Ex 7.6 Class 12 Maths Ncert Solutions

Ex 7.6 class 12 maths ncert solutions | class 12 maths exercise 7.6 | class 12 maths ncert solutions chapter 7 exercise 7.6 | exercise 7.6 class 12 maths ncert solutions | integrals class 12 ncert solutions

Exercise 7.6 Class 12 Maths NCERT Solutions is an important part of Chapter 7 – Integrals, where students learn to apply standard formulas to solve various types of integration problems. The Class 12 Maths Exercise 7.6 includes questions that help build a strong foundation in calculus through practice. With our clear and accurate Class 12 Maths NCERT Solutions Chapter 7 Exercise 7.6, students can understand each step easily. These Exercise 7.6 Class 12 Maths NCERT Solutions follow the CBSE pattern and are essential for mastering the concepts in Integrals Class 12 NCERT Solutions.

ex 7.6 class 12 maths ncert solutions
integrals class 12 ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.6 || ex 7.6 class 12 maths ncert solutions || exercise 7.6 class 12 maths ncert solutions || class 12 maths exercise 7.6
Download the Math Ninja App Now

Exercise 7.6

1. Integrate the functions.
\(x \sin x\)
Answer
Let \( \mathrm{I}=x \sin x \)
Now, integrating by parts, we get,
\( \mathrm{I}=x \int \sin x d x-\int\left\{\left(\frac{d}{d x} x\right) \int \sin x d x\right\} d x\)
\(=x(-\cos x)-\int 1 \cdot(-\cos x) d x\)
\(=-x \cos x+\sin x+C\)
2. Integrate the functions.
\(x \sin 3 x\)
Answer
Let \( \mathrm{I}=x \sin 3 x \)
Now, integrating by parts, we get,
\( \mathrm{I}=x \int \sin 3 x d x-\int\left\{\left(\frac{d}{d x} x\right) \int \sin 3 x d x\right\} d x\)
\(=x\left(\frac{-\cos 3 x}{3}\right)-\int 1 \cdot\left(\frac{-\cos 3 x}{3}\right) d x\)
\(=\frac{-x \cos 3 x}{3}+\frac{1}{9} \sin 3 x+C\)
3. Integrate the functions.
\(x^{2} e^{x}\)
Answer
Let \( \mathrm{I}=x^{2} e^{x} \)
Now, integrating by parts, we get,
\( \mathrm{I}=x^{2} \int e^{x} d x-\int\left\{\left(\frac{d}{d x} x^{2}\right) \int e^{x} d x\right\} d x\)
\(=x^{2} e^{x}-\int 2 x \cdot e^{x} d x\)
\(=x^{2} e^{x}-2 \int x \cdot e^{x} d x\)
Again integrating by parts, we get,
\(=x^{2} e^{x}-2\left[x \int e^{x} d x-\int\left\{\left(\frac{d}{d x} x^{2}\right) \int e^{x} d x\right\} d x\right]\)
\(=x^{2} e^{x}-2\left[x e^{x}-\int e^{x} d x\right]\)
\(=x^{2} e^{x}-2\left[x e^{x}-e^{x}\right]\)
\(=x^{2} e^{x}-2 x e^{x}+e^{x}+C\)
\(=e^{x}\left(x^{2}-2 x+2\right)+C\)
4. Integrate the functions.
\(x \log x\)
Answer
Let \( \mathrm{I}=x \log x \)
Now, integrating by parts, we get,
Taking, Logarithmic function as first function and algebraic function as second function,
\( \mathrm{I}=\log x \int x d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x d x\right\} d x\)
\(=\log x\left(\frac{x^{2}}{2}\right)-\int \frac{1}{2} \cdot \frac{x^{2}}{2} d x\)
\(=\frac{x^{2} \log x}{2}-\int \frac{x}{2} d x\)
\(=\frac{x^{2} \log x}{2}-\frac{x^{2}}{4}+C\)
