Ex 7.5 class 12 maths ncert solutions | class 12 maths exercise 7.5 | class 12 maths ncert solutions chapter 7 exercise 7.5 | exercise 7.5 class 12 maths ncert solutions | integrals class 12 ncert solutions
If you are searching for ex 7.5 class 12 maths NCERT solutions, this is the right place to this strengthen your integration skills. The class 12 maths exercise 7.5 focuses on solving integrals involving trigonometric functions and algebraic expressions. These class 12 maths NCERT solutions chapter 7 exercise 7.5 follow the latest CBSE guidelines and are ideal for board exam preparation. Each problem in the exercise 7.5 class 12 maths NCERT solutions is solved with detailed steps, making learning easy. These integrals class 12 NCERT solutions help students master important calculus techniques like trigonometric substitution, standard integrals, and algebraic simplification.

exercise 7.5 class 12 maths ncert solutions || class 12 maths exercise 7.5 || class 12 maths ncert solutions chapter 7 exercise 7.5 || ex 7.5 class 12 maths ncert solutions || integrals class 12 ncert solutions
Exercise 7.5
1. Integrate the rational functions.
\(\frac{x}{(x+1)(x+2)}\)
\(\frac{x}{(x+1)(x+2)}\)
Answer
Let \( \frac{x}{(x+1)(x+2)}=\frac{A}{(x+1)}+\frac{B}{(x+2)} \)
\(\Rightarrow x=\mathrm{A}(x+2)+\mathrm{B}(x+1)\)
On comparing the coefficients of \( x \) and constant term, we get,
\(A+B=1\)
\(2 A+B=0\)
On solving above two equations, we get,
\(\mathrm{A}=-1 \text { and } \mathrm{B}=2\)
Thus,
\(\frac{x}{(x+1)(x+2)}=\frac{-1}{(x+1)}+\frac{2}{(x+2)}\)
\(=\int \frac{x}{(x+1)(x+2)}=\int\left\{\frac{-1}{(x+1)}+\frac{2}{(x+2)}\right\} d x\)
\(=-\log |x+1|+2 \log |x+2|+\mathrm{C}\)
\(=\log (x+2)^{2}-\log |x+1|+\mathrm{C}\)
\(=\log \frac{(x+2)^{2}}{(x+1)}+C\)
2. Integrate the rational functions.
\(\frac{1}{x^{2}-9}\)
\(\frac{1}{x^{2}-9}\)
Answer
Now \( \frac{1}{x^{2}-9}=\frac{1}{(x+3)(x-3)} \)
Let \( \frac{1}{(x+3)(x-3)}=\frac{A}{(x+3)}+\frac{B}{(x-3)} \)
\(\Rightarrow 1=\mathrm{A}(x-3)+\mathrm{B}(x+3)\)
On comparing the coefficients of \( x \) and constant term, we get,
\(A+B=0\)
\(-3 A+3 B=1\)
On solving above two equations, we get,
\( A=-\frac{1}{6} \) and \( B=\frac{1}{6} \)
Thus,
\(\frac{1}{(x+3)(x-3)}=\frac{-1}{6(x+3)}+\frac{1}{6(x-3)}\)
\(\int \frac{1}{(x+3)(x-3)} d x=\int\left\{\frac{-1}{6(x+3)}+\frac{1}{6(x-3)}\right\} d x\)
\(=-\frac{1}{6} \log |x+3|+\frac{1}{6}|x-3|+C\)
\(=\frac{1}{6} \log \left|\frac{(x-3)}{(x+3)}\right|+C\)
3. Integrate the rational functions.
\(\frac{3 x-1}{(x-1)(x-2)(x-3)}\)
\(\frac{3 x-1}{(x-1)(x-2)(x-3)}\)
Answer
Let \( \frac{3 x-1}{(x-1)(x-2)(x-3)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)} \)
\(\Rightarrow 3 x-1=\mathrm{A}(x-2)(x-3)+\mathrm{B}(x-1)(x-3)\)\(+\mathrm{C}(x-1)(x-2) \quad\ldots\)(1)
Substituting \( x=1,2 \) and 3 respectively in equation (1), we get, \( \mathrm{A}=1, \mathrm{~B}=-5 \) and \( \mathrm{C}=4 \)
Thus,
\(\frac{3 x-1}{(x-1)(x-2)(x-3)}=\frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)}\)
\(\int \frac{3 x-1}{(x-1)(x-2)(x-3)} d x=\int \frac{1}{(x-1)}-\frac{5}{(x-2)}+\frac{4}{(x-3)} d x\)
\(=\log |x-1|-5 \log |x-2|+4 \log |x-3|+C\)
