Ncert solutions class 11 maths complex numbers miscellaneous | class 11 maths ch 5 miscellaneous exercise solutions | class 11 maths chapter 5 miscellaneous exercise | class 11 maths Complex Number and Quadratic Equation | ncert solution for class 11 maths chapter 5 | ncert exemplar class 11 maths
Looking for NCERT Solutions Class 11 Maths Complex Numbers Miscellaneous Exercise? You’re in the right place! This section offers complete, step-by-step solutions for all questions from the Miscellaneous Exercise of Chapter 5 – Complex Numbers and Quadratic Equations. These solutions follow the latest NCERT syllabus and cover key topics like the algebra of complex numbers, modulus and argument, polar forms, and solving quadratic equations with complex roots. Whether you’re revising from the Class 11 Maths Ch 5 Miscellaneous Exercise solutions or practicing problems from the NCERT Exemplar Class 11 Maths, these explanations will help you build a solid conceptual foundation. Download or view the NCERT Solution for Class 11 Maths Chapter 5 and master Complex Numbers and Quadratic Equations with confidence!

ncert solutions class 11 maths complex numbers miscellaneous || class 11 maths ch 5 miscellaneous exercise solutions || ncert exemplar class 11 maths || class 11 maths Complex Number and Quadratic Equation || class 11 maths chapter 5 miscellaneous exercise || ncert solution for class 11 maths chapter 5
Miscellaneous Exercise
\(=\left[i^{4+4+2}+\frac{1}{(i)^{4+2+1}}\right]^{3}\)
\(=\left[\left(i^{4}\right)^{6} \cdot i^{2}+\frac{1}{\left(i^{4}\right)^{6} \cdot i}\right]^{3}\)
\(=\left[i^{2}+\frac{1}{i}\right]^{3}\left[i^{4}=1\right]\)
\(=\left[-1+\frac{1}{i} \times \frac{i}{i}\right]^{3}\left[i^{2}=-1\right]\)
\(=\left[-1+\frac{i}{i^{2}}\right]^{3}\)
\(=[-1-i]^{3}\)
\(=(-1)^{3}[1+i]^{3}\)
\(=-\left[1^{3}+i^{3}+3 \cdot 1 \cdot i(1+i)\right]\)
\(=-\left[1+i^{3}+3 i+3 i^{2}\right]\)
\(=-[-2+2 \mathrm{i}]\)
\(=2-2 \mathrm{i}\)
\( \operatorname{Re}\left(\mathrm{z}_{1} \mathrm{z}_{2}\right)=\operatorname{Re} \mathrm{z}_{1} \operatorname{Re} \mathrm{z}_{2}-\operatorname{Im} \mathrm{z}_{1} \operatorname{IMz_{2}} \)
\( z_{1} \) and \( z_{2} \) are two complex numbers and we have to prove that:
\( \operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Rez}_{1} \operatorname{Rez}_{2}-\operatorname{Im} z_{1} \operatorname{Im} z_{2} \)
For this, firstly let \( z_{1}=x_{1}+i y_{1} \) and \( z_{2}=x_{2}+i y_{2} \)
Thus, \( z_{1} z_{2}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right) \)
\(\begin{array}{l}
=x_{1}\left(x_{2}+\mathrm{iy}_{2}\right)+\mathrm{iy}_{1}\left(x_{2}+\mathrm{iy}_{2}\right) \\
=x_{1} x_{2}+\mathrm{ix}_{1} y_{2}+\mathrm{iy}_{1} x_{2}+\mathrm{i}_{2} y_{1} y_{2} \\
=x_{1} x_{2}+\mathrm{ix}_{2} y_{2}+\mathrm{iy}_{1} x_{2}-y_{1} y_{2}\left(\mathrm{i}_{2}=-1\right) \\
=\left(x_{1} x_{2}-y_{1} y_{2}\right)+\mathrm{i}\left(x_{1} y_{2}+y_{1} x_{2}\right) \\
=\operatorname{Re}\left(z_{1} z_{2}\right)=x_{1} x_{2}-y_{1} y_{2} \\
