Class 11 maths exercise 3.1 solutions | exercise 3.1 class 11 maths solutions | class 11 ch 3 exercise 3.1 solutions | class 11 chapter 3 exercise 3.1 solution | class 11 maths ncert solutions chapter 3 | ncert solutions for class 11 maths chapter 3 | ncert exemplar class 11 maths | trigonometric functions class 11
If you’re looking for Class 11 Maths Exercise 3.1 solutions, you’ve come to the right place! Exercise 3.1 from Class 11 Chapter 3 – Trigonometric Functions is a crucial part of the NCERT syllabus. This chapter builds the foundation for understanding angles, radian and degree measure, and trigonometric identities. Our Exercise 3.1 Class 11 Maths solutions are designed to help students grasp each concept clearly with step-by-step explanations. Whether you’re solving NCERT exemplar Class 11 Maths questions or simply revising for exams, these NCERT solutions for Class 11 Maths Chapter 3 will strengthen your problem-solving skills. Covering every question from the Class 11 Ch 3 Exercise 3.1 Solutions, this guide is an essential tool for mastering Trigonometric Functions Class 11 and securing good marks.

trigonometric functions class 11 || class 11 maths ncert solutions chapter 3 || class 11 ch 3 exercise 3.1 solutions || ncert solutions for class 11 maths chapter 3 || class 11 chapter 3 exercise 3.1 solution || exercise 3.1 class 11 maths solutions || class 11 maths exercise 3.1 solutions || ncert exemplar class 11 maths
Exercise 3.1
1.
\( 25^{\circ} \)
We know that \( 180^{\circ}=\pi \) radian
\( \therefore 25^{\circ}=\frac{\pi}{180} \times 25 \) radian \( =\frac{5 \pi}{36} \) radian
\( -47^{\circ} 30^{\prime} \)
\( -47^{\circ} 30^{\prime}-47 \frac{1}{2} \)
\( =\frac{-95}{2} \) degree
Since \( 180^{\circ}=\pi \) radian
\( \frac{-95}{2} \) degree \( =\frac{\pi}{180} \times\left(\frac{-95}{2}\right) \) radian \( =\frac{-19}{36 \times 2} \pi \) radian \( =\frac{-19}{72} \pi \) radian
\( \therefore-47^{\circ} 30^{\prime}=\frac{-19}{72} \pi \) radian
\( 240^{\circ} \)
We know that \( 180^{\circ}=\pi \) radian
\( \therefore 240^{\circ}=\frac{\pi}{180} \times 240 \) radian \( =\frac{4}{3} \pi \) radian
\( 520^{\circ} \)
We know that \( 180^{\circ}=\pi \) radian
\( \therefore 520^{\circ}=\frac{\pi}{180} \times 520 \) radian \( =\frac{26}{9} \pi \) radian
trigonometric functions class 11 || class 11 maths ncert solutions chapter 3 || class 11 ch 3 exercise 3.1 solutions || ncert solutions for class 11 maths chapter 3 || class 11 chapter 3 exercise 3.1 solution || exercise 3.1 class 11 maths solutions || class 11 maths exercise 3.1 solutions || ncert exemplar class 11 maths
2.
\( \frac{ 11 }{ 16 } \)
We know that \( 180^{\circ}=\pi \) radian
\( \therefore \frac{11}{16} \) radian \( =\frac{180}{\pi} \times \frac{11}{16} \) degree \( =\frac{45 \times 11}{\pi \times 4} \) degree
\( =\frac{45 \times 11 \times 7}{22 \times 4} \) degree \( =\frac{315}{8} \) degree
\( =36 \frac{3}{8} \) degree
\( =39^{\circ}+\frac{3 \times 60}{8} \) minutes \( \left[1^{\circ}=60^{\prime}\right] \)
\( =39^{\circ}+22^{\prime}+\frac{1}{2} \) minutes
\( =39^{\circ} 22^{\prime} 30^{\prime \prime} \)
\(-4\)
We know that \( \pi \) radian \( =180^{\circ} \)
\(-4 \text { radian }=\frac{180}{\pi} \times(-4) \text { degree }=\frac{180 \times 7(-4)}{22} \text { degree }\)
\(=\frac{-2520}{11} \text { degree }=-229 \frac{1}{11} \text { degree }\)
\(=-229^{\circ}+\frac{1 \times 60}{11} \text { degree }\left[1^{\circ}=60^{\prime}\right]\)
\(=-229^{\circ}+5^{\prime}+\frac{5}{11} \text { minutes }\)
\(=-229^{\circ} 5^{\prime} 27^{\prime}\)
\( \frac{ 5 \pi }{ 3 } \)
We know that \( \pi \) radian \( =180^{\circ} \)
\(\therefore \frac{5 \pi}{3} \text { radian }=\frac{180}{\pi} \times \frac{5 \pi}{3} \text { degree }=300^{\circ}\)
\( \frac{ 7 \pi }{ 6 } \)
We know that \( \pi \) radian \( =180^{\circ} \)
\(\therefore \frac{7 \pi}{6} \text { radian }=\frac{180}{\pi} \times \frac{7 \pi}{6}=210^{\circ}\)
trigonometric functions class 11 || class 11 maths ncert solutions chapter 3 || class 11 ch 3 exercise 3.1 solutions || ncert solutions for class 11 maths chapter 3 || class 11 chapter 3 exercise 3.1 solution || exercise 3.1 class 11 maths solutions || class 11 maths exercise 3.1 solutions || ncert exemplar class 11 maths
\( \therefore \) Number of revolutions made by the wheel in 1 second \( =\frac{360}{60}=6 \)
In one complete revolution, the wheel turns an angle of \( 2 \pi \) radian.
Hence, in 6 complete revolutions, it will turn an angle of \( 6 \times 2 \pi \) radian. i.e., \( 12 \pi \) radian.
\(\theta=\frac{1}{r}\)
Therefore, for \( 1=22 \mathrm{~cm} \) (length of arc) and \( \mathrm{r}=100 \mathrm{~cm} \) (radius of circle)