4. Integrate the rational functions.
\(\frac{x}{(x-1)(x-2)(x-3)}\)
\(\frac{x}{(x-1)(x-2)(x-3)}\)
Answer
Let \( \frac{x}{(x-1)(x-2)(x-3)}=\frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)} \)
\(\Rightarrow x=\mathrm{A}(x-2)(x-3)+\mathrm{B}(x-1)(x-3)\) \(+\mathrm{C}(x-1)(x-2) \quad\ldots \text{(1)}\)
Substituting \( x=1,2 \) and 3 respectively in equation (1), we get,
\( \mathrm{A}=\frac{1}{2}, \mathrm{~B}=-2 \) and \( \mathrm{C}=\frac{3}{2} \)
Thus,
\(\frac{x}{(x-1)(x-2)(x-3)}=\frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)}\)
\(\int \frac{x}{(x-1)(x-2)(x-3)} d x=\int\left\{\frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)}\right\} d x\)
\(=\frac{1}{2} \log |x-1|-2 \log |x-2|+\frac{3}{2} \log |x-3|+\mathrm{C}\)
5. Integrate the rational functions.
\(\frac{2 x}{x^{2}+3 x+2}\)
\(\frac{2 x}{x^{2}+3 x+2}\)
Answer
Let \( \frac{2 x}{x^{2}+3 x+2}=\frac{A}{(x+1)}+\frac{B}{(x+2)} \)
\(\Rightarrow 2 x=\mathrm{A}(x+2)+\mathrm{B}(x+1) \quad\ldots \text{(1)}\)
Substituting \( x=-1 \) and \(-2\) respectively in equation (1), we get,
\(A=-2, B=4\)
Thus, \( \frac{2 x}{x^{2}+3 x+2}=\frac{-2}{(x+1)}+\frac{4}{(x+2)} \)
\(\int \frac{2 x}{x^{2}+3 x+2} d x=\int\left\{\frac{-2}{(x+1)}+\frac{4}{(x+2)}\right\} d x\)
\(=4 \log |x+2|-2 \log |x+1|+\mathrm{C}\)
6. Integrate the rational functions.
\(\frac{1-x^{2}}{x(1-2 x)}\)
\(\frac{1-x^{2}}{x(1-2 x)}\)
Answer
\(\frac{1-x^{2}}{x(1-2 x)}\)
On dividing \( 1-x^{2} \) by \( x(1-2 x) \), we get,
\(\frac{1-x^{2}}{x(1-2 x)}=\frac{1}{2}+\frac{1}{2}\left(\frac{2-x}{x(1-2 x)}\right)\quad\ldots \text{(1)}\)
Now, let \( \left(\frac{2-x}{x(1-2 x)}\right)=\frac{A}{x}+\frac{B}{(1-2 x)} \)
\((2-x)=A(1-2 x)+B x\quad\ldots \text{(2)}\)
Now, substituting \( x=0 \) and \( \frac{1}{2} \) in equation (2), we get,
\( \mathrm{A}=2 \) and \( \mathrm{B}=3 \)
Thus, \( \frac{2-x}{x(1-2 x)}=\frac{2}{x}+\frac{3}{(1-2 x)} \)
Now, putting this value in equation (2), we get,
\(\int \frac{1-x^{2}}{x(1-2 x)} d x=\int\left\{\frac{1}{2}+\frac{1}{2}\left(\frac{2}{x}+\frac{3}{(1-2 x)}\right)\right\} d x\)
\(=\frac{x}{2}+\log |x|+\frac{3}{2(-2)} \log |1-2 x|+C\)
\(=\frac{x}{2}+\log |x|-\frac{3}{4} \log |1-2 x|+C\)
7. Integrate the rational functions.
\(\frac{x}{\left(x^{2}+1\right)(x-1)}\)
\(\frac{x}{\left(x^{2}+1\right)(x-1)}\)
Answer
Let \( \frac{x}{\left(x^{2}+1\right)(x-1)}=\frac{A x+B}{\left(x^{2}+1\right)}+\frac{C}{(x-1)} \)
\(x=(\mathrm{A}x+\mathrm{B})(x-1)+\mathrm{C}\left(x^{2}+1\right)\)
\(\Rightarrow x=\mathrm{Ax}^{2}-\mathrm{A}x+\mathrm{B}x-\mathrm{B}+\mathrm{C}x^{2}+\mathrm{C}\)
Equating the coefficients of \( x^{2}, x \) and constant term, we get,
\(A+C=0\)
\(-A+B=0\)
\(-B+C=0\)
On solving these equation, we get,
\( \mathrm{A}=-\frac{1}{2}, \mathrm{~B}=\frac{1}{2} \) and \( \mathrm{C}=\frac{1}{2} \)
Thus,
\(\frac{x}{\left(x^{2}+1\right)(x-1)}=\frac{-\frac{1}{2} x+\frac{1}{2}}{\left(x^{2}+1\right)}+\frac{\frac{1}{2}}{(x-1)}\)
\(\int \frac{x}{\left(x^{2}+1\right)(x-1)} d x=-\frac{1}{2} \int \frac{x}{x^{2}+1} d x+\frac{1}{2} \int \frac{1}{x^{2}+1} d x\)\(+\frac{1}{2} \int \frac{1}{x-1} d x\)
\(=-\frac{1}{4} \int \frac{2 x}{x^{2}+1} d x+\frac{1}{2} \tan ^{-1} x+\frac{1}{2} \log |x-1|+C\)
Now, let us consider, \( \int \frac{2 x}{x^{2}+1} d x \),
Let \( \left(x^{2}+1\right)=t \)
\(2 x\mathrm{d}x=\mathrm{dt}\)
Thus,
\(\int \frac{2 x}{x^{2}+1} d x=\int \frac{d t}{t}=\log |t|=\log \left|x^{2}+1\right|\)
Therefore,
\(\int \frac{x}{\left(x^{2}+1\right)(x-1)} d x=-\frac{1}{4} \log \left|x^{2}+1\right|+\frac{1}{2} \tan ^{-1} x\)\(+\frac{1}{2} \log |x-1|+C\)
\(=\frac{1}{2} \log |x-1|-\frac{1}{4} \log \left|x^{2}+1\right|+\frac{1}{2} \tan ^{-1} x+C\)
exercise 7.5 class 12 maths ncert solutions || class 12 maths exercise 7.5 || class 12 maths ncert solutions chapter 7 exercise 7.5 || ex 7.5 class 12 maths ncert solutions || integrals class 12 ncert solutions