\therefore \operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Re} \mathrm{Re}_{1} \operatorname{Rez}_{2}-\operatorname{Im} \mathrm{I}_{1} \operatorname{Im} z_{2}
\end{array}\)
Hence, proved
\(=\left[\frac{1+i-2+8 i}{1+i-4 i-4 i^{2}}\right]\left[\frac{3-4 i}{5+i}\right]=\left[\frac{-1+9 i}{5-3 i}\right]\left[\frac{3-4 i}{5+i}\right]\)
\(=\left[\frac{-3+4 i+27 i-36 i^{2}}{25+5 i-15 i-3 i^{2}}\right]=\frac{33+31 i}{28-10 i}=\frac{33+31 i}{2(14-5 i)}\)
\( =\frac{(33+31 i)}{2(14-5 i)} \times \frac{14+5 i}{14+5 i} \) [on multiplying by numerator and denominator by
\( 14-5 i \)
\(=\frac{462+165 i+434 i+155 i^{2}}{2\left[(14)^{2}-(5 i)^{2}\right]}=\frac{307+533 i}{2\left(196-25 i^{2}\right)}\)
\(=\frac{307+599 i}{2(221)}=\frac{307+599 i}{442}=\frac{307}{442}+\frac{599 i}{442}\)
This is the required standard from.
\(=\sqrt{\frac{a-i b}{c-i d} \times \frac{c+i d}{c+i d}}[\text { on multiplying numerator and denominator by }(\mathrm{c}+\mathrm{id})]\)
\(=\sqrt{\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}}\)
\(=(x-i y)^{2}=\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}\)
\(=\mathrm{x}^{2}-\mathrm{y}^{2}-2 \mathrm{ixy}=\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}\)
On comparing real and imaginary parts, we obtain
\(\mathrm{X}_{2}-\mathrm{Y}_{2}=\frac{a c+b d}{c^{2}+d^{2}},-2 x y=\frac{a d-b c}{c^{2}+d^{2}}\)
\(\qquad\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}-4 x^{2} y^{2}\ldots(1)\)
\(\left\{\frac{a c+b d}{c^{2}+d^{2}}\right\}^{2}+\left\{\frac{a d-b c}{c^{2}+d^{2}}\right\}[\text { using }(1)]\)
\(=\frac{a^{2} c^{2}+b^{2} d^{2}+2 a c b d+a^{2} d^{2}+b^{2} c^{2}-2 a d b c}{\left(c^{2}+d^{2}\right)^{2}}\)
\(=\frac{a^{2} c^{2}+b^{2} d^{2}+a^{2} d^{2}+b^{2} c^{2}}{\left(c^{2}+d^{2}\right)^{2}}\)
\(=\frac{a^{2}\left(c^{2}+d^{2}\right)+b^{2}\left(c^{2}+d^{2}\right)}{\left(c^{2}+d^{2}\right)^{2}}\)
\(=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}\)
Hence, prove
5.
\(=\frac{1+7 i}{(2-i)^{2}}=\frac{1+7 i}{4+i^{2}-4 i}=\frac{1+7 i}{4-1-4 i}\)
\(=\frac{1+7 i}{3-4 i} \times \frac{3+4 i}{3+4 i}=\frac{3+4 i+21 i+28 i^{2}}{3^{2}+4^{2}}\)
\(=\frac{3+4 i+21 i-28}{25}=\frac{-25+25 i}{25}\)
\(=-1+i\)
Let \( r \cos \theta=-1 \) and \( r \sin \theta=1 \)
On squaring and adding, we obtain \( r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1 \)
\(=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2\)
\(=r^{2}=2\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]\)
\(=r=\sqrt{2}\)
\( \therefore \sqrt{2} \cos \theta=-1 \) and \( \sqrt{2} \sin \theta=1 \)
\( =\cos \theta=\frac{-1}{\sqrt{2}} \) and \( \sin \theta=\frac{1}{\sqrt{2}} \)
\( \therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4} \)
[As \( \theta \) lies in II quadrant]
\( \therefore \mathrm{z}=\mathrm{r} \cos \theta+i \mathrm{r} \sin \theta \)
\( =\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4}=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right) \)
This is the required polar form.
