ex 7.2 class 12 maths ncert solutions | class 12 maths exercise 7.2 | class 12 maths ncert solutions chapter 7 exercise 7.2 | exercise 7.2 class 12 maths ncert solutions | integrals class 12 ncert solutions
If you are a Class 12 student searching for help with ex 7.2 class 12 maths ncert solutions, then you’ve come to the right place. Exercise 7.2 from the NCERT book of Class 12 Mathematics deals with the important topic of Integrals. Understanding the concepts in class 12 maths exercise 7.2 is crucial for scoring well in board exams and building a solid base for competitive exams. Our detailed class 12 maths ncert solutions chapter 7 exercise 7.2 are created by experienced teachers, making it easier for students to grasp difficult problems. These exercise 7.2 class 12 maths ncert solutions are written step-by-step, so you can learn how to solve integration problems easily.

class 12 maths exercise 7.2 || ex 7.2 class 12 maths ncert solutions || exercise 7.2 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.2 || integrals class 12 ncert solutions
Exercise 7.2
1. Integrate the functions.
\(\frac{2 x}{1+x^{2}}\)
\(\frac{2 x}{1+x^{2}}\)
Answer
Let \( 1+x^{2}=\mathrm{t} \)
\(\Rightarrow 2 x \mathrm{~d} x=\mathrm{dt}\)
Now, \( \int \frac{2 x}{1+x^{2}} d x=\int \frac{1}{t} d t \)
\(=\log |t|+C\)
\(=\log \left|1+x^{2}\right|+C\)
\(=\log \left(1+x^{2}\right)+C\)
2. Integrate the functions.
\(\frac{(\log x)^{2}}{x}\)
\(\frac{(\log x)^{2}}{x}\)
Answer
Let \( \log |x|=\mathrm{t} \)
\(\Rightarrow \frac{1}{x} d x=d t\)
Now,
\(\Rightarrow \frac{t^{3}}{3}+C\)
\(\Rightarrow \frac{(\log |x|)^{3}}{3}+C\)
class 12 maths exercise 7.2 || ex 7.2 class 12 maths ncert solutions || exercise 7.2 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.2 || integrals class 12 ncert solutions
3. Integrate the functions.
\(\frac{1}{x+x \log x}\)
\(\frac{1}{x+x \log x}\)
Answer
\(\frac{1}{x+x \log x}=\frac{1}{x(1+\log x)}\)
\(\text {let } 1+\log x=\mathrm{t}\)
\(\Rightarrow \frac{1}{x} d x=d t\)
\(\Rightarrow \int \frac{1}{x(1+\log x)} d x=\int \frac{1}{t} d t\)
\(=\log |\mathrm{t}|+\mathrm{C}\)
\(=\log |1+\log x|+\mathrm{C}\)
4. Integrate the functions.
\(\sin x \sin (\cos x)\)
\(\sin x \sin (\cos x)\)
Answer
Let \( \cos x=\mathrm{t} \)
\(\Rightarrow-\sin x \mathrm{~d} x=\mathrm{dt}\)
\(\Rightarrow \int \sin x \cdot \sin (\cos x) d x=-\int \sin t d t\)
\(=-[-\cos t]+C\)
\(=\cos t+C\)
\(=\cos (\cos x)+C\)
5. Integrate the functions.
\(\sin (a x+b) \cos (a x+b)\)
\(\sin (a x+b) \cos (a x+b)\)
Answer
Let \( \mathrm{I}=\int \sin (a x+b) \cos (a x+b) d x \)
We know that,
\( \sin 2 \mathrm{A}=2 \sin \mathrm{A} \cdot \cos \mathrm{A} \)
Therefore, \( \sin (a x+b) \cos (a x+b) \)
\(= \frac{2 \sin (a x+b) \cos (a x+b)}{2}=\frac{\sin 2(a x+b)}{2} \)
Let \( 2(a x+b)=t \)
\(\Rightarrow 2 a d x=d t\)
\(\Rightarrow \int \frac{\sin 2(a x+b)}{2} d x=\frac{1}{2} \int \frac{\sin t}{2 a} d t\)
\(=\frac{1}{4 a}[-\cos t]+C\)
\(=-\frac{1}{4 a} \cos 2(a x+b)+C\)