8. Integrate the rational functions.
\(\frac{x}{(x-1)^{2}(x+2)}\)
\(\frac{x}{(x-1)^{2}(x+2)}\)
Answer
Let \( \frac{x}{(x-1)^{2}(x+2)}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x+2)} \)
\(\Rightarrow x=\mathrm{A}(x-1)(x+2)+\mathrm{B}(x+2)+\)\(\mathrm{C}(x-1)^{2} \quad\ldots \text{(1)}\)
Substituting \( x=-1 \) in equation (1), we get, \( \mathrm{B}=\frac{1}{3} \)
Equating the coefficients of \( x^{2} \) and constant term, we get,
\(\mathrm{A}+\mathrm{C}=0\)
\(-2 \mathrm{A}+2 \mathrm{B}+\mathrm{C}=0\)
\(\mathrm{A}=\frac{3}{9} \text { and } \mathrm{c}=\frac{-2}{9}\)
Thus,
\(\frac{x}{(x-1)^{2}(x+2)}=\frac{2}{9(x-1)}+\frac{1}{3(x-1)^{2}}+\frac{2}{9(x+2)}\)
\(\int \frac{x}{(x-1)^{2}(x+2)} d x=\int \frac{2}{9(x-1)}+\frac{1}{3(x-1)^{2}}+\frac{2}{9(x+2)} d x\)
\(=\frac{2}{9} \int \frac{1}{(x-1)} d x+\frac{1}{3} \int \frac{1}{(x-1)^{2}} d x-\frac{2}{9} \int \frac{1}{(x+2)} d x\)
\(=\frac{2}{9} \log |x-1|+\frac{1}{3}\left(\frac{-1}{x-1}\right)-\frac{2}{9} \log |x+2|+C\)
\(=\frac{2}{9} \log \left|\frac{x-1}{x+2}\right|+\frac{1}{3}\left(\frac{-1}{x-1}\right)+C\)
9. Integrate the rational functions.
\(\frac{3 x+5}{x^{3}-x^{2}-x+1}\)
\(\frac{3 x+5}{x^{3}-x^{2}-x+1}\)
Answer
\(\frac{3 x+5}{x^{3}-x^{2}-x+1}=\frac{3 x+5}{(x-1)^{2}(x+1)}\)
Let \( \frac{3 x+5}{x^{3}-x^{2}-x+1}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x+1)} \)
\(\Rightarrow 3 x+5=\mathrm{A}(x-1)(x+1)+\mathrm{B}(x+1)+\mathrm{C}(x-1)^{2}\)
\(\Rightarrow 3 x+5=\mathrm{A}\left(x^{2}-1\right)+\mathrm{B}(x+1)+\mathrm{C}\)\(\left(x^{2}+1-2 x\right) \quad\ldots \text{(1)}\)
Substituting \( x=1 \) in equation (1), we get,
\(B=4\)
Equating the coefficients of \(x^{2}\) and \(x\), we get,
\( \mathrm{A}+\mathrm{C}=0 \)
\( b-2 \mathrm{C}=3 \)
\( \mathrm{A}=-\frac{1}{2} \) and \( \mathrm{c}=\frac{1}{2} \)
Thus,
\(\frac{3 x+5}{x^{3}-x^{2}-x+1}=\frac{-1}{2(x-1)}+\frac{4}{(x-1)^{2}}+\frac{1}{2(x+1)}\)
\(\int \frac{3 x+5}{x^{3}-x^{2}-x+1} d x=\int\left\{\frac{-1}{2(x-1)}+\frac{4}{(x-1)^{2}}+\frac{1}{2(x+1)}\right\} d x\)
\(=\frac{-1}{2} \int \frac{1}{(x-1)} d x+4 \int \frac{1}{(x-1)^{2}} d x+\frac{1}{2} \int \frac{1}{(x+1)}+C\)
\(=\frac{1}{2} \log \left|\frac{x+1}{x-1}\right|-\frac{4}{x-1}+C\)
