Class 11 maths ncert solutions trigonometry miscellaneous exercise | class 11 maths ch 3 miscellaneous exercise solutions | class 11 maths chapter 3 miscellaneous exercise | class 11 maths Trigonometric | ncert solution for class 11 maths chapter 3 | ncert exemplar class 11 maths
Looking for Class 11 Maths NCERT Solutions for Trigonometry Miscellaneous Exercise? You’ve come to the right place! This section provides complete and step-by-step solutions for all the questions from the Miscellaneous Exercise of Chapter 3 – Trigonometric Functions. These solutions are crafted as per the latest NCERT guidelines and cover a mix of concepts like trigonometric identities, angle conversions, function values, and general solutions of equations. Whether you’re working through the Class 11 Maths Ch 3 Miscellaneous Exercise solutions or practicing from the NCERT Exemplar Class 11 Maths, these answers will help reinforce your understanding of Class 11 Maths Trigonometric concepts. View or download the full NCERT Solution for Class 11 Maths Chapter 3 and enhance your problem-solving skills today!

ncert solution for class 11 maths chapter 3 || ncert exemplar class 11 maths || class 11 maths ncert solutions trigonometry miscellaneous exercise || class 11 maths Trigonometric || class 11 maths ch 3 miscellaneous exercise solutions || class 11 maths chapter 3 miscellaneous exercise
Miscellaneous Exercise
\(=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}\)
\(=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \left(\frac{\frac{3 \pi}{13}+\frac{5 \pi}{13}}{2}\right) \cos \left(\frac{\frac{3 \pi}{13}-\frac{5 \pi}{13}}{2}\right)\)
\(=\left[\cos x+\cos y=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x+y}{2}\right)\right]\)
\(=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \left(\frac{-\pi}{13}\right)\)
\(=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \frac{\pi}{13}\)
\(=2 \cos \frac{\pi}{13}\left[\cos \frac{9 \pi}{13}+\cos \frac{4 \pi}{13}\right]\)
\(=2 \cos \frac{\pi}{13}\left[2 \cos \left(\frac{\frac{9 \pi}{13}+\frac{4 \pi}{2}}{2}\right) \cos \left(\frac{\frac{9 \pi}{13}-\frac{4 \pi}{23}}{2}\right)\right]\)
\(=2 \cos \frac{\pi}{13}\left[2 \cos \frac{\pi}{2} \cos \frac{5 \pi}{26}\right]\)
\(=2 \cos \times \frac{\pi}{13} \times 2 \times 0 \times \cos \frac{5 \pi}{26}\)
\(=0\)
Hence, L.H.S \( = \) R.H.S\(\ldots\)Proved
ncert solution for class 11 maths chapter 3 || ncert exemplar class 11 maths || class 11 maths ncert solutions trigonometry miscellaneous exercise || class 11 maths Trigonometric || class 11 maths ch 3 miscellaneous exercise solutions || class 11 maths chapter 3 miscellaneous exercise
\(=(\sin 3 x+\sin x) \sin x+(\cos 3 x-\cos x) \cos x\)
\(=\sin 3 x \sin x+\sin ^{2} x+\cos 3 x \cos x-\cos ^{2} x\)
\(=\cos 3 x \cos x+\sin 3 x \sin x-\left(\cos ^{2} x-\sin ^{2} x\right)\)
\(=\cos (3 x-x)-\cos 2 x[\cos (\mathrm{A}-\mathrm{B})=\cos \mathrm{A} \operatorname{Cos} \mathrm{B}+\sin A \sin B] \)
\(=\cos 2 x-\cos 2 x\)
\(=0\)
\(=\text { R.H.S. }\)
\((\cos x+\cos y)^{2}+(\sin x-\sin y)^{2}=4 \cos ^{2}\left(\frac{x+y}{2}\right)\)
\(=\cos ^{2} x+\cos ^{2} y+2 \cos x \cos y+\sin ^{2} x+\sin ^{2} y-2 \sin x \sin y\)