6. Integrate the functions.
\(\sqrt{a x+b}\)
\(\sqrt{a x+b}\)
Answer
Let \( a x+b=t \)
\(\Rightarrow a d x=d t\)
\(\Rightarrow d x=\frac{1}{a} d t\)
\(\Rightarrow \int(a+b)^{\frac{1}{2}}=\frac{1}{a} \int t^{\frac{1}{2}} d t\)
\(=\frac{1}{a}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+C\)
\(=\frac{2}{3 a}(a+b)^{\frac{3}{2}}+C\)
7. Integrate the functions.
\(x \sqrt{x+2}\)
\(x \sqrt{x+2}\)
Answer
Let \( (x+2)=t \)
\(\Rightarrow d x=d t\)
\(\Rightarrow \int x \sqrt{x+2} d x=\int(t-2) \sqrt{t} d t\)
\(= \int\left(t^{\frac{3}{2}}-2 t^{\frac{t}{2}}\right) d t\)
\(=\int t^{\frac{3}{2}}-2 \int t^{\frac{t}{2}} d t\)
\(=\frac{t^{\frac{5}{2}}}{\frac{5}{2}}-2\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+C\)
\(=\frac{2}{5} t^{\frac{5}{2}}-\frac{4}{3} t^{\frac{3}{2}}+C\)
\(=\frac{2}{5}(x+2)^{\frac{5}{2}}-4(x+2)^{\frac{3}{2}}+C\)
8. Integrate the functions.
\(x \sqrt{x+2 x^{2}}\)
\(x \sqrt{x+2 x^{2}}\)
Answer
Let \( 1+2 x^{2}=t \)
\(\Rightarrow 4 x \mathrm{~d} x=\mathrm{dt}\)
\(\Rightarrow\int x \sqrt{x+2 x^{2}} d x=\int \frac{\sqrt{t} d t}{4}\)
\(=\frac{1}{4} \int t^{\frac{1}{2}} d t\)
\(
=\frac{1}{4}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+C\)
\(=\frac{1}{6}\left(1+2 x^{2}\right)^{\frac{3}{2}}+C\)
9. Integrate the functions.
\((4 x+2) \sqrt{x^{2}+x+1}\)
\((4 x+2) \sqrt{x^{2}+x+1}\)
Answer
Let \( x^{2}+x+1=\mathrm{t} \)
Differentiating both sides, we get,
\(\Rightarrow(2 x+1) \mathrm{d}x=\mathrm{tdt}\)
Therefore,
\(\Rightarrow \int(4 x+2) \sqrt{x^{2}+x+1} d x=\int 2 \sqrt{t} d t\)
\(=2 \int \sqrt{t} d t\)
\(=2\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+C\)
\(=\frac{4}{3}\left(x^{2}+x+1\right)^{\frac{3}{2}}+C\)
10. Integrate the functions.
\(\frac{1}{x-\sqrt{x}}\)
\(\frac{1}{x-\sqrt{x}}\)
Answer
\(\frac{1}{x-\sqrt{x}}=\frac{1}{\sqrt{x}(\sqrt{x}-1)}\)
Now, Let \( (\sqrt{x}-1)=t \)
\(\Rightarrow\frac{1}{2 \sqrt{x}} d x=d t\)
\(\Rightarrow\int \frac{1}{2 \sqrt{x}} d x=d t\)
\(\Rightarrow\int \frac{1}{\sqrt{x}(\sqrt{x}-1)} d x=\int \frac{2}{t} d t\)
\(=2 \log |t|+C\)
\(=2 \log |\sqrt{x}-1|+\mathrm{C}\)