10. Integrate the rational functions.
\(\frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)}\)
\(\frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)}\)
Answer
\(\frac{2 x-3}{\left(x^{2}-1\right)(2 x+3)}=\frac{2 x-3}{(x+1)(x-1)(2 x+3)}\)
Let \( \frac{2 x-3}{(x+1)(x-1)(2 x+3)}=\frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{C}{(2 x+3)} \)
\(\Rightarrow 2 x-3=\mathrm{A}(x-1)(2 x+3)+\mathrm{B}(x+1)(2 x+3)+\)\(\mathrm{C}(x+1)(x-1)\)
\(\Rightarrow 2 x-3=\mathrm{A}\left(2 x^{2}+x-3\right)+\mathrm{B}\left(2 x^{2}+5 x+3\right)+\)\(\mathrm{C}\left(x^{2}-1\right)\)
\(\Rightarrow 2 x-3=(2 \mathrm{A}+2 \mathrm{B}+\mathrm{C}) x^{2}+(\mathrm{A}+5 \mathrm{~B}) x+\)\((-3 \mathrm{A}+3 \mathrm{B}-\mathrm{C})\)
Equating the coefficients of \(x^{2}\) and \(x\), we get,
\( \mathrm{B}=-\frac{1}{10}, \mathrm{~A}=\frac{5}{2} \) and \( \mathrm{C}=-\frac{24}{5} \)
Thus,
\(\frac{2 x-3}{(x+1)(x-1)(2 x+3)}=\frac{5}{2(x+1)}-\frac{1}{10(x-1)}-\frac{24}{5(2 x+3)}\)
\(\int \frac{2 x-3}{(x+1)(x-1)(2 x+3)} d x=\int \frac{5}{2(x+1)}-\frac{1}{10(x-1)}-\frac{24}{5(2 x+3)} d x\)
\(=\frac{5}{2} \int \frac{1}{(x+1)} d x-\frac{1}{10} \int \frac{1}{(x-1)} d x-\frac{24}{5} \int \frac{1}{(2 x+3)} d x\)
\(=\frac{5}{2} \log |x+1|-\frac{1}{10} \log |x-1|-\frac{24}{5 \times 2} \log |2 x+3|+C\)
\(=\frac{5}{2} \log |x+1|-\frac{1}{10} \log |x-1|-\frac{24}{10} \log |2 x+3|+C\)
11. Integrate the rational functions.
\(\frac{5 x}{(x+1)\left(x^{2}-4\right)}\)
\(\frac{5 x}{(x+1)\left(x^{2}-4\right)}\)
Answer
\(\frac{5 x}{(x+1)\left(x^{2}-4\right)}=\frac{5 x}{(x+1)(x+2)(x-2)}\)
Let \( \frac{5 x}{(x+1)(x+2)(x-2)}=\frac{A}{(x+1)}+\frac{B}{(x+2)}+\frac{C}{(x-2)} \)
\(\Rightarrow 5 x=\mathrm{A}(x+2)(x-2)+\mathrm{B}(x+1)(x-2)+\)\(\mathrm{C}(x+1)(x+2)\quad\ldots \text{(1)}\)
Substituting \( x=-1,-2 \) and 2 respectively in equation (1), we get, \( \mathrm{A}=\frac{5}{3}, \mathrm{~B}=-\frac{5}{2} \), and \( \mathrm{C}=\frac{5}{6} \)
Thus,
\(\frac{5 x}{(x+1)(x+2)(x-2)}=\frac{5}{3(x+1)}-\frac{5}{2(x+2)}+\frac{5}{6(x-2)}\)
\(\int \frac{5 x}{(x+1)(x+2)(x-2)} d x=\int\left\{\frac{5}{3(x+1)}-\frac{5}{2(x+2)}+\frac{5}{6(x-2)}\right\} d x\)
\(=\frac{5}{3} \int \frac{1}{(x+1)} d x-\frac{5}{2} \int \frac{1}{(x+2)} d x+\frac{5}{6} \int \frac{1}{(x-2)} d x\)
\(=\frac{5}{3} \log |x+1|-\frac{5}{2} \log |x+2|+\frac{5}{6} \log |x-2|+C\)
12. Integrate the rational functions.
\(\frac{x^{3}+x+1}{x^{2}-1}\)
\(\frac{x^{3}+x+1}{x^{2}-1}\)
Answer
\(\frac{x^{3}+x+1}{x^{2}-1}\)
Dividing \( \left(x^{3}+x+1\right) \) by \( x^{2}-1 \), we get,
\( \frac{x^{3}+x+1}{x^{2}-1}=x+\frac{2 x+1}{x^{2}-1} \)
Let \( \frac{2 x+1}{x^{2}-1}=\frac{A}{(x+1)}+\frac{B}{(x-1)} \)
Now, \( 2 x+1=\mathrm{A}(x-1)+\mathrm{B}(x+1) \quad\ldots \text{(1)} \)
Substituting \( x=1 \) and \(-1\) in equation (1), we get, \( \mathrm{A}=\frac{1}{2} \) and \( \mathrm{B}=\frac{3}{2} \)
Thus, \( \frac{x^{3}+x+1}{x^{2}-1}=x+\frac{1}{2(x+1)}+\frac{3}{2(x-1)} \)
\(\int \frac{x^{3}+x+1}{x^{2}-1}=\int x d x+\frac{1}{2} \int \frac{1}{(x+1)} d x+\frac{3}{2} \int \frac{1}{(x-1)} d x\)
\(=\frac{x^{2}}{2}+\frac{1}{2} \log |x+1|+\frac{3}{2} \log |x-1|+C\)
exercise 7.5 class 12 maths ncert solutions || class 12 maths exercise 7.5 || class 12 maths ncert solutions chapter 7 exercise 7.5 || ex 7.5 class 12 maths ncert solutions || integrals class 12 ncert solutions