5. Integrate the functions.
\(x \log 2 x\)
Answer
Let \( \mathrm{I}=x\log 2x \)
Now, integrating by parts, we get,
\( \mathrm{I}=\log 2 x \int x d x-\int\left\{\left(\frac{d}{d x} 2 \log x\right) \int x d x\right\} d x\)
\(=\log 2 x\left(\frac{x^{2}}{2}\right)-\int \frac{2}{2 x} \cdot \frac{x^{2}}{2} d x\)
\(=\frac{x^{2} \log 2 x}{2}-\int \frac{x}{2} d x\)
\(=\frac{x^{2} \log 2 x}{2}-\frac{x^{2}}{4}+C\)
6. Integrate the functions.
\(x^{2} \log x\)
Answer
Let \( \mathrm{I}=x^{2} \log x \)
Now, integrating by parts, we get,
\( \mathrm{I}=\log x \int x^{2} d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x^{2} d x\right\} d x\)
\(=\log x\left(\frac{x^{3}}{3}\right)-\int \frac{1}{x} \cdot \frac{x^{3}}{3} d x\)
\(=\frac{x^{3} \log x}{2}-\int \frac{x^{2}}{2} d x\)
\(=\frac{x^{3} \log x}{2}-\frac{x^{3}}{4}+C\)
integrals class 12 ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.6 || ex 7.6 class 12 maths ncert solutions || exercise 7.6 class 12 maths ncert solutions || class 12 maths exercise 7.6
Download the Math Ninja App Now
7. Integrate the functions.
\(x \sin ^{-1} x\)
Answer
Let \( \mathrm{I}=x \sin ^{-1} x \)
Now, integrating by parts, we get,
\( \mathrm{I}=\sin ^{-1} x \int x d x-\int\left\{\left(\frac{d}{d x} \sin ^{-1} x\right) \int x d x\right\} d x\)
\(=\sin ^{-1} x \cdot \frac{x^{2}}{2}-\int \frac{1}{\sqrt{1-x^{2}}} \cdot \frac{x^{2}}{2} d x\)
\(=\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2} \int \frac{-x^{2}}{\sqrt{1-x^{2}}} d x\)
\(=\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2} \int\left\{\frac{1-x^{2}}{\sqrt{1-x^{2}}}-\frac{1}{\sqrt{1-x^{2}}}\right\} d x\)
\(=\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2} \int\left\{\sqrt{1-x^{2}}-\frac{1}{\sqrt{1-x^{2}}}\right\} d x\)
\(=\frac{x^{2} \sin ^{-1} x}{2}+\frac{1}{2}\left\{\int \sqrt{1-x^{2}}-\int \frac{1}{\sqrt{1-x^{2}}}\right\} d x\)
\(=\frac{x^{2} \sin ^{-1} x}{2}+\frac{x}{4} \sqrt{1-x^{2}}+\frac{1}{4} \sin ^{-1} x-\frac{1}{2} \sin ^{-1} x+C\)
\(=\frac{1}{4}\left(2 x^{2}-1\right) \sin ^{-1} x+\frac{x}{4} \sqrt{1-x^{2}}+\mathrm{C}\)
8. Integrate the functions.
\(x \tan ^{-1} x\)
Answer
Let \( \mathrm{I}=x \tan ^{-1} x \)
Now, integrating by parts, we get,
\( \mathrm{I}=\tan ^{-1} x \int x d x-\int\left\{\left(\frac{d}{d x} \tan ^{-1} x\right) \int x d x\right\} d x\)
\(=\tan ^{-1} x \cdot \frac{x^{2}}{2}-\int \frac{1}{\sqrt{1-x^{2}}} \cdot \frac{x^{2}}{2} d x\)
\(=\frac{x^{2} \tan ^{-1} x}{2}+\frac{1}{2} \int \frac{x^{2}}{\sqrt{1-x^{2}}} d x\)
\(=\frac{x^{2} \tan ^{-1} x}{2}+\frac{1}{2} \int\left(\frac{x^{2}+1}{1+x^{2}}-\frac{1}{1+x^{2}}\right) d x\)
\(=\frac{x^{2} \tan ^{-1} x}{2}+\frac{1}{2} \int\left\{1-\frac{1}{1+x^{2}}\right\} d x\)
\(=\frac{x^{2} \tan ^{-1} x}{2}+\frac{1}{2}\left(x-\tan ^{-1} x\right)+C\)
\(=\frac{x^{2} \tan ^{-1} x}{2}-\frac{x}{2}+\frac{1}{2} \tan ^{-1} x+C\)
