverse of the given matrix-
\(\rightarrow\left[\begin{array}{cc}
7 & -10 \\
-2 & 3
\end{array}\right]\)
\(\left[\begin{array}{cc}
3 & -1 \\
-4 & 2
\end{array}\right]\)
For the inverse of a matrix A to exist,
Determinant of \( \mathrm{A} \neq 0 \)
Here \( |\mathrm{A}|=(3)(2)-(-1)(-4)=2 \)
So the matrix is invertible.
Now to find the inverse of the matrix,
We know \( \mathrm{AA}^{-1}=\mathrm{I} \)
Let's make augmented matrix-
\(\begin{array}{l}
\rightarrow \text { [A: I] }
\end{array}\)
\( \rightarrow\left[\begin{array}{cc}3 & -1 \\ -4 & 2\end{array} \begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+\frac{4}{3} \mathrm{R}_{1} \)
\( \rightarrow\left[\begin{array}{cccc}3 & -1 & 1 & 0 \\ 0 & \frac{2}{3} & \frac{4}{3} & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \frac{ \mathrm{R}_{1} }{ 3 } \)
\( \rightarrow\left[\begin{array}{cccc}1 & -\frac{1}{3} & \frac{1}{3} & 0 \\ 0 & \frac{2}{3} & \frac{4}{3} & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\frac{1}{2} \mathrm{R}_{2} \)
\( \rightarrow\left[\begin{array}{llll}1 & 0 & 1 & \frac{1}{2} \\ 0 & \frac{2}{4} & \frac{4}{3} & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow \frac{3}{2} \mathrm{R}_{2} \)
\(\rightarrow\left[\begin{array}{llll}
1 & 0 & 1 & \frac{1}{2} \\
0 & 1 & 2 & \frac{3}{2}
\end{array}\right]\)
The matrix so obtained is of the form -
\(\rightarrow\left[\mathrm{I}: \mathrm{A}^{-1}\right]\)
Hence inverse of the given matrix-
\(\rightarrow\left[\begin{array}{llll}
1 & 0 & 1 & \frac{1}{2} \\
0 & 1 & 2 & \frac{3}{2}
\end{array}\right]\)
\(\left[\begin{array}{ll}
2 & -6 \\
1 & -2
\end{array}\right]\)
For the inverse of a matrix A to exist,
Determinant of \( \mathrm{A} \neq 0 \)
Here \( |\mathrm{A}|=(2)(-2)-(-6)(1)=2 \)
So the matrix is invertible.
Now to find the inverse of the matrix,
We know \( \mathrm{AA}^{-1}=\mathrm{I} \)
Let's make augmented matrix-
\( \rightarrow[\mathrm{A}: \mathrm{I}] \)
\( \rightarrow\left[\begin{array}{ll}2 & -6 & 1 & 0 \\1 & -2 & 0 & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\frac{1}{2} \mathrm{R}_{1} \)
\( \rightarrow\left[\begin{array}{cccc}2 & -6 & 1 & 0 \\ 0 & 1 & -\frac{1}{2} & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \frac{ \mathrm{R}_{1} }{ 2 } \)
\( \rightarrow\left[\begin{array}{cccc}1 & -3 & \frac{1}{2} & 0 \\ 0 & 1 & -\frac{1}{2} & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+3 \mathrm{R}_{2} \)
\( \rightarrow\left[\begin{array}{cccc}1 & 0 & -1 & 3 \\ 0 & 1 & -\frac{1}{2} & 1\end{array}\right] \)
The matrix so obtained is of the form -
\( \rightarrow\left[\right. \) I: \( \left.\mathrm{A}^{-1}\right] \)
Hence inverse of the given matrix-
\(\rightarrow\left[\begin{array}{ll}
-1 & 3 \\
-\frac{1}{2} & 1
\end{array}\right]\)
\(\left[\begin{array}{cc}
6 & -3 \\
-2 & 1
\end{array}\right]\)
For the inverse of a matrix A to exist,
Determinant of \( \mathrm{A} \neq 0 \)
Here \( |A|=(6)(1)-(-2)(-3)=0 \)
So the matrix is not invertible.