\(=\frac{1+3 i}{1-2 i} \times \frac{1+2 i}{1+2 i}\)
\(=\frac{1+2 i+3 i-6}{1+4}\)
\(=\frac{-5+5 i}{5}=-1+i\)
Let, \( r \cos \theta=-1 \) and \( r \sin \theta=1 \)
On squaring and adding, we obtain
\(r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+1\)
\(=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2\)
\(=r^{2}=2\left[\cos ^{2} \theta+\sin ^{2} \theta=1\right]\)
\(=r=\sqrt{2}\)
\(\therefore \sqrt{2} \cos \theta=-1 \text { and } \sqrt{2} \sin \theta=1\)
\(=\cos \theta=\frac{-1}{\sqrt{2}} \text { and } \sin \theta=\frac{1}{\sqrt{2}}\)
\( \theta=\pi-\frac{3 \pi}{4}=\frac{3 \pi}{4} \) [As \( \theta \) lies in II quadrant]
\( \therefore \mathrm{z}=\mathrm{r} \cos \theta+i r \sin \theta=\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4}=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right) \)
This is the required polar form.
ncert solutions class 11 maths complex numbers miscellaneous || class 11 maths ch 5 miscellaneous exercise solutions || ncert exemplar class 11 maths || class 11 maths Complex Number and Quadratic Equation || class 11 maths chapter 5 miscellaneous exercise || ncert solution for class 11 maths chapter 5
\(9 x^{2}-12 x+20=0\)
This equation can be rewritten as follows:
\(9 x^{2}-12 x+20=0\)
we have to compare this with \( \mathrm{a}x^2+\mathrm{b}x+\mathrm{c}=0 \) where \( \mathrm{a}=9, \mathrm{~b}=-12 \) and \( \mathrm{c}=20 \)
Thus, the discriminant of the above given equation is:
\(D=b^{2}-4 a c\)
\(=(-12)^{2}-4 \times 9 \times 20\)
\(=144-720\)
\(=-576\)
Therefore, the required solutions are
\(\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(12) \pm \sqrt{-576}}{2 \times 9}=\frac{12 \pm \sqrt{576} i}{18} \quad[\sqrt{-1}=i]\)
\(=\frac{12 \pm 24 i}{18}=\frac{6(2 \pm 4 i)}{18}=\frac{2 \pm 4 i}{3}=\frac{2}{3} \pm \frac{4}{3} i\)
\(2 x^{2}-4 x+3=0\)
This equation can be rewritten as follows:
\(2 x^{2}-4 x+3=0\)
we have to compare this with \( \mathrm{a}x^2+\mathrm{b}x+\mathrm{c}=0 \) where \( \mathrm{a}=2, \mathrm{~b}=-4 \) and \( \mathrm{c}=3 \)
Thus, the discriminant of the above given equation is:
\(D=b^{2}-4 a c\)
\(=(-4)^{2}-4 \times 2 \times 3\)
\(=16-24\)
\(=-8\)
Therefore, the required solutions are
\(\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(-4) \pm \sqrt{8}}{2 \times 2}=\frac{4 \pm 2 \sqrt{2} i}{4} \quad[\sqrt{-1}=i]\)
\(=\frac{2+\sqrt{2} i}{2}=1 \pm \frac{\sqrt{2}}{2} i\)
\(27 x^{2}-10 x+1=0\)
we have to compare this with \( \mathrm{a}x^{2}+\mathrm{b}x+\mathrm{c}=0 \) where \( \mathrm{a}=27, \mathrm{~b}=-10 \) and \( \mathrm{c}=1 \)