\(=\left(\cos ^{2} x+\sin ^{2} x\right)+\left(\cos ^{2} y+\sin ^{2} y\right)+2(\cos x \cos y-\sin x \sin y)\)
\(=1+1+2 \cos (x+y)[\cos (\mathrm{A}+\mathrm{B})=(\cos \mathrm{A} \cos \mathrm{B}-\sin \mathrm{A} \sin \mathrm{B}]\)
\(=2+2 \cos (x+y)\)
\(=2[1+\cos (x+y)]\)
\(=2\left[1+2 \cos ^{2}\left(\frac{x+y}{2}\right)-1\right]\left[\cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1\right]\)
\(=4 \cos ^{2}\left(\frac{x+y}{2}\right)\)
\(=\text { R.H.S }\)
Hence, L.H.S \( = \) R.H.S\(\ldots\)Proved
\((\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}=4 \sin ^{2}\left(\frac{x-y}{2}\right)\)
\(=\cos ^{2} x+\cos ^{2} y-2 \cos x \cos y+\sin ^{2} x+\sin ^{2} y-2 \sin x \sin y\)
\(=\left(\cos ^{2} x+\sin ^{2} x\right)+\left(\cos ^{2} y+\sin ^{2} y\right)-2(\cos x \cos y+\sin x \sin y)\)
\(=1+1-2 \cos (x-y)[\cos (\mathrm{A}-\mathrm{B})=(\cos \mathrm{A} \cos \mathrm{B}+\sin \mathrm{A} \sin \mathrm{B}]\)
\(=2[1+\cos (x+y)]\)
\(=2\left[1-\left\{1-2 \sin ^{2}\left(\frac{x-y}{2}\right)\right\}\right]\left[\cos 2 \mathrm{~A}=1-\sin ^{2} \mathrm{~A}\right]\)
\(=4 \sin ^{2}\left(\frac{x-y}{2}\right)\)
\(=\text { R.H.S }\)
Hence, L.H.S \( = \) R.H.S...Proved
ncert solution for class 11 maths chapter 3 || ncert exemplar class 11 maths || class 11 maths ncert solutions trigonometry miscellaneous exercise || class 11 maths Trigonometric || class 11 maths ch 3 miscellaneous exercise solutions || class 11 maths chapter 3 miscellaneous exercise
\(=(\sin x+\sin 5 x)+(\sin 3 x+\sin 7 x)\)
\(=2 \sin \left(\frac{x+5 x}{2}\right) \cdot \cos \left(\frac{x-5 x}{2}\right)+2 \sin \left(\frac{3 x+7 x}{2}\right) \cos \left(\frac{3 x-7 x}{2}\right)\)
\(=2 \sin 3 x \cos (-2 x)+2 \sin 5 x \cos (-2 x)\)
\(=2 \sin 3 x \cos 2 x+2 \sin 5 x \cos 2 x\)
\(=2 \cos 2 x[\sin 3 x+\sin 5 x]\)
\(=2 \cos 2 x\left[2 \sin \left(\frac{3 x+5 x}{2}\right) \cdot \cos \left(\frac{3 x-5 x}{2}\right)\right]\)
\(=2 \cos 2 x[2 \sin 4 x \cdot \cos (-x)]\)
\(=4 \cos 2 x \sin 4 x \cos x\)
\(=\text { R.H.S }\)
Hence, L.H.S = R.H.S...Proved
\( \sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{A+B}{2}\right) . \operatorname{Cos}\left(\frac{A-B}{2}\right), \cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{A+B}{2}\right) \). \( \operatorname{Cos}\left(\frac{A-B}{2}\right) \)
L.H.S \( =\frac{(\sin 7 x+\sin 5 x)+(\sin \theta x+\sin n x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\sin 3 x)} \)
\( =\frac{\left[2 \sin \left(\frac{7 x+5 x}{2}\right) \cdot \cos \left(\frac{7 x-5 x}{2}\right)\right]+\left[2 \sin \left(\frac{9 x+3 x}{2}\right) \cdot \cos \left(\frac{9 x-3 x}{2}\right)\right]}{\left[2 \cos \left(\frac{7 x+5 x}{2}\right) \cdot \cos \left(\frac{7 x-5 x}{2}\right)\right]+\left[2 \cos \left(\frac{9 x+3 x}{2}\right) \cdot \cos \left(\frac{9 x-3 x}{2}\right)\right]} \)
\( =\frac{[2 \sin 6 x \cdot \cos x]+[2 \sin \operatorname{n} 6 x \cdot \cos 3 x]}{[2 \cos 6 x \cdot \cos x]+[2 \cos 6 x \cdot \cos 3 x]} \)
\( =\frac{2 \sin 6 x[\cos x+\cos 3 x]}{2 \cos 6 x[\cos x+\cos 3 x]} \)
\( =\tan 6 \mathrm{x} \)
\( = \) R.H.S
Hence, L.H.S = R.H.S...Proved
\(=\text { i.e., } \frac{\pi}{2} < x < \pi\)
\(=\frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2}\)
Therefore, \( \sin \frac{x}{2}, \cos \frac{x}{2} \) and \( \tan \frac{x}{2} \) are lies in first quadrant.
