Class 11 Maths Chapter 2 Miscellaneous Exercise

Class 11 maths ch 2 miscellaneous exercise solutions || class 11 maths relations and functions || ncert exemplar class 11 maths || class 11 maths chapter 2 miscellaneous exercise​ || ncert solution for class 11 maths chapter 2

Looking for NCERT Class 11 Maths Chapter 2 Miscellaneous Exercise solutions? You’re in the right place! This section offers complete, easy-to-follow solutions for all questions from the Miscellaneous Exercise of Chapter 2 – Relations and Functions. This part of the chapter helps you revise and apply key concepts like types of relations, functions, domain, range, and more. Our Class 11 Maths NCERT solutions are designed to build your understanding step by step, ensuring you’re fully prepared for your exams. Whether you’re reviewing concepts or practicing to improve accuracy, these solutions will support your learning journey effectively. View or download the full solutions now and strengthen your foundation in Relations and Functions!

class 11 maths chapter 2 miscellaneous exercise​
class 11 maths ch 2 miscellaneous exercise solutions || class 11 maths relations and functions || ncert exemplar class 11 maths || class 11 maths chapter 2 miscellaneous exercise​ || ncert solution for class 11 maths chapter 2
Download the Math Ninja App Now

Miscellaneous Exercise

1. The relation f is defined by \( \mathrm{f}(x)=\left\{\begin{array}{l}x^{2}, 0 \leq x \leq 3 \\ 3 x, 3 \leq x \leq 10\end{array}\right. \)
The relation g is defined by \( \mathrm{g}(x)=\left\{\begin{array}{l}x^{2}, 0 \leq x \leq 2 \\ 3 x, 2 \leq x \leq 10\end{array}\right. \)
Show that f is a function and g is not a function.
Answer
Given: \( \mathrm{f}(x)=\left\{\begin{array}{c}x^{2}, 0 \leq x \leq 3 \\ 3 x, 3 \leq x \leq 10\end{array}\right. \) and \( \mathrm{g}(x)=\left\{\begin{array}{c}x^{2}, 0 \leq x \leq 2 \\ 3 x, 2 \leq x \leq 10\end{array}\right. \)
As \( \mathrm{f}(x)=\left\{\begin{array}{l}x^{2}, 0 \leq x \leq 3 \\ 3 x, 3 \leq x \leq 10\end{array}\right. \)
\( \Rightarrow \mathrm{f}(x)=x^2 \) for \( 0 \leq x < 3 \)
And \( f(x)=3 x \) for \( 3 \leq x < 10 \)
At \( x=3, \mathrm{f}(x)=x^2=3^2=9 \)
Also, at \( x=3, \mathrm{f}(x)=3 x=3 \times 3=9 \)
Hence, we see for \( 0 \leq x \leq 10, f(x) \) has unique images. Thus, by definition of a function the given relation is function.
Now,
As \( \mathrm{g}(x)=\left\{\begin{array}{l}x^{2}, 0 \leq x \leq 2 \\ 3 x, 2 \leq x \leq 10\end{array}\right. \)
\( \Rightarrow \mathrm{g}(x)=x^2 \) for \( 0 \leq x < 2 \)
And \( \mathrm{g}(x)=3 \) xfor \( 2 \leq x < 10 \)
At \( x=2, \mathrm{~g}(x)=x^2=2^2=4 \)
Also, at \( x=2, \mathrm{~g}(x)=3 x=3 \times 2=6 \)
Hence, element 2 of the domain of relation \( g(x) \) corresponds to two different images i.e. 4 and 6.
because for \( 0 \leq x \leq 10, \mathrm{f}(x) \) does not have unique images. Thus, by definition of a function the given relation is not a function.