9. Integrate the functions.
\(x \cos ^{-1} x\)
Answer
Let \( \mathrm{I}=x \cos ^{-1} x \)
Now, integrating by parts, we get,
\( \mathrm{I}=\cos ^{-1} x \int x d x-\int\left\{\left(\frac{d}{d x} \cos ^{-1} x\right) \int x d x\right\} d x\)
\(=\cos ^{-1} x \cdot \frac{x^{2}}{2}-\int \frac{1}{\sqrt{1-x^{2}}} \cdot \frac{x^{2}}{2} d x\)
\(=\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} \int \frac{-1-x^{2}-1}{\sqrt{1-x^{2}}} d x\)
\(=\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} \int\left\{\sqrt{1-x^{2}}+\left(\frac{-1}{\sqrt{1-x^{2}}}\right)\right\} d x\)
\(=\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} \int \sqrt{1-x^{2}}+\left(\frac{-1}{\sqrt{1-x^{2}}}\right) d x\)
\(=\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2} \mathrm{I}_{1}-\frac{1}{2} \cos ^{-1} x \ldots(1)\)
Now, \( \mathrm{I}_{1}=\int \sqrt{1-x^{2}} d x \)
\( \mathrm{I}_{1}=x \sqrt{1-x^{2}}-\int \frac{d}{d x} \sqrt{1-x^{2}} \int x d x\)
\( \mathrm{I}_{1}=x \sqrt{1-x^{2}}-\int \frac{-2 x}{2 \sqrt{1-x^{2}}} x \cdot d x\)
\(=x \sqrt{1-x^{2}}-\int \frac{-x^{2}}{\sqrt{1-x^{2}}} x \cdot d x\)
\(=x \sqrt{1-x^{2}}-\int \frac{1+x^{2}-1}{\sqrt{1-x^{2}}} x \cdot d x\)
\(=x \sqrt{1-x^{2}}-\left\{\int \sqrt{1-x^{2}} d x+\int \frac{d x}{\sqrt{1-x^{2}}}\right\}\)
\( \mathrm{I}_{1}=x \sqrt{1-x^{2}}-\left\{I_{1}+\cos ^{-1} x\right\}\)
\( \mathrm{I}_{2}=\frac{x}{2} \sqrt{1-x^{2}}-\frac{1}{2} \cos ^{-1} x\)
Now, substituting in (1), we get,
\( \mathrm{I}=\frac{x^{2} \cos ^{-1} x}{2}-\frac{1}{2}\left(\frac{x}{2} \sqrt{1-x^{2}}-\frac{1}{2} \cos ^{-1} x\right)-\frac{1}{2} \cos ^{-1} x\)
\(=\frac{\left(2 x^{2}-1\right)}{4} \cos ^{-1} x-\frac{x}{4} \sqrt{1-x^{2}}+C\)