11. Integrate the functions.
\(\frac{x}{\sqrt{x+4}}, x > 0\)
\(\frac{x}{\sqrt{x+4}}, x > 0\)
Answer
\(\text { Let } x+4=\mathrm{t}\)
\(\Rightarrow d x=d t\)
\(\Rightarrow \int \frac{x}{\sqrt{x+4}} d x=\int \frac{(t-4)}{\sqrt{t}} d t\)
\(=\int\left(\sqrt{t}-\frac{4}{\sqrt{t}}\right) d t\)
\(=\frac{t^{\frac{3}{2}}}{\frac{3}{2}}-4\left(\frac{t^{\frac{1}{2}}}{\frac{1}{2}}\right)+C\)
\(=\frac{2}{3}(t)^{\frac{3}{2}}-8(t)^{\frac{1}{2}}+C\)
\(=\frac{2}{3} t \cdot t^{\frac{1}{2}}-8(t)^{\frac{1}{2}}+C\)
\(=\frac{2}{3} t^{\frac{1}{2}}(t-12)+C\)
\(=\frac{2}{3}(x+4)^{\frac{1}{2}}(x+4-12)+C\)
\(=\frac{2}{3} \sqrt{x+4}(x-8)+C\)
12. Integrate the functions.
\(\left(x^{3}-1\right)^{\frac{1}{x}} x^{5}\)
\(\left(x^{3}-1\right)^{\frac{1}{x}} x^{5}\)
Answer
Let \( x^{3}-1=\mathrm{t} \)
\(\Rightarrow 3 x^{2} \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int\left(x^{3}-1\right)^{\frac{1}{3}} x^{5} d x=\int\left(x^{3}-1\right)^{\frac{1}{3}} x^{3} \cdot x^{2} d x\)
\(=\int t^{\frac{1}{3}}(t+1) \frac{d t}{3}\)
\(=\frac{1}{3} \int\left(t^{\frac{4}{3}}+t^{\frac{1}{3}}\right) d t\)
\(=\frac{1}{3}\left[\frac{t^{\frac{7}{3}}}{\frac{7}{3}}+\frac{t^{\frac{4}{3}}}{\frac{4}{3}}\right]+C\)
\(=\frac{1}{3}\left[\frac{3}{7} t^{\frac{7}{3}}+\frac{3}{4} t^{\frac{4}{3}}\right]+C\)
\(=\frac{1}{7}\left(x^{3}-1\right)^{\frac{7}{3}}+\frac{1}{4}\left(x^{3}-1\right)^{\frac{4}{3}}+C\)
13. Integrate the functions.
\(\frac{x^{2}}{\left(2+3 x^{3}\right)^{3}}\)
\(\frac{x^{2}}{\left(2+3 x^{3}\right)^{3}}\)
Answer
Let \( 2+3 x^{3}=1 \)
\(\Rightarrow 9 x^{2} \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{x^{2}}{\left(2+3 x^{3}\right)^{3}} d x=\frac{1}{9} \int \frac{d t}{t^{3}}\)
\(=\frac{1}{9}\left[\frac{t^{-2}}{-2}\right]+C\)
\(=\frac{-1}{18}\left(\frac{1}{t^{2}}\right)+C\)
\(=\frac{-1}{18\left(2+3 x^{3}\right)^{2}}+C\)
14. Integrate the functions.
\(\frac{1}{x(\log x)^{m}}, x > 0, m \neq 1\)
\(\frac{1}{x(\log x)^{m}}, x > 0, m \neq 1\)
Answer
Let \( \log x=t \)
\(=\frac{1}{x} d x=d t\)
\(=\int \frac{1}{x(\log x)^{m}} d x=\int \frac{d t}{t^{m}}\)
\(=\left(\frac{t^{-m+1}}{1-m}\right)+C\)
\(=\frac{(\log x)^{1-m}}{(1-m)}+C\)
