Ex 7.1 Class 12 Maths Ncert Solutions

Ex 7.1 class 12 maths ncert solutions | class 12 maths exercise 7.1 | class 12 maths ncert solutions chapter 7 exercise 7.1 | exercise 7.1 class 12 maths ncert solutions | integrals class 12 ncert solutions

If you are looking for help with ex 7.1 class 12 maths ncert solutions, you’ve come to the right place. Our detailed explanation of class 12 maths exercise 7.1 is designed to make learning easier for students. The class 12 maths ncert solutions chapter 7 exercise 7.1 includes step-by-step answers that are easy to understand. Whether you’re revising or practicing, the exercise 7.1 class 12 maths ncert solutions provide a strong foundation for mastering the topic. These resources are especially helpful for understanding integrals class 12 ncert solutions, a crucial part of the syllabus.

miscellaneous exercise class 12 chapter 5
integrals class 12 ncert solutions || ex 7.1 class 12 maths ncert solutions || exercise 7.1 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.1 || class 12 maths exercise 7.1
Download the Math Ninja App Now

Exercise 7.1

1. Find an anti-derivative (or integral) of the following functions by the method of inspection.
\(\sin 2 x\)
Answer
Method: To find the anti-derivative of a function by inspection
Steps. 1. In this method we look for a function whose derivative is the given function. For Example. if we need to find anti derivative of \( x^{2} \), we know that derivative of \( x^{3} \) is \( 3 x^{2} \). Therefore, the variable terms come out to be the same.
2. After that balance out the coefficients of variables by dividing and multiplying suitable terms. From above example if [we divide \( x^{3} \) by 3 we will get the answer as \( x^{2} \). Hence, we can say that anti derivative of \( x^{2} \) is \( \frac{ x^{3} }{ 3 } \).
Now, similarly, we know that \( \frac{\mathrm{d}(\cos 2 x)}{\mathrm{dx}}=-2 \sin 2 x \)
\(\Rightarrow \sin 2 x=-\frac{1}{2}\cdot \frac{\mathrm{d}(\cos 2 x)}{\mathrm{dx}}\)
\(
=\frac{d}{d x}\left(-\frac{1}{2} \cos 2 x\right)
\)
Therefore, the anti-derivative of \( \sin 2 x \) is \( -\frac{1}{2} \cos 2 x \)
2. Find an anti-derivative (or integral) of the following functions by the method of inspection.
\(\cos 3 x\)
Answer
We know that \( \frac{d(\sin 3 x)}{d x}=3 \cos 3 x \)
\(
\Rightarrow \cos 3 x=\frac{1}{3} \cdot\frac{d(\sin 3 x)}{d x}\)
\(
=\frac{d}{d x}\left(\frac{1}{3} \sin 3 x\right)
\)
Therefore, the anti-derivative of \( \cos 3 x \) is \( \frac{1}{3} \sin 3 x \)
3. Find an anti-derivative (or integral) of the following functions by the method of inspection.
\(e^{2 x}\)
Answer
We know that \( \frac{d\left(e^{2 x}\right)}{d x}=2 e^{2 x} \)
\(
\Rightarrow \mathrm{e}^{2 x}=\frac{1}{2} \cdot \frac{\mathrm{d}\left(\mathrm{e}^{2 x}\right)}{\mathrm{d}x}\)
\(
=\frac{d}{d x}\left(\frac{1}{2} \mathrm{e}^{2 x}\right)
\)
Therefore, the anti-derivative of \( \mathrm{e}^{2 x} \) is \( \frac{1}{2} \mathrm{e}^{2 x} \).
4. Find an anti-derivative (or integral) of the following functions by the method of inspection.
\((a x+b)^{2}\)
Answer
We know that \( \frac{d}{d x}(a x+b)^{3}=3 a(a x+b)^{2} \)
\(
\Rightarrow(ax+\mathrm{b})^{2}=\frac{1}{3 \mathrm{a}} \cdot \frac{\mathrm{d}(ax+\mathrm{b})^{3}}{\mathrm{dx}}\)
\(
=\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{3 \mathrm{a}}(ax+\mathrm{b})^{3}\right)
\)
Therefore, the anti-derivative of \( (ax+\mathrm{b})^{2} \) is \( \frac{1}{3 a}(ax+\mathrm{b})^{3} \).