Thus, the discriminant of the above given equation is:
\(D=b^{2}-4 a c\)
\(=(-10)^{2}-4 \times 27 \times 1\)
\(=100-108\)
\(=-8\)
Therefore, the required solutions are
\(\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(-10) \pm \sqrt{-8}}{2 \times 27}=\frac{10 \pm 2 \sqrt{2} i}{54} \quad[\sqrt{-1}=i]\)
\(=\frac{5 \pm \sqrt{2} i}{27}=\frac{5}{27}+\frac{\sqrt{2}}{27} i\)
\(21 x^{2}-28 x+10=0\)
we have to compare this with \( \mathrm{a}x^2+\mathrm{b}x+\mathrm{c}=0 \), where \( \mathrm{a}=21, \mathrm{~b}=-28 \) and \( \mathrm{c}=10 \)
Thus, the discriminant of the above given equation is:
\(D=b^{2}-4 a c\)
\(=(-28)^{2}-4 \times 21 \times 10\)
\(=784-840\)
\(=-56\)
Therefore, the required solutions are
\(\frac{-b \pm \sqrt{D}}{2 a}=\frac{-(-28) \pm \sqrt{-56}}{2 \times 21}=\frac{28 \pm \sqrt{56} i}{42} \quad[\sqrt{-1}=i]\)
\(=\frac{28 \pm 2 \sqrt{14} i}{42}=\frac{28}{42} \pm \frac{2 \sqrt{14}}{42} i=\frac{2}{3}+\frac{\sqrt{14}}{21} i\)
\(\therefore\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|=\left|\frac{(2-i)+(1+i)+1}{(2-i)-(1+i)+1}\right|\)
\(\quad=\left|\frac{4}{2-2 i}\right|=\left|\frac{4}{2(1-i)}\right|\)
\(=\left|\frac{2}{1-i} \times \frac{1+i}{1+i}\right|=\left|\frac{2(1+i)}{\left(1^{2}-1^{2}\right)}\right|\)
\(=\left|\frac{2(1+i)}{1+1}\right| \quad\left[i^{2}=-1\right]\)
\(=\left|\frac{2(1+i)}{2}\right|\)
\(=|1+i|=\sqrt{1^{2}+1^{2}}=\sqrt{2}\)
Thus, the value of \( \left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right| \) is \( \sqrt{2} \)
\(=\frac{x^{2}+i^{2}+2 x i}{2 x^{2}+1}\)
\(=\frac{x^{2}-1+2 x i}{2 x^{2}+1}\)
\(\quad=\frac{x^{2}-1}{2 x^{2}}+i \frac{2 x}{2 x^{2}}\)
On comparing real and imaginary parts, we obtain
\( \mathrm{a}=\frac{x^{2}-1}{2 x^{2}+1} \text { and } \mathrm{b}=\frac{2 x}{2 x^{2}+1}\)
\(\therefore a^{2}+b^{2}=\left\{\frac{x^{2}-1}{2 x^{2}+1}\right\}^{2}+\left\{\frac{2 x}{2 x^{2}+1}\right\}^{2}\)
\(=\frac{x^{4}+1-2 x^{2}+4 x^{2}}{(2 x+1)^{2}}\)
\(=\frac{x^{2}+1+2 x^{2}}{\left(2 x^{2}+1\right)^{2}}\)
\(=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}\)
\(\therefore a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)}\)
Hence, proved
ncert solutions class 11 maths complex numbers miscellaneous || class 11 maths ch 5 miscellaneous exercise solutions || ncert exemplar class 11 maths || class 11 maths Complex Number and Quadratic Equation || class 11 maths chapter 5 miscellaneous exercise || ncert solution for class 11 maths chapter 5
12.