15. Integrate the functions.
\(\frac{x}{9-4 x^{2}}\)
\(\frac{x}{9-4 x^{2}}\)
Answer
Let \( 9-4 x^{2}=\mathrm{t} \)
\(=-8 x\mathrm{d}x=\mathrm{dt}\)
\(= \int \frac{x}{9-4 x^{2}} d x\)
\(=\frac{-1}{8} \int \frac{1}{t} d t\)
\(=\frac{-1}{8} \log |t|+\mathrm{C}\)
\(=\frac{-1}{8} \log \left|9-4 x^{2}\right|+C\)
16. Integrate the functions.
\(e^{2 x+3}\)
\(e^{2 x+3}\)
Answer
Let \( 2 x+3=\mathrm{t} \)
\(= 2 d x=d t\)
\(=\int e^{2 x+3} d x=\frac{1}{2} \int e^{t} d t\)
\(=\frac{1}{2} e^{t}+C\)
\(=\frac{1}{2} e^{2 x+3}+C\)
17. Integrate the functions.
\(\frac{x}{e^{x^{2}}}\)
\(\frac{x}{e^{x^{2}}}\)
Answer
Let \( x^{2}=\mathrm{t} \)
\( 2 x\mathrm{d}x=\mathrm{dt}\)
\(=\int \frac{x}{e^{x^{2}}} d x\)
\(=\frac{1}{2} \int \frac{1}{e^{t}} d t\)
\(=\frac{1}{2} \int e^{-t} d t\)
\(=\frac{1}{2}\left(\frac{e^{-1}}{-1}\right)+C\)
\(=\frac{-1}{2} e^{-x^{2}}+C\)
\(=\frac{-1}{2 e^{x^{2}}}+C\)
18. Integrate the functions.
\(\frac{\mathrm{e}^{\tan ^{-1} x}}{1+x^{2}}\)
\(\frac{\mathrm{e}^{\tan ^{-1} x}}{1+x^{2}}\)
Answer
\(\text {let } \tan -1 x=\mathrm{t}\)
\( \frac{1}{1+x^{2}} d x=d t\)
\(=\int \frac{\mathrm{e}^{\tan ^{-1} }x}{1+x^{2}} d x=\int e^{t} d t\)
\(=e^{t}+C\)
\(=\mathrm{e}^{\tan ^{-1}}+C\)
class 12 maths exercise 7.2 || ex 7.2 class 12 maths ncert solutions || exercise 7.2 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.2 || integrals class 12 ncert solutions
19. Integrate the functions.
\( \frac{e^{2 x}-1}{e^{2 x}+1} \)
\( \frac{e^{2 x}-1}{e^{2 x}+1} \)
Answer
We have,
\(\frac{e^{2 x}-1}{e^{2 x}+1}\)
Dividing numerator and denominator by ex, we get,
\(\frac{\frac{e^{2 x}-1}{e}}{\frac{e^{2 x}+1}{e}}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\)
Let \( \mathrm{e}^{x}+\mathrm{e}^{-x}=\mathrm{t} \)
Differentiating both sides, we get,
\(\left(e^{x}-\mathrm{e}^{-x}\right) \mathrm{d}x=\mathrm{dt}\)
Now the integral becomes,
\(=\int \frac{d t}{t}\)
\(=\log |t|+C\)
\(=\log \left|e^{x}+e^{-x}\right|+C\)
20. Integrate the functions.
\(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\)
\(\frac{e^{2 x}-e^{-2 x}}{e^{2 x}+e^{-2 x}}\)
Answer
Let \( e^{2 x}+e^{-2 x}=t \)
\(\Rightarrow\left(2 e^{2 x}-2 e^{-2 x}\right) d x=d t\)
\(\Rightarrow2\left(e^{2 x}-e^{-2 x}\right) d x=d t\)
\(=\int \frac{e^{2 x} \pm}{e^{2 x}+e^{-2 x}} d x\)
\(=\int \frac{d t}{2 t}\)
\(=\frac{1}{2} \int \frac{d t}{2 t}\)
\(=\frac{1}{2} \log |t|+\mathrm{C}\)
\(=\frac{1}{2} \log \left|e^{2 x}+e^{-2 x}\right|+\mathrm{C}\)