13. Integrate the rational functions.
\(\frac{2}{(1-x)\left(1+x^{2}\right)}\)
\(\frac{2}{(1-x)\left(1+x^{2}\right)}\)
Answer
Let \( \frac{2}{(1-x)\left(1+x^{2}\right)}=\frac{A}{(1-x)}+\frac{B}{\left(1+x^{2}\right)} \)
\(\Rightarrow 2=\mathrm{A}\left(1-x^{2}\right)+(\mathrm{B}x+\mathrm{C})(1-x)\)
\(\Rightarrow 2=\mathrm{A}+\mathrm{A}x^{2}+\mathrm{B}x-\mathrm{B}x^{2}+\mathrm{C}-\mathrm{Cx}\)
On comparing the coefficients of \( x^{2}, x \) and constant term, we get,
\( \mathrm{A}-\mathrm{B}=0 \)
\( \mathrm{B}-\mathrm{C}=0 \)
\( \mathrm{A}+\mathrm{C}=0 \)
On solving these equations, we get,
\(\mathrm{A}=1, \mathrm{~B}=1 \text { and } \mathrm{C}=1\)
Thus,
\(\frac{2}{(1-x)\left(1+x^{2}\right)}=\frac{1}{(1-x)}+\frac{x+1}{\left(1+x^{2}\right)}\)
\(\int \frac{2}{(1-x)\left(1+x^{2}\right)} d x=\int \frac{1}{(1-x)} d x+\int \frac{x}{\left(1+x^{2}\right)} d x+\int \frac{1}{\left(1+x^{2}\right)} d x\)
\(-\log |x-1|+\frac{1}{2} \log \left|1+x^{2}\right|+\tan ^{-1} x+C\)
14. Integrate the rational functions.
\(\frac{3 x-1}{(x+2)^{2}}\)
\(\frac{3 x-1}{(x+2)^{2}}\)
Answer
Let \( \frac{3 x-1}{(x+2)^{2}}=\frac{A}{(x+2)}+\frac{B}{(x+2)^{2}} \)
\(\Rightarrow 3 x-1=\mathrm{A}(x+2)+\mathrm{B}\)
Equating the coefficients of \(x\) and constant term, we get,
\(\mathrm{A}=3\)
\(2 \mathrm{A}+\mathrm{B}=-1\)
\(B=-7\)
Thus,
\(\frac{3 x-1}{(x+2)^{2}}=\frac{3}{(x+2)}-\frac{7}{(x+2)^{2}}\)
\(\int \frac{3 x-1}{(x+2)^{2}}=\int\left\{\frac{3}{(x+2)}-\frac{7}{(x+2)^{2}}\right\} d x\)
\(=3 \log |x+2|-7\left(\frac{-1}{(x+2)}\right)+C\)
\(=3 \log |x+2|+\frac{7}{(x+2)}+C\)
15. Integrate the rational functions.
\(\frac{1}{x^{4}-1}\)
\(\frac{1}{x^{4}-1}\)
Answer
\(\frac{1}{x^{4}-1}=\frac{1}{\left(x^{2}-1\right)\left(x^{2}+1\right)}=\frac{1}{(x+1)(x-1)\left(x^{2}+1\right)}\)
Let \( \frac{1}{(x+1)(x-1)\left(x^{2}+1\right)}=\frac{A}{(x+1)}+\frac{B}{(x-1)}+\frac{c x+D}{\left(x^{2}+1\right)} \)
\(1=\mathrm{A}(x-1)\left(x^{2}+1\right)+\mathrm{B}(x+1)\left(x^{2}+1\right)+\)\((\mathrm{C}x+\mathrm{D})\left(x^{2}-1\right)\)
\(1=\mathrm{A}\left(x^{3}+x-x^{2}-1\right)+\mathrm{B}\left(x^{3}+x+x^{2}+1\right)\)\(+\mathrm{C}x^{3}+\mathrm{D}x^{2}-\mathrm{C}x-\mathrm{D}\)
\(1=(\mathrm{A}+\mathrm{B}+\mathrm{C}) x^{3}+(-\mathrm{A}+\mathrm{B}+\mathrm{D}) x^{2}+\)\((\mathrm{A}+\mathrm{B}-\mathrm{C}) x+(-\mathrm{A}+\mathrm{B}-\mathrm{D})\)
Equating the coefficients of \( x^{3}, x^{2}, x \) and constant term, we get,
\((A+B+C)=0\)
\((-A+B+C)=0\)
\((A+B-C)=0\)
\((-A+B-D)=0\)
On solving these equations, we get, \( \mathrm{A}=-\frac{1}{4}, B=\frac{1}{4}, C=0 \) and \( \mathrm{D}=-\frac{1}{2} \)
Therefore,
\(\frac{1}{x^{4}-1}=\frac{-1}{4(x+1)}+\frac{1}{4(x-1)}-\frac{1}{2\left(x^{2}+1\right)}\)
\(\int \frac{1}{x^{4}-1} d x=\int\left\{\frac{-1}{4(x+1)}+\frac{1}{4(x-1)}-\frac{1}{2\left(x^{2}+1\right)}\right\} d x\)
\(=-\frac{1}{4} \log |x-1|+\frac{1}{4} \log |x-1|-\frac{1}{2} \tan ^{-1} x+C\)
\(=\frac{1}{4} \log \left|\frac{x-1}{x+1}\right|-\frac{1}{2} \tan ^{-1} x+C\)
exercise 7.5 class 12 maths ncert solutions || class 12 maths exercise 7.5 || class 12 maths ncert solutions chapter 7 exercise 7.5 || ex 7.5 class 12 maths ncert solutions || integrals class 12 ncert solutions
