Class 11 Maths Exercise 8.2 Solutions

Class 11 maths exercise 8.2 solutions | exercise 8.2 class 11 maths solutions | class 11 ch 8 exercise 8.2 solutions | class 11 chapter 8 exercise 8.2 solution | class 11 maths ncert solutions chapter 8 | ncert solutions for class 11 maths chapter 8 | ncert exemplar class 11 maths | binomial theorem class 11 ncert solutions

Looking for Class 11 Maths Exercise 8.2 solutions? You’re in the right place! This section provides clear, step-by-step solutions for all questions from Exercise 8.2 of Chapter 8 – Binomial Theorem. Based on the latest NCERT syllabus, these solutions cover important concepts like middle terms in binomial expansions, identification of specific terms, and solving advanced binomial problems. Whether you’re practicing from the Class 11 Ch 8 Exercise 8.2 solutions, revising with the NCERT Exemplar Class 11 Maths, or building your understanding of the Binomial Theorem Class 11, these solutions will help you tackle each question with confidence. View or download the NCERT Solutions for Class 11 Maths Chapter 8 and boost your preparation today!

class 11 maths exercise 8.2 solutions
ncert exemplar class 11 maths || exercise 8.2 class 11 maths solutions || binomial theorem class 11 ncert solutions || ncert solutions for class 11 maths chapter 8 || class 11 ch 8 exercise 8.2 solutions || class 11 maths exercise 8.2 solutions || class 11 chapter 8 exercise 8.2 solution || class 11 maths ncert solutions chapter 8
Download the Math Ninja App Now

EXERCISE 8.2

1. Find the coefficient of \(x^{5} \text { in }(x+3)^{8}\)
Answer
It is known that \( ({r}+1)^{{n}} \) term, \( \left({T}_{{r}+1}\right) \), in the binomial expression of \( ({a}+ b) { }^{n} \) is given by
\({T}_{{r}+1}={ }^{{n}} {C}_{{r}} {a}^{{n}-{r}} {b}^{{r}}\)
Assuming that \(x^{5}\) occurs in the \( ({r}+1)^{{n}} \) term of the expression \( ({x}+3)^{8} \), we obtain
\({T}_{{r}+1}={ }^{8} {C}_{{r}}({x})^{8-{r}}(3)^{{r}}\)
Comparing the indices of \(x\) in \( {x}^{5} \) in \( {T}_{{r}+1} \)
We, obtain \( r=3 \)
Thus, the coefficient of \( x^5 \) is \( { }^{8} {C}_{3}(3)^{3}=\frac{8!}{3!5!} \times 3^{3}=\frac{8.7.6 . 5!}{3.2 .5!} . 3^{3}=1512 \)
2. Find the coefficient of \(a^{5} b^{7} \text { in }(a-2 b)^{12}\)
Answer
It is known that \( ({r}+1)^{{n}} \) term \( \left({T}_{{r}+1}\right) \), in the binomial expression of \( ({a}+ b) { }^{n} \) is given by
\(T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}\)
Assuming that \( a^{5} b^{7} \) occurs in the \( (r+1)^{12} \) term of the expression \( (a- 2 b)^{12} \), we obtain
\({T}_{{r}+1}={ }^{12} {C}_{{r}}({a})^{12-{r}}(-2 {b})^{{r}}={ }^{12} {C}_{{r}}({a})^{12-{r}}({b})^{{r}}\)
Comparing the indices of \(a\) and \(b\) in \( {a}^{5} {b}^{7} \) in \( {T}_{{r}+1} \)
We, obtain \( r=7 \)
Thus, the coefficient of \( {a}^{5} {~b}^{7} \) is
\({ }^{12} {C}_{{r}}(-2)^{7}=\frac{12!}{7!5!} \cdot 2^{7}=\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7!}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 7!} \cdot(-2)^{7}=-(792)(128)=-101376\)
3. Write the general term in the expansion of \( \left(x^{2}-y^{6}\right)^{6} \)
Answer
It is known that the general term \( {T}_{{r}+1} \) \(\{\)which is the \( ({r}+1)^{{n}} \) term\(\}\) in the binomial expression of \( (a+b)^{n} \) is given by \( T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r} \).