integrals class 12 ncert solutions || ex 7.1 class 12 maths ncert solutions || exercise 7.1 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.1 || class 12 maths exercise 7.1
Download the Math Ninja App Now
5. Find an anti-derivative (or integral) of the following functions by the method of inspection.
\(\sin 2 x-4 e^{3 x}\)
Answer
We know that
\(
\frac{d}{d x} \cos 2 x=-2 \sin 2 x\)
\(
\Rightarrow-\frac{1}{2} \cdot \frac{d}{d x}(\cos 2 x)=\sin 2 x\)
\(
\Rightarrow \frac{d}{d x}\left(-\frac{1}{2} \cos 2 x\right)=\sin 2 x
\)
Therefore, the anti-derivative of \( \sin 2x \) is \( -\frac{1}{2} \cos 2 x\quad \ldots (1)\)
Also,
\(\frac{d}{d x} e^{3 x}=3 e^{3 x}\)
\(\Rightarrow \frac{4}{3}\cdot \frac{d}{d x} e^{3 x}=3 e^{3 x}\)
Therefore, the anti-derivative of \( 4 \mathrm{e}^{3 x} \) is \( \frac{4}{3} e^{3 x} \quad\ldots (2)\).
From (1) and (2), we get,
\(\frac{d}{d x}\left(-\frac{1}{2} \cos 2 x-\frac{4}{3} e^{3 x}\right)\)
\(=\sin 2 x-4 \mathrm{e}^{3 x}\)
Therefore, the anti-derivative of \( \sin 2 x-4 \ e^{3 x} \) is
\(-\frac{1}{2} \cos 2 x-\frac{4}{3} e^{3 x}\)
6. Find the following integrals.
\(\int\left(4 ~ e^{3 x}+1\right) d x\)
Answer
\(\int\left(4 ~e^{3 x}+1\right) d x=\int e^{3 x} d x+\int 1 d x\)
\(=4\left(\frac{e^{3 x}}{3}\right)+x+C\)
\(=\frac{4}{3} e^{3 x}+x+C\)
7. Find the following integrals.
\(\int x^{2}\left(1-\frac{1}{x^{2}}\right) d x\)
Answer
\(
\int x^{2}\left(1-\frac{1}{x^{2}}\right) d x\)
\(
=\int\left(x^{2}-1\right) d x\)
\(
=\int x^{2} d x-\int 1 d x
\)
\(=\frac{x^{3}}{x}-x+C\)
8. Find the following integrals.
\(\int\left(a x^{2}+b x+c\right) d x\)
Answer
\(\int\left(a x^{2}+b x+c\right) d x\)
\(=a \int x^{2} d x+b \int x d x+c \int 1 d x\)
\(=a\left(\frac{x^{3}}{3}\right)+b\left(\frac{x^{2}}{2}\right)+c x+C\)
\(=\frac{a x^{3}}{3}+\frac{b x^{2}}{2}+c x+C\)
9. Find the following integrals.
\(\int 2 x^{2}+e^{x} d x\)
Answer
\(\int 2 x^{2}+e^{x} d x\)
\(=2 \int x^{2} d x+\int e^{x} 1 d x\)
\(=2\left(\frac{x^{3}}{3}\right)+e^{x}+C\)
\(=\frac{2 x^{3}}{3}+e^{x}+C\)
10. Find the following integrals.
\(\int\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2} d x\)
Answer
\(\int\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^{2} d x\)
\(=\int\left(x+\frac{1}{x}-2\right) d x\)
\(=\int x d x+\int \frac{1}{x} d x-2 \int 1 . d x\)
Now we know that,
\(\int x^{n} d x=\frac{x^{n}+1}{n+1}+c\)
Therefore,
\(=\frac{x^{2}}{2}+\log |x|-2 x+C\)
11. Find the following integrals.
\(\int \frac{x^{3}+5 x^{2}-4}{x^{2}} d x\)
Answer
\(\int \frac{x^{3}+5 x^{2}-4}{x^{2}} d x\)
Separating the terms, we get,
\(=\int\left(x+5-4 x^{-2}\right) d x\)
Applying the formula,
\(\int x^{n} d x=\frac{x^{n}+1}{n+1}+c\)
\(=\int x d x+5 \int 1 . d x-4 \int x^{-2} \cdot d x\)