21. Integrate the functions.
\(\tan ^{2}(2 x-3)\)
\(\tan ^{2}(2 x-3)\)
Answer
\(\tan ^{2}(2 x-3)=\sec ^{2}(2 x-3)-1\)
Let \( 2 x-3=\mathrm{t} \)
\(\Rightarrow 2 \mathrm{d}x=\mathrm{dt}\)
\(=\int \tan ^{2}(2 x-3) d x\)
\(=\int\left[\sec ^{2}(2 x-3)-1\right] d x\)
\(=\frac{1}{2} \int\left(\sec ^{2} t\right) d t-\int 1 . d t\)
\(=\frac{1}{2} \int \sec ^{2} t d t-\int 1 . d t\)
\(=\frac{ 1 }{ 2 } \tan \mathrm{t}-\mathrm{t}+\mathrm{C} \)
\(= \frac{ 1 }{ 2 } \tan (2 x-3)-(2 x-3)+\mathrm{C}\)
22. Integrate the functions.
\(\sec ^{2}(7-4 x)\)
\(\sec ^{2}(7-4 x)\)
Answer
Let \( 7-4 x=\mathrm{t} \)
\(\Rightarrow-4 \mathrm{d}x=\mathrm{dt}\)
\(=\int \sec ^{2}(7-4 x) d x\)
\(=\frac{-1}{4} \int \sec ^{2} t d t\)
\(=\frac{-1}{4}(\tan t)+C\)
\(=\frac{-1}{4} \tan (7-4 x)+C\)
23. Integrate the functions.
\(\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}\)
\(\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}\)
Answer
let \( \sin ^{-1} x=\mathrm{t} \)
\(\Rightarrow \frac{1}{\sqrt{1-x^{2}}} d x=d t\)
\(\Rightarrow \int \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} d x=\int t d t\)
\(=\frac{t^{2}}{2}+C\)
\(=\frac{\left(\sin ^{-1}\right)^{2}}{2}+C\)
24. Integrate the functions.
\(\frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x}\)
\(\frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x}\)
Answer
\(\frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x}=\frac{2 \cos x-3 \sin x}{2(3 \cos x+2 \sin x)}\)
\(\text {let } 3 \cos x+2 \sin x=\mathrm{t}\)
\((-3 \sin x+2 \cos x) \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{2 \cos x-3 \sin x}{6 \cos x+4 \sin x} d x=\int \frac{d t}{2 t}\)
\(=\frac{1}{2} \int \frac{1}{t} d t\)
\(=\frac{1}{2} \log |t|+\mathrm{C}\)
\(=\frac{1}{2} \log |2 \sin x+3 \cos x|+\mathrm{C}\)
25. Integrate the functions.
\(\frac{1}{\cos ^{2} x(1-\tan x)^{2}}\)
\(\frac{1}{\cos ^{2} x(1-\tan x)^{2}}\)
Answer
\(\frac{1}{\cos ^{2} x(1-\tan x)^{2}}=\frac{\sec ^{2} x}{(1-\tan x)^{2}}\)
Let \( (1-\tan x)=\mathrm{t} \)
\(\Rightarrow-\sec ^{2}x \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \int \frac{\sec ^{2} x}{(1-\tan x)^{2}} d x=\int \frac{-d t}{t}=-\int t^{-2} d t\)
\(=\frac{1}{t}+C\)
\(=\frac{1}{(1-\tan x)}+C\)