\( \therefore \) the inverse of the given matrix does not exist.
ncert solutions matrices class 12 maths chapter 3 || class 12 math matrix ncert solution || class 12 maths exercise 3.4 solutions || exercise 3.4 class 12 maths || ncert class 12 maths exercise 3.4 solutions
Using elementary transformations, find the inverse of each of the matrices.
\(\left[\begin{array}{cc}
2 & -1 \\
-3 & 2
\end{array}\right]\)
For the inverse of a matrix A to exist,
Determinant of \( \mathrm{A} \neq 0 \)
Here \( |A|=(2)(2)-(-1)(-3)=1 \)
So the matrix is invertible.
Now to find the inverse of the matrix,
We know \( \mathrm{AA}^{-1}=\mathrm{I} \)
Let's make augmented matrix-
\( \rightarrow \) A: I]
\( \rightarrow\left[\begin{array}{cccc}2 & -1 & 1 & 0 \\ -3 & 0 & 0 & 1\end{array}\right] \)
Apply row operation- \( R_{2} \rightarrow R_{2}+\frac{3}{2} R_{1} \)
\( \rightarrow\left[\begin{array}{cccc}2 & -1 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{3}{2} & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \frac{ \mathrm{R}_{1} }{ 2 } \)
\( \rightarrow\left[\begin{array}{cccc}1 & -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{3}{2} & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2} \)
\( \rightarrow\left[\begin{array}{cccc}1 & 0 & 2 & 1 \\ 0 & \frac{1}{2} & \frac{3}{2} & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow 2 \mathrm{R}_{2} \)
\( \rightarrow\left[\begin{array}{cccc}1 & 0 & 2 & 1 \\ 0 & 1 & 3 & 2\end{array}\right] \)
The matrix so obtained is of the form -
\( \rightarrow\left[\right. \) I: \( \left.\mathrm{A}^{-1}\right] \)
Hence inverse of the given matrix-
\( \rightarrow\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] \)
\(\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]\)
For the inverse of a matrix A to exist,
Determinant of \( \mathrm{A} \neq 0 \)
Here \( |\mathrm{A}|=(2)(2)-(1)(4)=0 \)
So the matrix is not invertible.
\( \therefore \) the inverse of the given matrix does not exist.
\(\left[\begin{array}{ccc}
2 & -3 & 3 \\
2 & 2 & 3 \\
3 & -2 & 2
\end{array}\right]\)
For the inverse of a matrix A to exist,
Determinant of \( \mathrm{A} \neq 0 \)
Here \( |\mathrm{A}|=[(2)\{2 \times 2-3 \times(-2)\}-(-3)\{2 \times 2-3 \times 3\}+(3)\{2 \times(-2)- \)
\(2 \times 3\}]\)
\(=[2\{4-(-6)\}+3\{4-9\}+3\{-4-6\}]\)
\(=[2(10)+3(-5)+3(-10)]\)
\(=[20-15-30]\)
\(=-25\)
So the matrix is invertible.