10. Integrate the functions.
\(\left(\sin ^{-1} x\right)^{2}\)
Answer
Let \( \mathrm{I}=\left(\sin ^{-1} x\right)^{2} \)
Now, integrating by parts, we get,
\(\mathrm{I}=\left(\sin ^{-1} x\right) \int x d x-\int\left\{\left(\frac{d}{d x}\left(\sin ^{-1} x\right)^{2}\right) \cdot \int x d x\right\} d x\)
\(=\left(\sin ^{-1} x\right)^{2} \cdot x-\int \frac{2 \sin ^{-1} x}{\sqrt{1-x^{2}}} \cdot x d x\)
\(=x\left(\sin ^{-1} x\right)^{2}+\int \sin ^{-1} x\left(\frac{-2 x}{\sqrt{1-x^{2}}}\right) d x\)
\(=x\left(\sin ^{-1} x\right)^{2}+\left[\sin ^{-1} x \int\left(\frac{-2 x}{\sqrt{1-x^{2}}}\right) d x-\int\left\{\left(\frac{d}{d x}\left(\sin ^{-1} x\right)^{2}\right) \right.\right.\)\(\left.\left.\int\left(\frac{-2 x}{\sqrt{1-x^{2}}}\right) d x\right\} d x\right]\)
\(=x\left(\sin ^{-1} x\right)^{2}+\left[\sin ^{-1} x \cdot 2 \sqrt{1-x^{2}}-\int \frac{1}{\sqrt{1-x^{2}}} \cdot 2\left(\sqrt{1-x^{2}}\right) d x\right]\)
\(=x\left(\sin ^{-1} x\right)^{2}+2 \sqrt{1-x^{2}} \sin ^{-1} x-\int 2 d x\)
\(=x\left(\sin ^{-1} x\right)^{2}+2 \sqrt{1-x^{2}} \sin ^{-1} x-2 x+C\)
11. Integrate the functions.
\(\frac{x \cos ^{-1} x}{\sqrt{1-x^{2}}}\)
Answer
Let \( \mathrm{I}=\frac{x \cos ^{-1} x}{\sqrt{1-x^{2}}} \)
\(\mathrm{I}=-\frac{1}{2} \int \frac{-2 x}{\sqrt{1-x^{2}}} \cdot \cos ^{-1} x d x\)
Now, integrating by parts, we get,
\(\mathrm{I}=-\frac{1}{2} \int \cos ^{-1} x \int \frac{-2 x}{\sqrt{1-x^{2}}} d x-\int\left\{\left(\frac{d}{d x} \cos ^{-1} x\right) \int \frac{-2 x}{\sqrt{1-x^{2}}} d x\right\} d x\)
\(=-\frac{1}{2}\left[\cos ^{-1} x \cdot 2 \sqrt{1-x^{2}}-\int \frac{-1}{\sqrt{1-x^{2}}} \cdot 2 \sqrt{1-x^{2}} d x\right]\)
\(=-\frac{1}{2}\left[2 \sqrt{1-x^{2}} \cos ^{-1} x+\int 2 d x\right]\)
\(=\frac{1}{2}\left[2 \sqrt{1-x^{2}} \cos ^{-1} x+2 x\right]+\mathrm{C}\)
\(=-\left[\sqrt{1-x^{2}} \cos ^{-1} x+x\right]+\mathrm{C}\)
12. Integrate the functions.
\(x \sec ^{2} x\)
Answer
Let \( \mathrm{I}=x \sec ^{2} x \)
Now, integrating by parts, we get,
\(\mathrm{I}=x \int \sec ^{2} x d x-\int\left\{\left(\frac{d}{d x} x\right) \int \sec ^{2} x d x\right\} d x\)
\(=x \tan x-\int 1 \tan x d x\)
\(=x \tan x+\log |\cos x|+C\)
13. Integrate the functions.
\(\tan ^{-1} x\)
Answer
Let \( \mathrm{I}=\tan ^{-1} x \)
So, now integrating by parts, we get,
\(\mathrm{I}=\tan ^{-1} x \int 1 \cdot d x-\int\left\{\left(\frac{d}{d x} \tan ^{-1} x\right) \int 1 \cdot d x\right\} d x\)
\(=\tan ^{-1} x \cdot x-\int \frac{1}{1+x^{2}} x \cdot d x\)
\(=x \tan ^{-1} x-\frac{1}{2} \int \frac{2 x}{1+x^{2}} d x\)
\(=x \tan ^{-1} x-\frac{1}{2} \log \left|1+x^{2}\right|+C\)
\(=x \tan ^{-1} x-\frac{1}{2} \log \left(1+x^{2}\right)+C\)