Thus, the general term in the expansion of \( \left(x^{2}-y^{6}\right) \) is
\(T^{r+1}={ }^{6} C_{r}\left(x^{2}\right)^{6-r}(-y)^{r}=(-1)^{r} \ { }^{6} C_{r} \cdot x^{12-2 r} \cdot y^{r}\)
ncert exemplar class 11 maths || exercise 8.2 class 11 maths solutions || binomial theorem class 11 ncert solutions || ncert solutions for class 11 maths chapter 8 || class 11 ch 8 exercise 8.2 solutions || class 11 maths exercise 8.2 solutions || class 11 chapter 8 exercise 8.2 solution || class 11 maths ncert solutions chapter 8
Download the Math Ninja App Now
4. Write the general term in the expansion of \( \left(x^{2}-y x\right)^{12}, x \neq 0 \).
Answer
It is known that the general term \( {T}_{{r}+1} \) \(\{\)which is the \( ({r}+1)^{{n}} \) term\( \} \) in the binomial expansion of \( (a+b){ }^{n} \) is given by \( T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r} \)
Thus, the general term in the expansion of \( \left(x^{2}-y x\right)^{12} \) is
\({T}_{{r}+1}={ }^{12} {C}_{{r}}\left({x}^{2}\right)^{12-{r}}(-{y} {x})^{{r}}\)
\(=(-1)^{{r} } \ { }^{12} {C}_{{r}} \cdot {x}^{24-2 {r}} \cdot {y}^{{r}}\)
\(=(-1)^{{r}}{ }^{12} {C}_{{r}} \cdot {x}^{24-{r}} \cdot {y}^{{r}}\)
5. Find the \(4^{\text {th}}\) term in the expansion of \( (x-2 y)^{12} \).
Answer
It is known \( ({r}+1)^{{n}} \) term, \( {T}_{{r}+1} \) in the binomial expansion of \( ({a}+{b}) ^{{n}}\) is given by \( {T}_{{r}+1}={ }^{n} {C}_{{r}} {a}^{{n}-{r}} {b}^{{r}} \)
Thus, the \( 4^{\text {th}} \) term is the expansion of \( \left(x^{2}-2 y\right)^{12} \) is
\({T}_{4}={T}_{3+1}={ }^{12} {C}_{3}({x})^{12-3}(-2 {y})^{3}\)
\(=(-1)^{3} \cdot \frac{12!}{3!9!} \cdot {x}^{9} \cdot(2)^{3} \cdot {y}^{3}\)
\(=\frac{12 \cdot 11 \cdot 10}{3 \cdot 2} \cdot(2)^{3} {x}^{9} {y}^{3}\)
\(=-1760 {x}^{9} {y}^{3}\)
6. Find the \( 13^{\text {th}} \) term in the expansion of \( \left\{9 x-\frac{1}{3 \sqrt{x}}\right\}^{18} \)
Answer
It is known \( ({r}+1)^{{n}} \) term, \( {T}_{{r}+1} \) in the binomial expansion of \( ({a}+{b})^{{n}} \) is given by \( {T}_{{r}+1}={ }^{{n}} {C}_{{r}} {a}^{{n}-{r}} b^{{r}} \)
Thus, the \( 13^{\text {th}} \) term in the expansion of \( \left\{9 x-\frac{1}{3 \sqrt{x}}\right\}^{18} \) is
\({T}_{13}={T}_{12-1}={ }^{18} {C}_{12}(9 {x})^{18-12}\left\{-\frac{1}{3 \sqrt{x}}\right\}^{12}\)
\(=(-1)^{12} \frac{18!}{12!6!}(9)^{6}(x)^{6}\left(\frac{1}{3}\right)^{12} x\left(\frac{1}{\sqrt{x}}\right)^{12}\)
\(=\frac{18.17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12!}{12!6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot {x}^{6} \frac{1}{x^{6}} \cdot 3^{12} \frac{1}{3^{12}}\)
\(=18564\)
7. Find the middle terms in the expansions of \( \left(3-\frac{x^{3}}{6}\right)^{7} \)
Answer
It is known that in the expansion of \( ({a}+{b})^{{n}} \) in \( n \) is odd, then there are two middle terms
Namely \( \left(\frac{n+1}{2}\right)^{n} \) term and \( \left(\frac{n+1}{2}+1\right)^{n} \) term.