Now to find the inverse of the matrix,
We know \( \mathrm{AA}^{-1}=\mathrm{I} \)
Let's make augmented matrix-
\( \rightarrow[\mathrm{A}: \mathrm{I}] \)
\( \rightarrow\left[\begin{array}{cccccc}2 & -3 & 3 & 1 & 0 & 0 \\ 2 & 2 & 3 & 0 & 1 & 0 \\ 3 & -2 & 2 & 0 & 0 & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \frac{1}{2} \mathrm{R}_{1} \)
\(\rightarrow\left[\begin{array}{cccccc}
1 & -\frac{3}{2} & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\
2 & 2 & 3 & 0 & 1 & 0 \\
3 & -2 & 2 & 0 & 0 & 1
\end{array}\right]\)
Apply row operation- \( \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1} \)
\( \rightarrow\left[\begin{array}{cccccc}1 & -\frac{3}{2} & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 5 & 0 & -1 & 1 & 0 \\ 3 & -2 & 2 & 0 & 0 & 1\end{array}\right] \)
Apply row operation- \( R_{3} \rightarrow R_{3}-3 R_{1} \)
\( \rightarrow\left[\begin{array}{cccccc}1 & -\frac{3}{2} & \frac{3}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 5 & 0 & -1 & 1 & 0\\ 0 & \frac{5}{2} & -\frac{5}{2} & -\frac{3}{2} & 0 & 1 \end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow \frac{1}{5} \mathrm{R}_{2} \)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\frac{3}{2} \mathrm{R}_{2} \)
\(\rightarrow\left[\begin{array}{cccccc}
1 & 0 & \frac{3}{2} & \frac{1}{5} & \frac{3}{10} & 0 \\
0 & 1 & 0 & -\frac{1}{5} & \frac{1}{5} & 0 \\
0 & \frac{5}{2} & -\frac{5}{2} & -\frac{3}{2} & 0 & 1
\end{array}\right]\)
Apply row operation- \( R_{3} \rightarrow R_{3}-\frac{5}{2} R_{2} \)
\(\rightarrow\left[\begin{array}{cccccc}
1 & 0 & \frac{3}{2} & \frac{1}{5} & \frac{3}{10} & 0 \\
0 & 1 & 0 & -\frac{1}{5} & \frac{1}{5} & 0 \\
0 & 0 & -\frac{5}{2} & -1 & -\frac{1}{2} & 1
\end{array}\right]\)
Apply row operation- \( \mathrm{R}_{3} \rightarrow-\frac{2}{5} \mathrm{R}_{3} \)
\(\rightarrow\left[\begin{array}{cccccc}
1 & 0 & \frac{3}{2} & \frac{1}{5} & \frac{3}{10} & 0 \\
0 & 1 & 0 & -\frac{1}{5} & \frac{1}{5} & 0 \\
0 & 0 & 1 & \frac{2}{5} & \frac{1}{5} & -\frac{2}{5}
\end{array}\right]\)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\frac{3}{2} \mathrm{R}_{3} \)
\(\rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & -\frac{2}{5} & 0 & \frac{3}{5} \\
0 & 1 & 0 & -\frac{1}{5} & \frac{1}{5} & 0 \\
0 & 0 & 1 & \frac{2}{5} & \frac{1}{5} & -\frac{2}{5}
\end{array}\right]\)
The matrix so obtained is of the form -
\(\rightarrow\left[\mathrm{I}: \mathrm{A}^{-1}\right]\)
Hence inverse of the given matrix-
\(\rightarrow\left[\begin{array}{ccc}
-\frac{2}{5} & 0 & \frac{3}{5} \\
-\frac{1}{5} & \frac{1}{5} & 0 \\
\frac{2}{5} & \frac{1}{5} & -\frac{2}{5}
\end{array}\right]\)
\(\left[\begin{array}{ccc}
1 & 3 & -2 \\
-3 & 0 & -5 \\
2 & 5 & 0
\end{array}\right]\)
For the inverse of a matrix A to exist,
Determinant of \( \mathrm{A} \neq 0 \)
Here \( |\mathrm{A}|=[(1)\{0-5 \times(-5)\}-(3)\{(-3) \times 0-(-5) \times 2\}+(-2)\{5 \times(-3) \)
\(\begin{array}{l}
-2 \times 0\}] \\
=[1\{25\}-3\{0+10\}-2\{-15\}] \\
=[1(25)-3(10)-2(-15)]
\end{array}\)
\(\begin{array}{l}
=[25-30+30] \\
=25
\end{array}\)
So the matrix is invertible.