\( z_{1} z_{2}=(2-i)(-2+i)=-4+2 i+2 i-i^{2}=-4+4 i- (-1)=-3+4 i \)
\(\overline{z_{1}} =2+i\)
\(\therefore \frac{z_{1} z_{2}}{\overline{z_{1}}}= \frac{-3+4 i}{2+i}\)
On multiplying numerator and denominator by (2-i), we obtain
\(\frac{z_{1} z_{2}}{\overline{z_{1}}}=\frac{(-3+4 i)(2-i)}{(2+i)(2-i)}=\frac{-6+3 i+8 i-4 i^{2}}{2^{2}+1^{2}}=\frac{-6+11 i-4(-1)}{2^{2} 1^{2}}\)
\(=\frac{-2+11 i}{5}=\frac{-2}{5}+\frac{11}{5} i\)
On comparing real parts, we obtain
\( \operatorname{Re} \frac{z_{1} z_{2}}{\overline{z_{1}}}=\frac{-2}{5} \)
\( \frac{1}{z_{1} z_{2}}=\frac{1}{(2-i)(2+i)}=\frac{1}{(2)^{2}+(1)^{2}}=\frac{1}{5} \)
On comparing imaginary parts, we obtain
\(\operatorname{lm} \frac{1}{z_{1} z_{2}}=0\)
\(\mathrm{z} =\frac{1+2 i}{1-3 i} \times \frac{1+3 i}{1+3 i}=\frac{1+3 i+2 i+6 i^{2}}{1^{2}+3^{2}}=\frac{1+5 i+6(-1)}{1+9}\)
\(=\frac{-5+5 i}{10}=\frac{-5}{10}+\frac{5 i}{10}=\frac{-1}{2}+\frac{-i}{2}\)
\( =\text { Let } \mathrm{z}=\mathrm{r} \cos \theta+\mathrm{ir} \sin \theta\)
i.e., \( r \cos \theta=\frac{-1}{2} \) and \( r \sin \theta=\frac{1}{2} \)
On squaring and adding, we obtain
\(r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\left(\frac{-1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\)
\(\quad=r^{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\quad=\mathrm{r}=\frac{1}{\sqrt{2}} \quad \text { [conventionally , } \mathrm{r} > 0 \text { ] }\)
\(\therefore \frac{1}{\sqrt{2}} \cos \theta=\frac{-1}{2} \text { and } \frac{1}{\sqrt{2}} \sin \theta=\frac{1}{2}\)
\(\quad=\cos \theta=\frac{-1}{\sqrt{2}} \text { and } \sin \theta=\frac{1}{\sqrt{2}}\)
\( \therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4} \quad \) [As \( \theta \) lies in the II quadrant]
Therefore, the modules and argument of the given complex number are \( \frac{1}{\sqrt{2}} \) and \( \frac{3 \pi}{4} \) respectively.
\(z=3 x+5 x i-3 y i-5 y i^{2}=3 x+5 x i-3 y i+5 y=(3 x+5 y)+ i(5 x-3 y)\)
\( \therefore \bar{z}=(3 x+5 y)-i(5 x-3 y)\)
It is given that, \( \bar{z}=-6-24 i \)
\(\therefore(3 x+5 y)-i(5 x-3 y)=-6-24 i\)
Equating real and imaginary parts, we obtain
\(3 x+5 y=-6 \ldots (1)\)
\(5 x-3 y=24 \ldots (2)\)
Multiplying equation (1) by 3 and (2) by 5 and then adding them, we obtain
\(9 x+15 y=18\)
\(25 x-15 y=120\)
\(34 x=102\)
\(\therefore x=\frac{102}{34}\)
\(x=3\)
Putting the value of \( x \) in equation (1), we obtain
\(3(3)+5 y=-6\)
\(=5 y=-6-9=-15\)
\(=y=3\)
Thus, the value of \( x \) and \( y \) are 3 and -3 respectively.