Therefore, the middle terms in the expansion \( \left(3-\frac{x^{3}}{6}\right)^{7} \) are \( \left(\frac{7+1}{2}\right)^{n}=4^{\text {th}} \) and \( \left(\frac{7+1}{2}+1\right)^{n}=5^{\text {th}} \) term.
\({T}_{4}={T}_{3+1}={ }^{7} {C}_{3}(3)^{7-3}-\frac{x^{3}}{6}=(-1)^{3} \frac{7!}{3!4!} \cdot 3^{4} \cdot \frac{x^{9}}{6^{3}}\)
\(=\frac{7 \cdot 6 \cdot 5 \cdot 4!}{3 \cdot 2 \cdot 4!} \cdot 3^{4} \cdot \frac{1}{2^{3} \cdot 3^{3}} \cdot {x}^{9}=-\frac{105}{8} {x}^{4}\)
\({~T}_{5}={T}_{4+1}={ }^{7} {C}_{4}(3)^{7-4}\left(-\frac{x^{3}}{6}\right)^{4}=(-1)^{4} \frac{7!}{4!3!} \cdot 3^{3} \cdot \frac{x^{12}}{6^{4}}\)
\(=\frac{7 \cdot 6 \cdot 5 \cdot 4!}{4!3 \cdot 2} \cdot \frac{3^{3}}{2^{4} \cdot 3^{4}} \cdot x^{12}=\frac{35}{48} x^{12}\)
Thus, the middle terms in the expansion of \( \left(3-\frac{x^{3}}{6}\right)^{7} \) are \( -\frac{105}{8} {x}^{9} \) and \( \frac{35}{48} {x}^{12} \)
8. Find the middle terms in the expansions of \( \left(\frac{x}{3}+9 y\right)^{10} \)
Answer
It is known that in the expansion of \( ({a}+{b})^{n} \), in \(n \) is even the middle term is \( \left(\frac{n}{2}+1\right)^{n} \) term.
Therefore, the middle term in the expansion of \( \left\{\frac{x}{3}+9 y\right\}^{10} \) is \( \left(\frac{10}{2}+1\right)^{n}= \) \( 6^{\text {th }} \)
\({T}_{4}={T}_{5+1}={ }^{10} {C}_{5}\left(\frac{x}{3}\right)^{10-5}(9 {y})^{5}=\frac{10!}{5!5!} \cdot \frac{x^{5}}{3^{6}} \cdot 9^{5} \cdot {y}^{5}\)
\(=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5!}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 5!} \cdot \frac{1}{3^{6}} \cdot 3^{10} \cdot x^{5} y^{5}\left[9^{5}=\left(3^{2}\right)^{5}=3^{10}\right]\)
\(=252 \times 3^{6} \cdot {x}^{5} \cdot {y}^{5}=6123 {x}^{5} {y}^{5} \)
Thus, the middle term in the expansion of \( \left(\frac{x}{3}+9 y\right)^{10} \) is \( 6123 x^{5} y^{5} \)
ncert exemplar class 11 maths || exercise 8.2 class 11 maths solutions || binomial theorem class 11 ncert solutions || ncert solutions for class 11 maths chapter 8 || class 11 ch 8 exercise 8.2 solutions || class 11 maths exercise 8.2 solutions || class 11 chapter 8 exercise 8.2 solution || class 11 maths ncert solutions chapter 8