16. Integrate the rational functions.
\( \frac{1}{x\left(x^{n}+1\right)} \)
\( \frac{1}{x\left(x^{n}+1\right)} \)
Answer
\(\frac{1}{\left(x^{n}+1\right)}\)
Multiplying numerator and denominator by \( x^{\mathrm{n}-1} \), we get,
\(\frac{1}{x\left(x^{n}+1\right)}=\frac{x^{n-1}}{x^{n-1} x\left(x^{n}+1\right)}=\frac{x^{n-1}}{x^{n}\left(x^{n}+1\right)}\)
Let \( x^{\mathrm{n}}=\mathrm{t} \)
\(x^{\mathrm{n}-1} \mathrm{d}x=\mathrm{dt}\)
Therefore,
\(\int \frac{1}{x\left(x^{n}+1\right)} d x=\int \frac{x^{n-1}}{x^{n-1} x\left(x^{n}+1\right)} d x=\frac{1}{n} \int \frac{1}{t(t+1)} d t\)
Let \( \frac{1}{t(t+1)}=\frac{A}{t}+\frac{B}{(t+1)} \)
\(1=\mathrm{A}(1+\mathrm{t})+\mathrm{Bt}\quad\ldots \text{(1)}\)
Substituting \( \mathrm{t}=0,-1 \) in equation (1), we get, \( \mathrm{A}=1 \) and \( \mathrm{B}=-1 \)
Thus,
\(\frac{1}{t(t+1)}=\frac{1}{t}+\frac{1}{(t+1)}\)
\(\int \frac{1}{x\left(x^{n}+1\right)} d x=\frac{1}{n} \int\left\{\frac{1}{t}+\frac{1}{(t+1)}\right\} d t\)
\(=\frac{1}{n}[\log |t|-\log |t+1|]+C\)
\(=\frac{1}{n}\left[\log \left|x^{n}\right|-\log \left|x^{n}+1\right|\right]+C\)
\(=\frac{1}{n} \log \left|\frac{x^{n}}{x^{n}+1}\right|+C\)
17. Integrate the rational functions.
\(\frac{\cos x}{(1-\sin x)(2-\sin x)}\)
\(\frac{\cos x}{(1-\sin x)(2-\sin x)}\)
Answer
\(\frac{\cos x}{(1-\sin x)(2-\sin x)}\)
Let \( \sin x=\mathrm{t} \)
\(\cos x\mathrm{d}x=\mathrm{dt}\)
Therefore,
\(\int \frac{\cos x}{(1-\sin x)(2-\sin x)} d x=\int \frac{d t}{(1-t)(2-t)}\)
Let \( \int \frac{1}{(1-t)(2-t)}=\frac{A}{(1-t)}+\frac{B}{(2-t)} \)
\(1=A(2-t)+B(1-t) \ldots(1)\)
Substituting \( \mathrm{t}=2 \) and then \( \mathrm{t}=1 \) in equation (1), we get, Therefore,
\(\frac{1}{(1-t)(2-t)}=\frac{1}{(1-t)}+\frac{1}{(2-t)}\)
\(\int \frac{\cos x}{(1-\sin x)(2-\sin x)} d x=\int\left\{\frac{1}{(1-t)}+\frac{1}{(2-t)}\right\} d t\)
\(=-\log |1-t|+\log |2-t|+C\)
\(=\log \left|\frac{2-t}{1-t}\right|+C\)
\(=\log \left|\frac{2-\sin x}{1-\sin x}\right|+C\)