26. Integrate the functions.
\(\frac{\cos \sqrt{x}}{\sqrt{x}}\)
\(\frac{\cos \sqrt{x}}{\sqrt{x}}\)
Answer
Let \( \sqrt{x}=t \)
\(\Rightarrow=\frac{1}{2 \sqrt{x}} d x=d t\)
\(=\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x\)
\(=2 \int \cos t d t\)
\(=2 \sin t+C\)
\(=2 \sin +C\)
27. Integrate the functions.
\(\sqrt{\sin 2 x} \cos 2 x\)
\(\sqrt{\sin 2 x} \cos 2 x\)
Answer
Let \( \sin 2 x=\mathrm{t} \)
\(\Rightarrow 2 \cos 2x \mathrm{d}x=\mathrm{dt}\)
\(=\int \sqrt{\sin 2 x} \cos 2 x d x\)
\(=\frac{1}{2} \int \sqrt{t} d t\)
\(=\frac{1}{2}\left(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\right)+C\)
\(=\frac{1}{3}(\sin 2 x)^{\frac{3}{2}}+C\)
28. Integrate the functions.
\(\frac{\cos x}{\sqrt{1+\sin x}}\)
\(\frac{\cos x}{\sqrt{1+\sin x}}\)
Answer
Let \( 1+\sin x=\mathrm{t} \)
\(\Rightarrow \cos x\mathrm{d}x=\mathrm{dt}\)
\(=\int \frac{\cos x}{\sqrt{1+\sin x}} d x\)
\(=\frac{1}{2} \int \frac{d t}{\sqrt{t}}\)
\(=\frac{t^{\frac{1}{2}}}{\frac{1}{2}}+C\)
\(=2 \sqrt{t}+C\)
\(=2 \sqrt{1+\sin x}+C\)
class 12 maths exercise 7.2 || ex 7.2 class 12 maths ncert solutions || exercise 7.2 class 12 maths ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.2 || integrals class 12 ncert solutions
29. Integrate the functions.
\(\cot x \log \sin x\)
\(\cot x \log \sin x\)
Answer
Let \( \log \sin x=\mathrm{t} \)
\(\Rightarrow\frac{1}{\sin x} \cdot \cos x d x=d t\)
\(\Rightarrow \cot x d x=d t\)
\(\Rightarrow\int \cot x \log \sin x d x=\int t d t\)
\(=\frac{t^{2}}{2}+C\)
\(=\frac{1}{2}(\log \sin x)^{2}+C\)
30. Integrate the functions.
\(\frac{\sin x}{1+\cos x}\)
\(\frac{\sin x}{1+\cos x}\)
Answer
Let \( 1+\cos x=\mathrm{t} \)
\(\Rightarrow-\sin x\mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow\int \frac{\sin x}{1+\cos x}=\int-\frac{d t}{t}\)
\(=-\log |t|+C\)
\(=-\log |1+\cos x|+\mathrm{C}\)
31. Integrate the functions.
\(\frac{\sin x}{(1+\cos x)^{2}}\)
\(\frac{\sin x}{(1+\cos x)^{2}}\)
Answer
Let \( 1+\cos x=\mathrm{t} \)
\(\Rightarrow-\sin x\mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow\int \frac{\sin x}{(1+\cos x)^{2}}=\int-\frac{d t}{t^{2}}\)
\(=-\int t^{-2} d t\)
\(=\frac{1}{t}+C\)
\(=\frac{1}{1+\cos x}+C\)