2. If \( \mathrm{f}(x)=x^2 \), find \( \frac{f(1.1)-f(1)}{91.1-1} \)
Answer
Given: \( \mathrm{f}(x)=x^2 \)
Then
\(\frac{f(1.1)-f(1)}{(1.1-1)}=\frac{(1.1)^{2}-(1)^{2}}{0.1}\)
\(=\frac{1.21-1}{0.1}=\frac{0.21}{0.1}=2.1\)
3. Find the domain of the function
\(\mathrm{f}(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}\)
Answer
Given: \( \mathrm{f}(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12} \)
\(f(x)=\frac{x^{2}+2 x+1}{x^{2}-8 x+12}\)
\(=\frac{x^{2}+2 x+1}{x^{2}-6 x-2 x+12}=\frac{x^{2}+2 x+1}{x(x-6)-2(x-6)}\)
\(\quad \mathrm{f}(x)=\frac{x^{2}+2 x+1}{(x-2)(x-6)}\)
Hence, we see \( f(x) \) can be defined at all real numbers except at \( x=2 \) and \( x=6 \). Hence the domain of \( f(x) \) is \( (R-\{2,6\}) \).
class 11 maths ch 2 miscellaneous exercise solutions || class 11 maths relations and functions || ncert exemplar class 11 maths || class 11 maths chapter 2 miscellaneous exercise​ || ncert solution for class 11 maths chapter 2
Download the Math Ninja App Now
4. Find the domain and the range of the real function \( f \) defined by \( f(x) =\sqrt{(x-1)}\)
Answer
Given: \( \mathrm{f}(x)=\sqrt{(x-1)} \)
To Find: Domain and Range of \( f(x) \) Now for real values of \( f(x), x \geq 1 \).
Thus,
\( \sqrt{ }(x-1) \) is defined for \( x \geq 1 \).
Hence, the domain of f is the set of all real numbers greater than or equal to 1 i.e., the domain of \( \mathrm{f}=[1, \infty) \).
Now for Range,
As, \( x \geq 1, x-1 \geq 0 \) And thus \( \sqrt{ } x-1 \geq 0 \)
Hence, the Range of \( f \) is the set of all real numbers greater than or equal to 0 i.e., the Range of \( f=[0, \infty) \).
5. Find the domain and the range of the real function \( f \) defined by.
Answer
Given: \( \mathrm{f}(x)=|x-1| \)
As we see \( |x-1| \) is defined for all real numbers (R).
Hence the domain of \( \mathrm{f}=\mathrm{R} \).
Also, for \( x \in \mathrm{R},|x-1| \) assumes all real numbers.
Hence, the range of \( f \) is set of all non-negative real numbers.
Range of \( \mathrm{f}=[0, \infty) \)
6. Let \( \mathrm{f}=\left\langle\left(x, \frac{x^{2}}{1+x^{2}}\right): x \varepsilon R\right\rangle \) be a function from R into R. Determine the range of \( f \).
Answer
Given: \( \mathrm{f}=\left\{\left(x, \frac{x^{2}}{1+x^{2}}\right): x \in R\right\} \)
To Find: \( \mathrm{f}=\left\{\left(x, \frac{x^{2}}{1+x^{2}}\right): x \in R\right\} \)
Range of any function is the set of values obtained after mapping is done in domain of the function So every value of the co domain that are being mapped is Range of the function for finding the range of any function Let \( y=f(x) \) and then find the values of \( y \) for
Let, \( y=\frac{x^{2}}{1+x^{2}} \)
Cross multiplying we get,
\(y\left(1+x^{2}\right)=x^{2}\)
which \(x\) exists. \( y+yx^{2}=x^{2} \)
\(x^{2}-yx^{2}=y\)
\(x^{2}=\frac{y}{1-y}\)
\(x= \pm \sqrt{\frac{y}{1-y}}\)
Now, \(1 - y\) should be greater than zero and \(y\) should be greater than and equal to zero for \(x\) to exist because other than those values the \(x\) will be imaginary
Thus, \( 1-y > 0 y < 1 \) and, \( y \geq 0 \) Hence, \( 0 \leq y < 1 \) will be the range of \( f(x) \)
7. Let \( f, g: R \rightarrow R \) be defined, respectively by \( f(x)=x+1, g(x)=2 x- 3\). Find \( \mathrm{f}+\mathrm{g}, \mathrm{f}-\mathrm{g} \) and \( \frac{f}{g} \)
Answer
Given: \( \mathrm{f}(x)=x+1, \mathrm{~g}(x)=2 x-3 \).