18. Integrate the rational functions.
\(\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}\)
\(\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}\)
Answer
Now, \( \frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=1-\frac{\left(4 x^{2}+10\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)} \)
Let \( \frac{\left(4 x^{2}+10\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=\frac{A x+B}{\left(x^{2}+3\right)}+\frac{C x+D}{\left(x^{2}+4\right)} \)
\(4 x^{2}+10=(A x+B)\left(x^{2}+4\right)+(C x+D)\left(x^{2}+3\right)\)
\(\Rightarrow 4 x^{2}+10=A x^{3}+4 A x+B x^{2}+4 B+\)\(C x^{3}+3 C x+D x^{2}+3 D\)
\(\Rightarrow 4 x^{2}+10=(A+C) x^{3}+(B+D) x^{2}+\)\((4 A+3 C) x+(4 B+3 D)\)
Equating the coefficients of \( x^{3}, x^{2}, x \) and constant term, we get,
\(A+C=0\)
\(B+D=0\)
\(4 A+3 C=0\)
\(4 B+3 B=0\)
On solving these equations, we get, \( \mathrm{A}=0, \mathrm{~B}=-2, \mathrm{C}=0 \) and \( \mathrm{D}=6 \)
Therefore,
\(\frac{\left(4 x^{2}+10\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=\frac{-2}{\left(x^{2}+3\right)}+\frac{6}{\left(x^{2}+4\right)}\)
\(\frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)}=1-\left(\frac{-2}{\left(x^{2}+3\right)}+\frac{6}{\left(x^{2}+4\right)}\right)\)
\(\int \frac{\left(x^{2}+1\right)\left(x^{2}+2\right)}{\left(x^{2}+3\right)\left(x^{2}+4\right)} d x=\int\left\{1+\frac{-2}{\left(x^{2}+3\right)}-\frac{6}{\left(x^{2}+4\right)}\right\} d x\)
\(=\int\left\{1+\frac{2}{x^{2}+(\sqrt{3})^{2}}-\frac{6}{\left(x^{2}+2^{2}\right)}\right\}\)
\(=x+2\left(\frac{1}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}\right)-6\left(\frac{1}{2} \tan ^{-1} \frac{x}{2}\right)+C\)
\(=x+\frac{2}{\sqrt{3}} \tan ^{-1} \frac{x}{\sqrt{3}}-3 \tan ^{-1} \frac{x}{2}+C\)
19. Integrate the rational functions.
\(\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}\)
\(\frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)}\)
Answer
Now, \( \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} \)
Now, let \( x^{2}=\mathrm{t} \)
\(2x \mathrm{d}x=\mathrm{dt}\)
Thus, \( \int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x=\int \frac{d t}{(t+1)(t+3)} \quad\ldots \text{(1)} \)
Let \( \frac{1}{(t+1)(t+3)}=\frac{A}{t+1}+\frac{B}{t+3} \)
\(1=\mathrm{A}(\mathrm{t}+3)+\mathrm{B}(\mathrm{t}+1)\quad\ldots \text{(2)}\)
Substituting \( \mathrm{t}=-3 \) and \(-1\) in (2), we get \( A=\frac{1}{2} \) and \( B=-\frac{1}{2} \)
Therefore, \( \frac{1}{(t+1)(t+3)}=\frac{1}{2(t+1)}+\frac{1}{2(t+3)} \)
\(\int \frac{2 x}{\left(x^{2}+1\right)\left(x^{2}+3\right)} d x=\int\left\{\frac{1}{2(t+1)}+\frac{1}{2(t+3)}\right\} d t\)
\(=\frac{1}{2} \log |(t+1)|-\frac{1}{2} \log |t+3|+C\)
\(=\frac{1}{2} \log \left|\frac{t+1}{t+3}\right|+C\)
\(=\frac{1}{2} \log \left|\frac{x^{2}+1}{x^{2}+3}\right|+C\)
exercise 7.5 class 12 maths ncert solutions || class 12 maths exercise 7.5 || class 12 maths ncert solutions chapter 7 exercise 7.5 || ex 7.5 class 12 maths ncert solutions || integrals class 12 ncert solutions
20. Integrate the rational functions.
\(\frac{1}{x\left(x^{4}-1\right)}\)
\(\frac{1}{x\left(x^{4}-1\right)}\)
Answer
Now, \( \frac{1}{x\left(x^{4}-1\right)} \)
Multiplying numerator and denominator by \( x^{3} \), we get,
\(\frac{1}{x\left(x^{4}-1\right)}=\frac{x^{3}}{x^{4}\left(x^{4}-1\right)}\)
Therefore, \( \int \frac{1}{x\left(x^{4}-1\right)} d x=\int \frac{x^{3}}{x^{4}\left(x^{4}-1\right)} d x \)
Now, let \( x^{4}=\mathrm{t} \)
\(4 x^{3} d x=d t\)
Thus, \( \int \frac{1}{x\left(x^{4}-1\right)} d x=\frac{1}{4} \int \frac{d t}{t(t-1)} \)
Let \( \frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{t-1} \)
\(1=\mathrm{A}(\mathrm{t}-1)+\mathrm{Bt} \quad\ldots \text{(1)}\)
Substituting \( \mathrm{t}=0 \) and 1 in (1), we get
\( A=-1 \) and \( B=1 \)
Therefore, \( \frac{1}{t(t-1)}=\frac{-1}{t}+\frac{1}{t-1} \)
\(\int \frac{1}{x\left(x^{4}-1\right)} d x=\frac{1}{4} \int\left\{\frac{-1}{t}+\frac{1}{t-1}\right\} d t\)
\(=\frac{1}{4}[\log |t|+\log |t-1|]+C\)
\(=\frac{1}{4} \log \left|\frac{t-1}{t}\right|+C\)
\(=\frac{1}{4} \log \left|\frac{x^{4}-1}{x^{4}}\right|+C\)