\( \theta=\frac{22}{100} \) radian \( =\frac{180}{\pi} \times \frac{22}{100} \) degree \( =\frac{180 \times 7 \times 22}{22 \times 100} \) degree
\( =\frac{126}{10} \) degree \( =12 \frac{3}{5} \) degree \( =12^{\circ} 36^{\prime}\left[1^{\circ}=60^{\prime}\right] \)
Thus, the required angle is \( 12^{\circ} 36^{\prime} \)
\(\Rightarrow \text { radius }=\frac{40}{2}=20 \mathrm{~cm}\)
The length of a chord is 20 cm .

In \( \triangle \mathrm{OAB}, \mathrm{OA}=\mathrm{OB}= \) Radius of circle \( =20 \mathrm{~cm} \)
Also, \( \mathrm{AB}=20 \mathrm{~cm} \)
Thus, \( \triangle \mathrm{OAB} \) is an equilateral triangle.
\( \therefore \theta=60^{\circ}=\frac{\pi}{3} \) radian
We know that in a circle of radius \( r \) unit, if an arc of length 1 unit subtends an angle \( \theta \) radian at the center them.
\( \theta=\frac{1}{r} \)
\( \frac{\pi}{3}=\frac{A B}{20}=A B=\frac{20 \pi}{3} \mathrm{~cm} \)
Thus, the length of the minor arc of the chord is \( \frac{20 \pi}{3} \mathrm{~cm} \)

Now, \( 60^{\circ}=\frac{\pi}{3} \) radian and \( 75^{\circ}=\frac{5 \pi}{12} \) radian
We know that in a circle of radius \( r \) unit, if an arc of length 1 unit subtends an angle \( \theta \) radian at the center then.
7.
An angle \( \theta \) radian at the center, \( \theta \) then \( =\frac{1}{r} \)
It is given that \( \mathrm{r}=75 \mathrm{~cm} \)
Here, \( 1=10 \mathrm{~cm} \)
\( \theta=\frac{10}{75} \) radian \( =\frac{2}{15} \) radian
An angle \( \theta \) radian at the center, \( \theta \) then \( =\frac{1}{r} \)
It is given that \( \mathrm{r}=75 \mathrm{~cm} \)
Here, \( 1=15 \mathrm{~cm} \)
\( \theta=\frac{15}{75} \) radian \( =\frac{1}{5} \) radian
An angle \( \theta \) radian at the center, \( \theta \) then \( =\frac{1}{r} \)
It is given that \( \mathrm{r}=75 \mathrm{~cm} \)
Here, \( 1=21 \mathrm{~cm} \)
\( \theta=\frac{21}{25} \) radian \( \frac{7}{25} \) radian