14. Integrate the functions.
\(x(\log x)^{2}\)
Answer
Let \( \mathrm{I}=x(\log x)^{2} \)
Integrating by parts, we get,
\(\mathrm{I}=\frac{x^{2}}{2}(\log x)^{2}-\left[\log x \int x d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int x d x\right\} d x\right]\)
\(=\frac{x^{2}}{2}(\log x)^{2}-\left[\frac{x^{2}}{2}-\log x-\int \frac{1}{x} \cdot \frac{x^{3}}{2} d x\right]\)
\(=\frac{x^{2}}{2}(\log x)^{2}-\frac{x^{2}}{2} \log x+\frac{1}{2} \int x \cdot d x\)
\(=\frac{x^{2}}{2}(\log x)^{2}-\frac{x^{2}}{2} \log x+\frac{x^{2}}{4}+C\)
15. Integrate the functions.
\(\left(x^{2}+1\right) \log x\)
Answer
Let \( \mathrm{I}=\int\left(x^{2}+1\right) \log x d x=\int x^{2} \log x d x+\int \log x d x \)
Now, Let \( \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2} \ldots \) (1)
Where, \( \mathrm{I}_{1}=\int x^{2} \log x d x \) and \( \mathrm{I}_{2}=\int \log x d x \)
So, now
\(\mathrm{I}_{1}=\int x^{2} \log x d x\)
Integrating by parts, we get,
\(\mathrm{I}_{1}=\log x-\int x^{2} d x-\iint\left\{\left(\frac{d}{d x} \log x\right) \int x d x\right\} d x\)
\(=\log x \cdot \frac{x^{3}}{3}-\int \frac{1}{x} \cdot \frac{x^{3}}{3} d x\)
\(=\frac{x^{3}}{3} \log x-\frac{1}{3}\left(\int x^{2} \cdot d x\right)\)
\(=\frac{x^{3}}{3} \log x \frac{x^{3}}{9}+C_{1} \ldots(2)\)
Now, \( \mathrm{I}_{2}=\int \log x d x \)
Integrating by parts, we get,
\(\mathrm{I}_{2}=\log x \int 1 \cdot d x-\int\left\{\left(\frac{d}{d x} \log x\right) \int 1 \cdot d x\right\}\)
\(=\log x \cdot x-\int \frac{1}{x} \cdot x d x\)
\(=x \log x-\int 1 . d x\)
\(=x \log x+C_{2} \ldots(3\)
Now putting the value of \( \mathrm{I}_{1} \) and \( \mathrm{I}_{2} \), in (1), we get,
\(\mathrm{I}=\frac{x^{3}}{3} \log x-\frac{x^{3}}{9}+C_{1}+x \log x-x+C_{2}\)
\(=\frac{x^{3}}{3} \log x-\frac{x^{3}}{9}+x \log x-x+\left(C_{1}+C_{2}\right)\)
\(=\left(\frac{x^{3}}{3}+x\right) \log x-\frac{x^{3}}{9}-x+C\)
16. Integrate the functions.
\(e^{x}(\sin x+\cos x)\)
Answer
\(\mathrm{I}=\int e^{x}(\sin x+\cos x) d x\)
Now,
Let \( \sin x=f(x) \)
\(\Rightarrow f^{\prime}(x)=\cos x \)
We know that,
\(\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+C\)
Thus,
\(\int e^{x}(\sin x+\cos x) d x=e^{x} \sin x+C\)
integrals class 12 ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.6 || ex 7.6 class 12 maths ncert solutions || exercise 7.6 class 12 maths ncert solutions || class 12 maths exercise 7.6
Download the Math Ninja App Now
17. Integrate the functions.
\(\frac{x e^{x}}{(1+x)^{2}}\)
Answer
\(\mathrm{I}=\int \frac{x e^{x}}{(1+x)^{2}} d x=\int e^{x}\left\{\frac{x}{(1+x)^{2}}\right\} d x\)
\(=\int e^{x}\left\{\frac{1+x-1}{(1+x)^{2}}\right\} d x\)
\(\int e^{x}\left\{\frac{1}{1+x}-\frac{1}{(1+x)^{2}}\right\} d x\)
Now,
Let \( \frac{1}{1+x}=f(x) \)
\(\Rightarrow f^{\prime}(x)=\frac{1}{(1+x)^{2}} \)
We know that,
\(\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+C\)
Thus,
\(\int \frac{x e^{x}}{(1+x)^{2}} d x=\frac{e^{x}}{1+x}+\mathrm{C}\)