To find: \( f+g, f-g \),
\((\mathrm{f}+\mathrm{g}) x=\mathrm{f}(x)+\mathrm{g}(x)\)
\((\mathrm{f}+\mathrm{g}) x=x+1+2 x-3\)
\(\Rightarrow(\mathrm{f}+\mathrm{g}) x=3 x-2\)
And,
\((\mathrm{f}-\mathrm{g}) x=\mathrm{f}(x)-\mathrm{g}(x)\)
\((f-g) x=(x+1)-(2 x-3)\)
\(\Rightarrow(\mathrm{f}-\mathrm{g}) x=x+1-2 x+3\)
\(\Rightarrow(\mathrm{f}-\mathrm{g}) x=4-x\)
\(\text { And, }\left(\frac{f}{g}\right) x=\frac{f(x)}{g(x)}, g(x) \neq 0, x \in R\)
\(\left(\frac{f}{g}\right) x=\frac{x+1}{2 x-3}, 2 x-3 \neq 0 \text {, or } 2 x \neq 3 \text { or } x \neq \frac{3}{2}\)
class 11 maths ch 2 miscellaneous exercise solutions || class 11 maths relations and functions || ncert exemplar class 11 maths || class 11 maths chapter 2 miscellaneous exercise​ || ncert solution for class 11 maths chapter 2
Download the Math Ninja App Now
8. Let \( \mathrm{f}=\{(1,1),(2,3),(0,-1),(-1,-3)\} \) be a function from \(Z\) to \(Z\) defined by \( f(x)=a x+b \), for some integers \( a, b \). Determine \( a, b \).
Answer
Given: \( \mathrm{f}=\{(1,1),(2,3),(0,-1),(-1,-3)\} \)
\(\mathrm{f}(x)=\mathrm{a}x+\mathrm{b}\)
\((1,1) \in \mathrm{f} \Rightarrow \text { for } x=1, \mathrm{f}(x)=1\)
\(\Rightarrow 1=\mathrm{a}(1)+\mathrm{b}\)
\(\Rightarrow \mathrm{a}+\mathrm{b}=1 \ldots (1)\)
Similarly, \( (0,-1) \in \mathrm{f} \Rightarrow \) for \( x=0, \mathrm{f}(x)=-1 \)
\(\Rightarrow-1=\mathrm{a}(0)+\mathrm{b}\)
\(\Rightarrow \mathrm{b}=-1 \Rightarrow \mathrm{a}-1=1 \text { (from 1) }\)
\(\Rightarrow \mathrm{a}=2\)
Hence \( \mathrm{a}=2 \) and \( \mathrm{b}=-1 \).
9. Let \( R \) be a relation from \( N \) to \( N \) defined by \( R=\{(a, b): a, b, \varepsilon N \) and \( \mathrm{a}=\mathrm{b}^2\} \). Are the following true?
(i) \( (\mathrm{a} \), a) \( \varepsilon \mathrm{R} \), for all a \( \varepsilon \mathrm{N} \)
(ii) \( (\mathrm{a}, \mathrm{b}) \varepsilon \mathrm{R} \), implies \( (\mathrm{b}, \mathrm{a}) \varepsilon \mathrm{R} \)
(iii) (a, b) \( \varepsilon \mathrm{R},(\mathrm{b}, \mathrm{c}) \varepsilon \mathrm{R} \) implies (a, c) \( \varepsilon \mathrm{R} \).
Justify your answer in each case.
Answer
Given: \( \mathrm{R}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathrm{N} \) and \( \mathrm{a}=\mathrm{b}^2\} \)
(i) \((a, a) € R\), for all a \( \epsilon \mathrm{N} \)
As we can see that \( 3 \in \mathrm{N} \) but \( 3 \neq 3^2=9 \).
Hence, the statement is not true.
(ii) (a, b) \( \in \) R, implies (b, a) \( \in R \)
As we can see that \( (4,2) \in \mathrm{N} \) and \( 4=2^2=4 \) but \( 2 \neq 4^2=16 \) hence, \( (2,4) \) does not belong to N .
Hence, the statement is not true.
(iii) \((a, b) \in R , (b, c) R \) implies (a, c) \( \in \) R.