Now to find the inverse of the matrix,
We know \( \mathrm{AA}^{-1}=\mathrm{I} \)
Let's make augmented matrix-
\( \rightarrow[\mathrm{A}: \mathrm{I}] \)
\( \rightarrow\left[\begin{array}{cccccc}1 & 3 & -2 & 1 & 0 & 0 \\ -3 & 0 & -5 & 0 & 1 & 0 \\ 2 & 5 & 0 & 0 & 0 & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+3 \mathrm{R}_{1} \)
\(\rightarrow\left[\begin{array}{cccccc}
1 & 3 & -2 & 1 & 0 & 0 \\
0 & 9 & -11 & 3 & 1 & 0 \\
2 & 5 & 0 & 0 & 0 & 1
\end{array}\right]\)
Apply row operation- \( \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-2 \mathrm{R}_{1} \)
\(\rightarrow\left[\begin{array}{cccccc}
1 & 3 & -2 & 1 & 0 & 0 \\
0 & 9 & -11 & 3 & 1 & 0 \\
0 & -1 & 4 & -2 & 0 & 1
\end{array}\right]\)
Apply row operation- \( \mathrm{R}_{2} \rightarrow \frac{1}{9} \mathrm{R}_{2} \)
\(\rightarrow\left[\begin{array}{cccccc}
1 & 3 & -2 & 1 & 0 & 0 \\
0 & 1 & -\frac{11}{9} & \frac{1}{3} & \frac{1}{9} & 0 \\
0 & -1 & 4 & -2 & 0 & 1
\end{array}\right]\)
Apply row operation- \( R_{1} \rightarrow R_{1}-3 R_{2} \)
\(\rightarrow\left[\begin{array}{cccccc}
1 & 0 & \frac{5}{3} & 0 & -\frac{1}{3} & 0 \\
0 & 1 & -\frac{11}{9} & \frac{1}{3} & \frac{1}{9} & 0 \\
0 & -1 & 4 & -2 & 0 & 1
\end{array}\right]\)
Apply row operation- \( \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{2} \)
\(\rightarrow\left[\begin{array}{cccccc}
1 & 0 & \frac{5}{3} & 0 & -\frac{1}{3} & 0 \\
0 & 1 & -\frac{11}{9} & \frac{1}{3} & \frac{1}{9} & 0 \\
0 & 0 & \frac{25}{9} & -\frac{5}{3} & \frac{1}{9} & 1
\end{array}\right]\)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{3} \)
\(\rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & -\frac{2}{5} & -\frac{3}{5} \\
0 & 1 & -\frac{11}{9} & \frac{1}{3} & \frac{1}{9} & 0 \\
0 & 0 & \frac{25}{9} & -\frac{5}{3} & \frac{1}{9} & 1
\end{array}\right]\)
Apply row operation- \( \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+\frac{11}{25} \mathrm{R}_{3} \)
\(\rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & -\frac{2}{5} & -\frac{3}{5} \\
0 & 1 & 0 & -\frac{2}{5} & \frac{4}{25} & \frac{11}{25} \\
0 & 0 & \frac{25}{9} & -\frac{5}{3} & \frac{1}{9} & 1
\end{array}\right]\)
Apply row operation- \( \mathrm{R}_{3} \rightarrow \frac{9}{25} \mathrm{R}_{3} \)
\(\rightarrow\left[\begin{array}{cclccc}
1 & 0 & 0 & 1 & -\frac{2}{5} & -\frac{3}{5} \\
0 & 1 & 0 & -\frac{2}{5} & \frac{4}{25} & \frac{11}{25} \\
0 & 0 & 1 & -\frac{3}{5} & \frac{1}{25} & \frac{9}{25}
\end{array}\right]\)
The matrix so obtained is of the form -
\( \rightarrow\left[\mathrm{I}: \mathrm{A}^{-1}\right] \)
Hence inverse of the given matrix-
\(\rightarrow\left[\begin{array}{ccc}
1 & -\frac{2}{5} & -\frac{3}{5} \\
-\frac{2}{5} & \frac{4}{25} & \frac{11}{25} \\
-\frac{3}{5} & \frac{1}{25} & \frac{9}{25}
\end{array}\right]\)
\(\left[\begin{array}{ccc}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]\)
For the inverse of a matrix A to exist,
Determinant of \( \mathrm{A} \neq 0 \)
Here \( |\mathrm{A}|=[(2)\{1 \times 3-1 \times(0)\}-(0)\{3 \times 5-0 \times 0\}+(-1)\{5 \times 1-1 \times \) \( 0\}] \)
\(=[2\{3\}-0\{15\}-1\{5\}]\)
\(=[6-0-5]\)
\(=1\)
So the matrix is invertible.