32. Integrate the functions.
\(\frac{1}{1+\cot x}\)
\(\frac{1}{1+\cot x}\)
Answer
Let \( \mathrm{I}=\int \frac{1}{1+\cot x} d x \)
\(=\int \frac{1}{1+\frac{\cos x}{\sin x}} d x\)
\(=\int \frac{\sin x}{\sin x+\cos x} d x\)
\(=\frac{1}{2} \int \frac{2 \sin x}{\sin x+\cos x} d x\)
\(=\frac{1}{2} \int \frac{(\sin x+\cos x)+(\sin x-\cos x)}{\sin x+\cos x} d x\)
\(=\frac{1}{2} x+\frac{1}{2} \int \frac{(\sin x-\cos x)}{\sin x+\cos x} d x\)
Let \( \sin x+\cos x=\mathrm{t} \)
\(\Rightarrow(\cos x-\sin x) \mathrm{d}x=\mathrm{dt}\)
Therefore, \( \mathrm{I}=\frac{x}{2}+\frac{1}{2} \int \frac{-d t}{t} \)
\(=\frac{x}{2}-\frac{1}{2} \log |t|+C\)
\(=\frac{x}{2}-\frac{1}{2} \log |\sin x+\cos x|+C\)
33. Integrate the functions.
\(\frac{1}{1-\tan x}\)
\(\frac{1}{1-\tan x}\)
Answer
Let \( \mathrm{I}= \)
\(\Rightarrow \int \frac{1}{1-\tan x} d x\)
\(\Rightarrow\int \frac{1}{1-\frac{\sin x}{\cos x}} d x\)
\(\Rightarrow\int \frac{\cos x}{\cos x-\sin x} d x\)
\(\Rightarrow\frac{1}{2} \int \frac{(\cos x-\sin x)+(\cos x+\sin x)}{\cos x-\sin x} d x\)
\(\Rightarrow\frac{1}{2} \int 1 \cdot d x+\frac{1}{2} \int \frac{(\cos x+\sin x)}{\cos x-\sin x} d x\)
\(\Rightarrow\frac{1}{2} x+\frac{1}{2} \int \frac{(\cos x+\sin x)}{\cos x-\sin x} d x\)
Let \( \cos x-\sin x=\mathrm{t} \)
\(\Rightarrow(-\sin x-\cos x) d x=d t\)
Therefore, \( \mathrm{I}=\frac{x}{2}+\frac{1}{2} \int \frac{-d t}{t} \)
\(\Rightarrow\frac{x}{2}-\frac{1}{2} \log |t|+C\)
\(\Rightarrow\frac{x}{2}-\frac{1}{2} \log |\cos x-\sin x|+C\)
34. Integrate the functions.
\(\frac{\sqrt{\tan x}}{\sin x \cos x}\)
\(\frac{\sqrt{\tan x}}{\sin x \cos x}\)
Answer
Let \( \mathrm{I}=\int \frac{\sqrt{\tan x}}{\sin x \cos x} \)
\( \Rightarrow\int \frac{\sqrt{\tan x} \cdot \cos x}{\sin x \cos x \cdot \cos x} d x \)
\( \Rightarrow\int \frac{\sqrt{\tan x}}{\tan x \cos ^{2} x} d x \)
\( \Rightarrow\int \frac{\sec ^{2} x d x}{\sqrt{\tan x}} d x \)
Let \( \tan x=\mathrm{t} \)
\(\Rightarrow \sec ^{2} x \mathrm{d}x=\mathrm{dt}\)
\(\Rightarrow \mathrm{I}=\int \frac{d t}{\sqrt{t}}\)
\(=2 \sqrt{t}+C\)
\(=2 \sqrt{\tan x}+C\)
35. Integrate the functions.
\(\frac{(1+\log x)^{2}}{x}\)
\(\frac{(1+\log x)^{2}}{x}\)
Answer
let \( 1+\log x=\mathrm{t} \)
\(\Rightarrow \frac{1}{x} d x=d t\)
\(\Rightarrow\int \frac{(1+\log x)^{2}}{x}=\int t^{2} d t\)
\(\Rightarrow\frac{t^{3}}{3}+C\)
\(\Rightarrow\int \frac{(1+\log x)^{3}}{3}+C\)