18. Integrate the functions.
\(e^{x}\left(\frac{1+\sin x}{1+\cos x}\right)\)
Answer
\(e^{x}\left(\frac{1+\sin x}{1+\cos x}\right)\)
\(=e^{x}\left(\frac{\sin ^{2} \frac{x}{2} \cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}\right)\)
\(=\frac{e^{x}\left(\sin \frac{x}{2} \cos \frac{x}{2}\right)^{2}}{2 \cos ^{2} \frac{x}{2}}\)
\(=\frac{1}{2} e^{x} \cdot\left(\frac{\sin \frac{x}{2} \cos \frac{x}{2}}{\cos \frac{x}{2}}\right)^{2}\)
\(=\frac{1}{2} e^{x}\left(\tan \frac{x}{2}+1\right)^{2}\)
\(=\frac{1}{2} e^{x}\left[1+\tan ^{2} \frac{x}{2}+2 \tan \frac{x}{2}\right]\)
\(=\frac{1}{2} e^{x}\left[\sec ^{2} \frac{x}{2}+2 \tan \frac{x}{2}\right]\)
\( \Rightarrow e^{x}\left[\frac{1+\sin x}{1+\cos x}\right]=\frac{1}{2} e^{x}\left[\sec ^{2} \frac{x}{2}+2 \tan \frac{x}{2}\right] \)
Now,
Let \( \tan \frac{x}{2}=f(x) \)
\(\Rightarrow f^{\prime}(x)=\frac{1}{2} \sec ^{2} \frac{x}{2} \)
We know that,
\(\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+C\)
Thus,
\(\int e^{x}\left[\frac{1+\sin x}{1+\cos x}\right] d x=e^{x} \tan \frac{x}{2}+C\)
19. Integrate the functions.
\(e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right)\)
Answer
Let \( \mathrm{I}=\int e^{x}\left[\frac{1}{x}-\frac{1}{x^{2}}\right] d x \)
Now, let
\(\frac{1}{x}=f(x) \)
\(\Rightarrow f^{\prime}(x)=\frac{1}{x^{2}}\)
We know that,
\(\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+C\)
Thus,
\(\mathrm{I}=\frac{e^{x}}{x}+\mathrm{C}\)
20. Integrate the functions.
\(\frac{(x-3) e^{x}}{(x-1)^{3}}\)
Answer
\(\int e^{x}\left[\frac{(x-3)}{(x-1)^{3}}\right] d x=\int e^{x}\left\{\frac{x-1-2}{(x-1)^{3}}\right\} d x\)
\(=\int e^{x}\left\{\frac{1}{(x-1)^{2}}-\frac{2}{(x-1)^{3}}\right\}\)
Now, let \( \mathrm{f}(x)=\frac{1}{(x-1)^{2}} \)
\(\Rightarrow f^{\prime}(x)=\frac{2}{(x-1)^{3}}\)
We know that,
\(\int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+C\)
Thus,
\(\int e^{x}\left\{\frac{(x-3)}{(x-1)^{3}}\right\} d x=\frac{e^{x}}{(x-1)^{2}}+C\)
21. Integrate the functions.
\(e^{2 x} \sin x\)
Answer
Let \( \mathrm{I}=e^{2 x} \sin x \)
Integrating by parts, we get,
\(\mathrm{I}=\sin x \int e^{2 x} d x-\int\left\{\left(\frac{d}{d x} \sin x\right) \int e^{2 x} d x\right\} d x\)
\(=\sin x \cdot \frac{e^{2 x}}{2}-\int \cos x \cdot \frac{e^{2 x}}{2} d x\)
Again, integrating by parts, we get,
\(\mathrm{I}=\frac{e^{2 x} \sin x}{2}-\frac{1}{2}\left[\cos \int e^{2 x} d x-\int\left\{\left(\frac{d}{d x} \sin x\right) \int e^{2 x} d x\right\} d x\right]\)
\(=\frac{e^{2 x} \sin x}{2}-\frac{1}{2}\left[\cos x \cdot \frac{e^{2 x}}{2}-\int(-\sin x) \cdot \frac{e^{2 x}}{2} d x\right]\)
\(=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{2}-\frac{1}{4} \mathrm{I}\)
\(\Rightarrow \mathrm{I}+\frac{1}{4} \mathrm{I}=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{2}\)
\(\Rightarrow \frac{5}{4} \mathrm{I}=\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{2}\)
\(\Rightarrow \frac{4}{5}\left[\frac{e^{2 x} \sin x}{2}-\frac{e^{2 x} \cos x}{2}\right]\)