It is given that \( \tan x=-\frac{4}{3} \)
\( \operatorname{Sec}^{2} x=1+\tan ^{2} x=1+\left(-\frac{4}{3}\right)^{2}=1+\frac{16}{9}=\frac{25}{9} \)
\( =\cos ^{2} x=\frac{9}{25} \)
\( =\cos x= \pm \frac{3}{5} \)
As \(x\) is in quadrant II, \( \cos x \) is negative.
\( \cos x=\frac{-3}{5} \)
Now, \( \cos x=2 \cos ^{2} \frac{x}{2}-1 \)
\( =\frac{-3}{5}=2 \cos ^{2} \frac{x}{2}-1 \)
\( =2 \cos ^{2} \frac{x}{2}=1-\frac{3}{5} \)
\( =2 \cos ^{2} \frac{x}{2}=\frac{2}{5} \)
\( =\cos ^{2} \frac{x}{2}=\frac{1}{5} \)
\( =\cos \frac{x}{2}=\frac{1}{\sqrt{5}}\quad [\cos \frac{x}{2} \) is positive \( ] \)
\( =\cos \frac{x}{2}=\frac{\sqrt{5}}{5} \)
\( \operatorname{Sin}^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}=1 \)
\( =\sin ^{2} \frac{x}{2}=1-\frac{1}{5}=\frac{4}{5} \)
\( =\sin ^{2} \frac{x}{2}+\left(\frac{1}{\sqrt{5}}\right)^{2}=1 \)
\( =\sin \frac{x}{2}=\frac{2}{\sqrt{5}}\quad [\sin \frac{x}{2} \) is positive \( ] \)
\( =\sin \frac{x}{2}=\frac{2 \sqrt{5}}{5} \)
\( \tan \frac{x}{2}=\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}=\frac{\left(\frac{2}{\sqrt{5}}\right)}{\left(\frac{1}{\sqrt{5}}\right)}=2 \)
Thus, the respective values of \( \sin \frac{x}{2}, \cos \frac{x}{2} \) and \( \tan \frac{x}{2} \) are \( \frac{2 \sqrt{5}}{5}, \frac{\sqrt{5}}{5} \), and 2 .
\( = \) i.e., \( \pi < x < \frac{3 \pi}{2} \)
\( \Rightarrow \frac{\pi}{2} < \frac{x}{2} < \frac{3 \pi}{4} \)
Therefore, \( \cos \frac{x}{2} \) and \( \tan \frac{x}{2} \) are negative, where \( \sin \frac{x}{2} \) as is positive.
It is given that \( \cos x=-\frac{1}{3} \)
\( \operatorname{Cos} x=1-2 \sin ^{2} \frac{x}{2} \)
\( \Rightarrow \sin ^{2} \frac{x}{2}=\frac{1-\cos x}{2} \)
\( \Rightarrow \sin ^{2} \frac{x}{2}=\frac{1-\left(-\frac{1}{3}\right)}{2}=\frac{\left(1+\frac{1}{3}\right)}{2}=\frac{\frac{4}{3}}{2}=\frac{2}{3} \)
\( \Rightarrow \sin \frac{x}{2}=\frac{\sqrt{2}}{\sqrt{3}}\quad [\sin \frac{x}{2} \) is positive \( ] \)
\( \Rightarrow \sin \frac{x}{2}=\frac{\sqrt{2}}{\sqrt{2}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{6}}{3} \)
Now,
\( \operatorname{Cos} x=2 \cos ^{2} \frac{x}{2}-1 \)
\(\Rightarrow \cos ^{2} \frac{x}{2}=\frac{1+\cos x}{2}=\frac{1+\left(-\frac{1}{3}\right)}{2}=\frac{\left(\frac{3-1}{3}\right)}{2}=\frac{\left(\frac{2}{3}\right)}{2}=\frac{1}{2}\)
\(\Rightarrow \cos ^{2} \frac{x}{2}=-\frac{1}{\sqrt{3}}\quad [\cos \frac{x}{2} \text { is negative }]\)
\(\Rightarrow \cos \frac{x}{2}=-\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{-\sqrt{3}}{3} \tan \frac{x}{2}=\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}=\frac{\left(\frac{\sqrt{2}}{\sqrt{3}}\right)}{\left(\frac{-1}{\sqrt{3}}\right)}=-\sqrt{2}\)
Thus, the respective values of \( \sin \frac{x}{2}, \cos \frac{x}{2} \) and \( \tan \frac{x}{2} \) are \( \frac{\sqrt{6}}{3}, \frac{-\sqrt{3}}{3} \) and \( -\sqrt{2} \).