As we see, \( (9,3) \in R,(16,4) \in R \) because \( 3,4,9,16 \in \mathrm{N} \) and \( 9=3^2 \) and \( 16=4^2 \).
Now, \( 9 \neq 4^2=16 \); therefore, \( (9,4) \) does not belong to N .
Hence, the statement is not true.
10. Let \( \mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{1,5,9,11,15,16\} \) and \( \mathrm{f}=\{(1,5),(2,9) \), \( (3,1),(4,5),(2,11)\} \)
Are the following true?
(i) \( f \) is a relation from \( A \) to \( B \)
(ii) f is a function from A to B .
Justify your answer in each case.
Answer
Given: \( \mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{1,5,9,11,15,16\} \) and \( \mathrm{f}=\{(1,5),(2,9),(3,1) \), \( (4,5),(2,11)\} \)
Now, \( \mathrm{A} \times \mathrm{B}=\{(1,1),(1,5),(1,9),(1,11),(1,15),(1,16),(2,1),(2,5) ,\) \( (2,9),(2,11),(2,15),(2,16),(3,1),(3,5),(3,9),(3,11),(3,15),(3,16) ,\) \( (4,1),(4,5),(4,9),(4,11),(4,15),(4,16) \).
(i) f is a relation from A to \( B \).
\(f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}\)
A relation from a non -empty set A to a non \( = \) empty set B is a subset of the Cartesian product. \( \mathrm{A} \times \mathrm{B} \).
And we can see \( f \) is a subset of \( \mathrm{A} \times \mathrm{B} \).
Hence \( f \) is a relation from \( A \) to \( B \) statement is true.
(ii) f is a function from A to \( B \).
\(f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}\)
As we observe that same first element i.e. 2 corresponds to two different images that is 9 and 11 . Thus f is not a function from A to B .
11. Let \( f \) be the subset of \( Z \times Z \) defined by \( f=\{(a b, a+b): a, b, Z\} \). Is \( f \) a function from \( Z \) to \( Z \) ? Justify your answer.
Answer
Given: \( \mathrm{f}=\{(\mathrm{ab}, \mathrm{a}+\mathrm{b}): \mathrm{a}, \mathrm{b} \in Z\} \)
For value \( 2,6,-2,-6 \in Z \),
\(f=\{(2 \times 6,2+6),(-2 \times-6,-2-6),(2 \times-6,2-6),(-2 \times 6,-2+6) .\)
\(\Rightarrow \mathrm{f}=\{(12,8),(12,-8),(-12,-4),(-12,4)\)
Here we observe that same first element i.e. 12 corresponds to two different images that is 8 and -8 . Thus f is not a function.
12. Let \( A=\{9,10,11,12,13\} \) and let \( f: A \rightarrow N \) be defined by \( f(n)= \) the highest prime factor of \( n \). Find the range of \( f \).
Answer
Given: \( A=\{9,10,11,12,13\} \)
\( f: A \rightarrow N \) be defined by \( f(n)= \) the highest prime factor of \( n .\)
Prime factor of \( 9=3 \)
Prime factor of \( 10=2,5 \)
Prime factor of \( 11=1 \)
Prime factor of \( 12=2,3 \)
Prime factor of \( 13=13 \)
\( \mathrm{f}(\mathrm{n})= \) the highest prime factor of n .
Hence,
\( \mathrm{f}(9)= \) the highest prime factor of \( 9=3 \)
\( \mathrm{f}(10)= \) the highest prime factor of \( 10=5 \)
\( \mathrm{f}(11)= \) the highest prime factor of \( 11=1 \)
\( \mathrm{f}(12)= \) the highest prime factor of \( 12=3 \)
\( \mathrm{f}(13)= \) the highest prime factor of \( 13=13 \)
As the range of f is the set of all \( \mathrm{f}(\mathrm{n}) \), where \( \mathrm{n} \in \mathrm{A} \).
Thus, the range of f is: \( \{3,5,11,13\} \).
class 11 maths ch 2 miscellaneous exercise solutions || class 11 maths relations and functions || ncert exemplar class 11 maths || class 11 maths chapter 2 miscellaneous exercise​ || ncert solution for class 11 maths chapter 2
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top