21. Integrate the rational functions.
\( \frac{1}{e^{x}-1} \)
\( \frac{1}{e^{x}-1} \)
Answer
Now, \( \frac{1}{\left(e^{x}-1\right)} \)
Let \( \mathrm{e}^{x}=\mathrm{t} \)
\( e^{x} d x=d t \)
\( \int \frac{1}{\left(e^{x}-1\right)} d x=\int \frac{1}{t-1} \times \frac{d t}{t}=\int \frac{1}{t(t-1)} d t \)
Let \( \frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{t-1} \)
\( 1=\mathrm{A}(\mathrm{t}-1)+\mathrm{Bt} \ldots(1) \)
Substituting \( \mathrm{t}=1 \) and \( \mathrm{t}=0 \) in equation (1), we get
\( \mathrm{A}=-1 \) and \( \mathrm{B}=1 \)
Therefore, \( \frac{1}{t(t-1)}=\frac{-1}{t}+\frac{1}{t-1} \)
\( \int \frac{1}{t(t-1)} d t=\log \left|\frac{t-1}{t}\right|+C \)
\( =\log \left|\frac{e^{x}-1}{e^{x}}\right|+C \)
22. Choose the correct answer
\( \int \frac{x d x}{(x-1)(x-2)} \) equals
A. \( \log \left|\frac{(x-1)^{2}}{x-2}\right|+C \)
B. \( \log \left|\frac{(x-2)^{2}}{x-1}\right|+C \)
C. \( \log \left|\left(\frac{x-1}{x-2}\right)^{2}\right|+C \)
D. \( \log |(x-1)(x-2)|+C \)
\( \int \frac{x d x}{(x-1)(x-2)} \) equals
A. \( \log \left|\frac{(x-1)^{2}}{x-2}\right|+C \)
B. \( \log \left|\frac{(x-2)^{2}}{x-1}\right|+C \)
C. \( \log \left|\left(\frac{x-1}{x-2}\right)^{2}\right|+C \)
D. \( \log |(x-1)(x-2)|+C \)
Answer
Let \( \frac{x}{(x-1)(x-2)}=\frac{A}{x-1}+\frac{B}{x-2} \)
\( x=\mathrm{A}(x-2)+\mathrm{B}(x-1) \quad\ldots \text{(1)} \)
Substituting \( x=1 \) and 2 in (1), we get,
\( \mathrm{A}=-1 \) and \( \mathrm{B}=2 \)
Therefore, \( \frac{x}{(x-1)(x-2)}=-\frac{1}{(x-1)}+\frac{2}{(x-2)} \)
\( \int \frac{x}{(x-1)(x-2)} d x=\int\left\{-\frac{1}{(x-1)}+\frac{2}{(x-2)}\right\} d x \)
\(=-\log |x-1|+2 \log |x-2|+\mathrm{C}\)
\(=\log \left|\frac{(x-2)^{2}}{x-1}\right|+C\)
23. Integrate the rational functions.
\( \int \frac{d x}{x\left(x^{2}+1\right)} \) equals
A. \( \log |x|-\frac{1}{2} \log \left(x^{2}+1\right)+C \)
B. \( \log |x|+\frac{1}{2} \log \left(x^{2}+1\right)+C \)
C. \( -\log |x|+\frac{1}{2} \log \left(x^{2}+1\right)+C \)
D. \( \frac{1}{2} \log |x|+\log \left(x^{2}+1\right)+C \)
\( \int \frac{d x}{x\left(x^{2}+1\right)} \) equals
A. \( \log |x|-\frac{1}{2} \log \left(x^{2}+1\right)+C \)
B. \( \log |x|+\frac{1}{2} \log \left(x^{2}+1\right)+C \)
C. \( -\log |x|+\frac{1}{2} \log \left(x^{2}+1\right)+C \)
D. \( \frac{1}{2} \log |x|+\log \left(x^{2}+1\right)+C \)
Answer
Let \( \frac{1}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1} \)
\(1=A\left(x^{2}+1\right)+(B x+C)\)
Equating the coefficients of \( x^{2}, x \) and constant term, we get,
\(A+B=0\)
\(C=0\)
\(A=1\)
On solving these equations, we get,
\( \mathrm{A}=1, \mathrm{~B}=-1 \) and \( \mathrm{C}=0 \)
Therefore, \( \frac{1}{x\left(x^{2}+1\right)}=\frac{1}{x}+\frac{-x}{x^{2}+1} \)
\(\int \frac{1}{x\left(x^{2}+1\right)}=\int \frac{1}{x}+\frac{-x}{x^{2}+1} d x\)
\(=\log |x|-\frac{1}{2} \log \left|x^{2}+1\right|+C\)