12. Find the following integrals.
\(\int \frac{x^{3}+3 x+4}{\sqrt{x}} d x\)
Answer
\(\int \frac{x^{3}+3 x+4}{\sqrt{x}} d x\)
Separating the terms, we get,
\(=\int\left(x^{\frac{5}{2}}+3 x^{\frac{1}{2}}+4 x^{-\frac{1}{2}}\right) d x\)
Applying the formula,
\(\int x^{n} d x=\frac{x^{n}+1}{n+1}+c\)
\(=\frac{x^{\frac{7}{2}}}{\frac{7}{2}}+\frac{3\left(x^{\frac{3}{2}}\right)}{\frac{3}{2}}+\frac{4\left(x^{\frac{1}{2}}\right)}{\frac{1}{2}}+C\)
\(=\frac{2}{7} x^{\frac{7}{2}}+2 x^{\frac{3}{2}}+8 x^{\frac{1}{2}}+C\)
\(=\frac{2}{7} x^{\frac{7}{2}}+2 x^{\frac{3}{2}}+8 \sqrt{x}+C\)
13. Find the following integrals.
\(\int \frac{x^{3}-x^{2}+x-1}{x-1} d x\)
Answer
\(\int \frac{x^{3}-x^{2}+x-1}{x-1} d x\)
Now the numerator can be factorized as,
\(x^{3}-x^{2}+x-1=x^{2}(x-1)+1(x-1)\)
\(x^{3}-x^{2}+x-1=\left(x^{2}+1\right)(x-1)\)
Now putting this in given integral we get,
\(\frac{x^{3}-x^{2}+x-1}{x-1}=\frac{\left(x^{2}+1\right)(x-1)}{x-1}=x^{2}+1\)
\(=\int\left(x^{2}+1\right) d x\)
\(=\int x^{2} d x+\int 1 \cdot d x\)
\(=\frac{x^{3}}{3}+x+C\)
14. Find the following integrals.
\(\int(1-x) \sqrt{x} ~d x\)
Answer
\(\int(1-x) \sqrt{x} ~d x\)
\(=\int\left(\sqrt{x}-x^{\frac{3}{2}}\right) d x\)
\(=\int x^{\frac{1}{2}} d x-\int x^{\frac{3}{2}} d x\)
\(=\frac{x^{\frac{3}{2}}}{\frac{3}{2}}-\frac{x^{\frac{5}{2}}}{\frac{5}{2}}+C\)
\(=\frac{2}{3} x^{\frac{3}{2}}-\frac{2}{5} x^{\frac{5}{2}}+C\)
integrals class 12 ncert solutions || ex 7.1 class 12 maths ncert solutions || exercise 7.1 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.1 || class 12 maths exercise 7.1
Download the Math Ninja App Now
15. Find the following integrals.
\(\int \sqrt{x}\left(3 x^{2}+2 x+3\right) d x\)
Answer
\(\int \sqrt{x}\left(3 x^{2}+2 x+3\right) d x\)
\(=\int\left(3 x^{\frac{5}{2}}+2 x^{\frac{3}{2}}+3 x^{\frac{1}{2}}\right) d x\)
\(=3\left(\frac{x^{\frac{7}{2}}}{\frac{7}{2}}\right)+2\left(\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\right)+3\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)+C\)
\(=\frac{6}{7} x^{\frac{7}{2}}+\frac{4}{5} x^{\frac{5}{2}}+2 x^{\frac{3}{2}}+\mathrm{C}\)
16. Find the following integrals.
\(\int\left(2 x-3 \cos x+e^{x}\right) d x\)
Answer
\(\int\left(2 x-3 \cos x+e^{x}\right) d x\)
\(=2 \int x d x-3 \int \cos x d x+\int e^{x} d x\)
\(=\frac{2 x^{2}}{2}-3(\sin x)+e^{x}+C\)
\(=x^{2}-3 \sin x+e^{x}+C\)
17. Find the following integrals.
\(\int\left(2 x^{2}-3 \sin x+5 \sqrt{x}\right) d x\)
Answer
\(\int\left(2 x^{2}-3 \sin x+5 \sqrt{x}\right) d x\)
\(=2 \int x^{2} d x-3 \int \sin d x+5 \int x^{\frac{1}{2}} d x\)
\(=\frac{2 x^{3}}{3}+3 \cos x+5\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)+C\)
\(=\frac{2 x^{3}}{3}+3 \cos x+\frac{10}{3} x^{\frac{3}{2}}+C\)