22. Integrate the functions.
\(\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)\)
Answer
Let \( x=\tan \theta \)
\(\Rightarrow \mathrm{d}x=\sec ^{2} \theta d \theta\)
Thus,
\(\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan \theta}\right)=\sin ^{-1}(\sin 2 \theta)=2 \theta\)
\(\Rightarrow \int \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right) d x=\int 2 \theta \mathrm{d} \theta=2 \int \theta \sec ^{2} \theta \mathrm{d} \theta\)
Integrating by parts, we get
\(2\left[\theta \cdot \int \theta \sec ^{2} \theta \mathrm{d} \theta-\int\left\{\left(\frac{d}{d \theta}\right) \int \sec ^{2} \theta \mathrm{d} \theta\right\} \mathrm{d} \theta\right]\)
\(=2\left[\theta \cdot \tan \theta-\int \tan \theta d \theta\right]\)
\(=2[\theta \tan \theta+\log |\cos \theta|+\mathrm{C}]\)
\(=2\left[x \tan ^{-1} x+\log \left|\frac{1}{\sqrt{1+x^{2}}}\right|+C\right]\)
\(=2 x \tan ^{-1} x+2 \log \left(1+x^{2}\right)^{\frac{1}{2}}+C\)
\(=2 x \tan ^{-1} x+2\left[-\frac{1}{2} \log (1+x)^{2}\right]+C\)
\(=2 x \tan ^{-1} x+\log \left(1+x^{2}\right)+C\)
23. choose the correct Answer:
\( \int x^{2} e^{x^{3}} d x \) equals
A. \( \frac{1}{3} e^{x^{3}}+C \) B. \( \frac{1}{3} e^{x^{2}}+C \) C. \( \frac{1}{2} e^{x^{3}}+\mathrm{C} \) D. \( \frac{1}{2} e^{x^{2}}+C \)
Answer
Let \( \mathrm{I}=\int x^{2} e^{x^{3}} d x \)
Also, let \( x^{3}=\mathrm{t} \)
\(\Rightarrow 3 x^{2} \mathrm{d}x=\mathrm{dt}\)
Thus,
\(\Rightarrow \mathrm{I}=\frac{1}{3} \int e^{t} d t\)
\(\Rightarrow \frac{1}{3}\left(e^{t}\right)+C\)
\(\Rightarrow \frac{1}{3}\left(e^{x^{3}}\right)+C\)
24. choose the correct answer:
\( \int e^{x} \sec x(1+\tan x) d x \) equals
A. \( e^{x} \cos x+C \) B. \( e^{x} \sec x+C \) C. \( e^{x} \sin x+C \) D. \( e^{x} \tan x+C \)
Answer
\(\int e^{x} \sec x(1+\tan x) d x\)
Let \( \mathrm{I}=\int e^{x} \sec x(1+\tan x) d x=\int e^{x}(\sec x+\sec x \tan x) d x \)
Also, let \( \sec x=\mathrm{f}(x) \)
\(\Rightarrow \sec x \tan x=\mathrm{f}^{\prime}(x)\)
We know that, \( \int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)+C \)
Thus, \( \mathrm{I}=e^{x} \sec x+\mathrm{C} \)
integrals class 12 ncert solutions || class 12 maths ncert solutions chapter 7 exercise 7.6 || ex 7.6 class 12 maths ncert solutions || exercise 7.6 class 12 maths ncert solutions || class 12 maths exercise 7.6
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top