Hence, \( x=3 \) and \( y=-3 \)
\(=\frac{1+i^{2}+2 i-1-i^{2}+2 i}{i^{2}+1^{2}}\)
\(\therefore \frac{4 i}{2}=2 i\)
\(\therefore\left|\frac{1+i}{1-i}-\frac{1+i}{1-i}\right|=|2 i|=\sqrt{2^{2}}=2\)
\((x+i y)^{3}=u+i v\)
\(=x^{3}+(i y)^{3}+3 \cdot x \cdot i y(x+i y)=u+i v\)
\(=x^{3}+i^{3} y^{3}+3 x^{2} y i+3 x y^{2} i=u+i v\)
\(=x^{3}-4 y^{3}+3 x^{2} y i-3 x y^{2}=u+i v\)
\(=\left(x^{3}-3 x y^{2}\right)+i\left(3 x^{2} y-y^{3}\right)=u+i v\)
\(u=x^{3}-3 x y^{2}, v=3 x^{2} y-y^{3}\)
\(\therefore \frac{u}{x}+\frac{v}{y}=\frac{x^{3}-3 x y^{2}}{x}+\frac{3 x^{2} y-y^{3}}{y}\)
\(= \frac{x\left(x^{2}-3 y^{2}\right)}{x}+\frac{y\left(3 x^{2} y^{2}\right)}{y}\)
\(= x^{2}-3 y^{2}+3 x^{2}-y^{2}\)
\( =4\left(x^{2}-4 y^{2}\right)\)
\(\therefore \frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right)\)
Hence, proved
It is given that, \( |\beta|=1 \)
\( \therefore \sqrt{x^{2}+y^{2}}=1\)
\(= x^{2}+y^{2}=1\)
\(\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=\left|\frac{(x+i y)-(a+i b)}{1-(a-i b)(x+i y)}\right|\)
\(=\left|\frac{(x-a)+i(y-b)}{1-(a x+a i y-i b x+b y)}\right|\)
\(=\left|\frac{(x-a)+i(y-b)}{(1-a x-b y)+i(b x-a y)}\right|\)
\(=\frac{|(x-a)+i(y-b)|}{|(1-a x-b y)+i(b x-a y)|}\)
\(=\frac{\sqrt{(x-a)^{2}+(y-b)^{2}}}{\sqrt{(1-a x-b y)^{2}+(b x-a y)^{2}}}\)
\(=\frac{\sqrt{x^{2}+a^{2}-2 a x+y^{2}+b^{2}-2 b y}}{\sqrt{1+a^{2} x^{2}+b^{2} y^{2}-2 a x+2 a b x y-2 b y+b^{2} x^{2}+a^{2} y^{2}-2 a b x y}}\)
\(=\frac{\sqrt{\left(x^{2}+y^{2}\right)+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}\left(x^{2}+y^{2}\right)+b^{2}\left(y^{2}+x^{2}\right)-2 a x-2 b y}}\)
\(=\frac{\sqrt{1+a^{2}+b^{2}-2 a x-2 b y}}{\sqrt{1+a^{2}+b^{2}-2 a x-2 b y}}\)
\(=1\)
\(\therefore\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=1\)
\(=\left(\sqrt{1^{2}+(-1)^{2}}\right)^{x}=2^{x}\)
\(=(\sqrt{2})^{x}=2^{x}\)
\(=2^{\frac{x}{2}}=2^{x}\)
\(=x=2 x\)
\(=2 x-x=0\)
\(=x=0\)
Thus, 0 is the only integral solutions of the given equation.
Therefore, the number of non - integral solutions of \(Y\), e given equation is 0 .
\(\therefore|(a+i b)(c+i d)(e+i f)(g+i h)|=|A+i B|\)
\(=\sqrt{a^{2}+b^{2}} \times \sqrt{c^{2}+d^{2}} \times \sqrt{e^{2}+f^{2}} \times \sqrt{g^{2}+h^{2}}=\sqrt{A^{2}+B^{2}}\)
On squaring both sides, we obtain
\(\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2}\)
Hence, proved.
\(=\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{n}=1\)
\(=\left(\frac{(1+i)^{2}}{1^{2}+i^{2}}\right)^{n}=1\)
\(=\left(\frac{1^{2}+i^{2}+2 i}{2}\right)^{n}=1\)
\(=\left(\frac{1-1+2 i}{2}\right)^{n}=1\)
\(=\left(\frac{2 i}{2}\right)^{n}=1\)
\(=i^{n}=1\)
\( \mathrm{m}=4 \mathrm{k} \), where k is some integer.
Therefore, the least positive integer is 1
Thus, the least positive integral value of \( m \) is \( 4(=4 \times 1) \).