36. Integrate the functions.
\(\frac{(x+1)(x+\log x)^{2}}{x}\)
\(\frac{(x+1)(x+\log x)^{2}}{x}\)
Answer
\(\frac{(x+1)(x+\log x)^{2}}{x}\)
\(=\left(\frac{x+1}{x}\right)(x+\log x)^{2}\)
\(=\left(1+\frac{1}{x}\right)(x+\log x)^{2}\)
Let \( (x+\log x)=\mathrm{t} \)
\(\Rightarrow\left(1+\frac{1}{x}\right) d x=d t\)
\(\Rightarrow\int\left(1+\frac{1}{x}\right)(x+\log x)^{2} d x=\int t^{2} d t\)
\(\Rightarrow\frac{t^{3}}{3}+C\)
\(\Rightarrow\frac{1}{3}(1+\log x)^{3}+C\)
37. Integrate the functions.
\(\frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}}\)
\(\frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}}\)
Answer
Let \( x^{4}=\mathrm{t} \)
\( 4 x^{3} \mathrm{d}x=\mathrm{dt}\)
\(=\int \frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}} d x\)
\(=\frac{1}{4} \int \frac{\sin \left(\tan ^{-1} t\right)}{1+t^{2}} d t\)
Let \( \tan -1=\mathrm{v} \)
\( \frac{1}{1+t^{2}} d t=d v\)
Thus, we get,
\(=\int \frac{x^{3} \sin \left(\tan ^{-1} x^{4}\right)}{1+x^{8}} d x\)
\(=\frac{1}{4} \int \sin v d v\)
\(=\frac{1}{4}(-\cos v)+C\)
\(=\frac{-1}{4} \cos \left(\tan ^{-1} t\right)+C\)
\(=\frac{-1}{4} \cos \left(\tan ^{-1} x^{4}\right)+C\)
38. Choose the correct answer: \(\int \frac{10 x^{9}+10^{x} \log _{e} 10 d x}{x^{10}+10^{x}} \text { equal } s\)
A. \( 10^{x}-x^{10}+\mathrm{C} \)
B. \( 10^{x}+x^{10}+\mathrm{C} \)
C. \( \left(10^{x}-x^{10}\right)-1+C \)
D. \( \log \left(10^{x}+x^{10}\right)+C \)
A. \( 10^{x}-x^{10}+\mathrm{C} \)
B. \( 10^{x}+x^{10}+\mathrm{C} \)
C. \( \left(10^{x}-x^{10}\right)-1+C \)
D. \( \log \left(10^{x}+x^{10}\right)+C \)
Answer
Let \( x^{10}+10^{x}=\mathrm{t} \)
\(\left(10 x^{9}+10^{x} \log _{e} 10\right) d x=d t\)
\(=\int \frac{10 x^{9}+10^{x} \log _{e} 10 d x}{x^{10}+10^{x}} d x=\int \frac{d t}{t}\)
\(=\log \mathrm{t}+\mathrm{C}\)
\(=\log \left(x^{10}+10^{x}\right)+\mathrm{C}\)
39. \( \int \frac{d x}{\sin ^{2} x \cos ^{2} x} \) equals
A. \( \tan x+\cot x+C \)
B. \( \tan x-\cot x+C \)
C. \( \tan x \cot x+C\)
D . \( \tan x-\cot 2 x+C \)
A. \( \tan x+\cot x+C \)
B. \( \tan x-\cot x+C \)
C. \( \tan x \cot x+C\)
D . \( \tan x-\cot 2 x+C \)
Answer
Let \( \mathrm{I}=\int \frac{d x}{\sin ^{2} x \cos ^{2} x}=\int \frac{1}{\sin ^{2} x \cos ^{2} x} d x \)
\(=\int \frac{\sin ^{2} x+\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x\)
\(=\int \frac{\sin ^{2} x}{\sin ^{2} x \cos ^{2} x} d x+\int \frac{\cos ^{2} x}{\sin ^{2} x \cos ^{2} x} d x\)
\(=\int \sec ^{2} x d x+\int \operatorname{cosec}^{2} x d x\)
\(=\tan x+\cot x+\mathrm{C}\)