Now to find the inverse of the matrix,
We know \( \mathrm{AA}^{-1}=\mathrm{I} \)
Let's make augmented matrix-
\( \rightarrow[\mathrm{A}: \mathrm{I}] \)
\(\rightarrow\left[\begin{array}{cccccc}
2 & 0 & -1 & & 1 & 0 & 0 \\
5 & 1 & 0 & \vdots & 0 & 1 & 0 \\
0 & 1 & 3 & & 0 & 0 & 1 \\
\end{array}\right]\)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \frac{1}{2} \mathrm{R}_{1} \)
\( \rightarrow\left[\begin{array}{cccccc}1 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 5 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 3 & 0 & 0 & 1\end{array}\right] \)
Apply row operation- \( \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-5 \mathrm{R}_{1} \)
\(\rightarrow\left[\begin{array}{cccccc}
1 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 1 & \frac{5}{2} & \vdots-\frac{5}{2} & 1 & 0 \\
0 & 0 & 3 & 0 & 0 & 1
\end{array}\right]\)
Apply row operation- \( R_{3} \rightarrow R_{3}-R_{2} \)
\(\rightarrow\left[\begin{array}{cccccc}
1 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 1 & \frac{5}{2} & \vdots-\frac{5}{2} & 1 & 0 \\
0 & 0 & \frac{1}{2} & \frac{5}{2} & -1 & 1
\end{array}\right]\)
Apply row operation- \( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{3} \)
\(\rightarrow\left[\begin{array}{cclccc}
1 & 0 & 0 & 3 & -1 & 1 \\
0 & 1 & \frac{5}{2} & -\frac{5}{2} & 1 & 0 \\
0 & 0 & \frac{1}{2} & \frac{5}{2} & -1 & 1
\end{array}\right]\)
Apply row operation- \( \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-5 \mathrm{R}_{3} \)
\(\rightarrow\left[\begin{array}{cclccc}
1 & 0 & 0 & 3 & -1 & 1 \\
0 & 1 & 0 & -15 & 6 & -5 \\
0 & 0 & \frac{1}{2} & \frac{5}{2} & -1 & 1
\end{array}\right]\)
Apply row operation- \( \mathrm{R}_{3} \rightarrow 2 \mathrm{R}_{3} \)
\(\rightarrow\left[\begin{array}{cccccc}
1 & 0 & 0 & 3 & -1 & 0 \\
0 & 1 & \frac{5}{2} & \vdots-15 & 6 &-5 \\
0 & 0 & 1 & 5 & -2 & 2
\end{array}\right]\)
The matrix so obtained is of the form -
\(\rightarrow\left[\mathrm{I}: \mathrm{A}^{-1}\right]\)
Hence inverse of the given matrix-
\(\rightarrow\left[\begin{array}{ccc}
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{array}\right]\)
A. \( \mathrm{AB}=\mathrm{BA} \) B. \( \mathrm{AB}=\mathrm{BA}=0 \) C. \( \mathrm{AB}=0, \mathrm{BA}=\mathrm{I} \) D. \( \mathrm{AB}=\mathrm{BA}=\mathrm{I} \)
\(\therefore \mathrm{A}-1=\mathrm{B}\ldots(i)\)
Also \(B-1 = A \ldots(ii)\)
From definition of inverse matrix, we know that-
\(\begin{array}{l}
\rightarrow \mathrm{AA}^{-1}=\mathrm{I} \\
\because \mathrm{A}-1=\mathrm{B}\{\text { from eq. (i) }\} \\
\rightarrow \mathrm{AB}=\mathrm{I} \ldots(iii)\end{array}\)
Similarly, \( \mathrm{BB}^{-1}=\mathrm{I} \)
\( \because \mathrm{B}-1=\mathrm{A}\{ \) from eq. (ii) \( \} \)
\( \rightarrow \mathrm{BA}=\mathrm{I} \ldots(iv)\)
So \( \mathrm{AB}=\mathrm{BA}=\mathrm{I} \) {from eq. (iii) and eq. (iv)
Hence option D is the correct answer.