18. Find the following integrals.
\(\int \sec x(\sec x+\tan x) d x\)
Answer
Formulas Used:
\( \int \sec ^{2} x \mathrm{~d} x=\tan x+\mathrm{c} \) and \( \int \sec x \tan x \mathrm{d}x=\sec x+\mathrm{c} \)
\(\int \sec x(\sec x+\tan x) d x\)
Opening the brackets, we get,
\(=\int\left(\sec ^{2} x \mathrm{~d} x+\sec x \tan x\right) \mathrm{d}x\)
\(=\int \sec ^{2} x \mathrm{~d} x+\int \sec x \tan x \mathrm{d}x\)
\(=\tan x+\sec x+\mathrm{C}\)
integrals class 12 ncert solutions || ex 7.1 class 12 maths ncert solutions || exercise 7.1 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.1 || class 12 maths exercise 7.1
Download the Math Ninja App Now
19. Find the following integrals.
\(\int \frac{\sec ^{2} x}{\operatorname{cosec}^{2} x} d x\)
Answer
\(\int \frac{\sec ^{2} x}{\operatorname{cosec}^{2} x} d x\)
\(=\int \frac{\frac{1}{\cos ^{2} x}}{\frac{1}{\sin ^{2} x}} d x\)
\(=\int \frac{\sin ^{2} x}{\cos ^{2} x} d x\)
\(=\int \tan ^{2} x d x\)
\(=\int\left(\sec ^{2} x-1\right) d x\)
\(=\int \sec ^{2} x d x-\int 1 . d x\)
\(=\tan x-x+C\)
20. Find the following integrals.
\(\int \frac{2-3 \sin x}{\cos ^{2} x} d x\)
Answer
\(\int \frac{2-3 \sin x}{\cos ^{2} x} d x\)
\(=\int\left(\frac{2}{\cos ^{2} x}-\frac{3 \sin x}{\cos ^{2} x}\right) d x\)
\(=\int 2 \sec ^{2} x d x-3 \int \tan x \sec x d x\)
\(=2 \tan x-3 \sec x+\mathrm{C}\)
21.The anti-derivative of \( \left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) \) equals
A. \( \frac{1}{3} x^{\frac{1}{3}}+2 x^{\frac{1}{2}}+C \)
B. \( \frac{2}{3} x^{\frac{2}{3}}+\frac{1}{2} x^{2}+C \).
C. \( \frac{2}{3} x^{\frac{3}{2}}+2 x^{\frac{1}{2}}+C \)
D. \( \frac{3}{2} x^{\frac{3}{2}}+\frac{1}{2} x^{\frac{1}{2}}+C \)
Answer
\(\int\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) d x\)
\(=\int x^{\frac{1}{2}} d x+\int x^{-\frac{1}{2}} d x\)
\(=\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+\frac{x^{\frac{1}{2}}}{\frac{1}{2}}+C\)
\(=\frac{2}{3} x^{\frac{3}{2}}+2 x^{\frac{1}{2}}+C\)
22. If \( \frac{d}{d x} f(x)=4 x^{3}-\frac{3}{x^{4}} \) such that \( \mathrm{f}(2)=0 \). Then \( \mathrm{f}(x) \) is
A. \( x^{4}+\frac{1}{x^{3}}-\frac{129}{8} \) B. \( x^{3}+\frac{1}{x^{4}}+\frac{129}{8} \) C. \( x^{4}+\frac{1}{x^{3}}+\frac{129}{8} \) D. \( x^{3}+\frac{1}{x^{4}}-\frac{129}{8} \)
Answer
It is given that \( \frac{d}{d x} f(x)=4 x^{3}-\frac{3}{x^{4}} \)
\(f(x)=\int 4 x^{3}-\frac{3}{x^{4}} d x\)
\(
\Rightarrow f(x)=4 \int x^{3} d x-3 \int\left(x^{-4}\right) d x\)
\(
\Rightarrow f(x)=4\left(\frac{x^{4}}{4}\right)-3\left(\frac{x^{-3}}{-3}\right)+C\)
\(
\Rightarrow f(x)=x^{4}+\frac{1}{x^{3}}+C
\)
Also, it is given that \( f(2)=0 \)
\(\Rightarrow f(2)=(2)^{4}+\frac{1}{(2)^{3}}+C=0\)
\(\Rightarrow 16+\frac{1}{8}+C=0\)
\(\Rightarrow C=-\left(16+\frac{1}{8}\right)\)
\(\Rightarrow C=-\frac{129}{8}\)
Therefore, \( f(x)=x^{4}+\frac{1}{x^{3}}-\frac{129}{8} \)
integrals class 12 ncert solutions || ex 7.1 class 12 maths ncert solutions || exercise 7.1 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.1 || class 12 maths exercise 7.1
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top