Download the Math Ninja App Now
9. In the expansion of \( (1+a)^{m+n} \), prove that coefficients of \( a^{m} \) and \( a^{n} \) are equal.
Answer
It is known that \( ({r}+1)^{{n}} \) term, \( \left({T}_{{r}+1}\right) \) in the binomial expansion of \( ({a}+ b) { }^{n} \) is given by
\(T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}\)
Assuming that \( a^{n}\) occurs in the \( (r+1)^{{n}} \) term of the expansion \( (1+a)^{m+n} \), we obtain
\({T}_{{r}+1}={}^{{m}+{n}}{C}_{{r}}(1)^{{m}+{n}-{r}}({a})^{{r}}={ }^{{m}+{n}} {C}_{{r}} {a}^{{r}}\)
Comparing the indices of a in \( {a}^{{n}} \) in \( {T}_{{r}+1} \)
We, obtain \( {r}={m} \)
Therefore, the coefficient of an is
\( { }^{{M}+n} {C}_{{r}}=\frac{(m+n)!}{m!(m+n-m)!}=\frac{(m!+n!)}{m!n!} \ldots (1)\)
Assuming that an occurs in the \( ({k}+1)^{{n}} \) term of the expansion \( (1+{a}) {m} +n \), we obtain
\( {T}_{{k}+1}={m}^{+{n}} {C}_{{k}}(1)^{{m}+{n}-{k}}({a})^{{k}}={}^{{m}+{n}} {C}_{{k}}({a})^{{k}} \)
Comparing the indices of a in \( {a}^{{n}} \) and \( {T}_{{k}+1} \)
We, obtain
\( {K}={n} \)
Therefore, the coefficient of an is
\( { }^{{M}+n} {C}_{{n}}=\frac{(m+n)!}{n!(m+n-n)!}=\frac{(m+n)!}{n!m!} \ldots (2)\)
Thus, from (1) and (2), it can be observed that the coefficient of \( {a}^{{n}} \) in the expansion of \( (1+a)^{m+n} \) is equal.
10. The coefficients of the \( (r-1)^{\text {th}}, r^{\text {th}} \) and \( (r+1)^{\text {th}} \) terms in the expansion of \( ({x}+1)^{{n}} \) are in the ratio \( 1: 3: 5 \). Find \(n\) and \(r \).
Answer
It is known that \( ({k}+1)^{{n}} \) term \( \left({T}_{{k}+1}\right) \) in the binomial expansion of \( ({a}+ b)^{n}\) is given by \( {T}_{{k}+1}={ }^{{n}} {C}_{{k}} {a}^{{n}-{k}} {b}_{{k}} \)
Therefore, \( ({r}-1)^{{n}} \) term in the expansion of \( ({x}+1)^{1} \) is
\( {T}_{{r}-1}={ }^{{n}} {C}_{{r}-2}({x})^{{n}-({r}-2)}(1)^{({r}-2)}={ }^{{n}} {C}_{{r}-2} {x}^{{n}-{r}-2} \)
\( ({r}+1) \) term in the expansion of \( ({x}+1)^{{n}} \) is
\( {T}_{{r}-1}={ }^{{n}} {C}_{{r}}({x})^{{n}-{r}}(1)^{{r}}={ }^{{n}} {C}_{1} {x}^{{n}-{r}} \)
\( {r}^{\text {th}} \) term in the expansion of \( ({x}+1)^{{n}} \) is
Therefore, the coefficient of the \( ({r}-1)^{\text {th}} , {r}^{\text {th}} \) and \( ({r}+1)^{\text {th}} \) term in the expansion of \( ({x}+1)^{{n}} \)
\( { }^{{n}} {c}_{{r-2}},{ }^{{n}} {c}_{{r-1}} \), and \({}^{n}c_{r}\) are respectively. Since these - coefficient are in the ratio \( 1: 3: 5 \), we obtain
\(=\frac{n_{c_{r-2}}}{n_{c_{r-1}}}=\frac{1}{3} \text { and } \frac{n_{c_{r-1}}}{n_{c_{r}}}=\frac{3}{5}\)
\(\frac{n_{c_{r-2}}}{n_{c_{r-1}}}=\frac{n!}{(r-1)!(n-r+1)} \times \frac{r!(n-r)!}{n!}=\frac{(r-1)!(r-2)!9 n-r+1)}{(r-2)!(n-r+1)!(n-r+2)!}\)
\(=\frac{r}{n-r+2}\)
\(\therefore \frac{r-1}{n-r+2}=\frac{1}{3}\)
\(=3 {r}-3={n}-{r}+2\)
\(={n}-4 {r}+5=0 \ldots(1)\)
\(\frac{n_{c_{r-1}}}{n_{c_{r}}}=\frac{n!}{(r-1)!(n-r+1)} \times \frac{r!(n-r)!}{n!}=\frac{r(r-1)(n-r)!}{(r-1)!(n-r+1)(n-r)!}\)
\(=\frac{r}{n-r+1}\)
\(\therefore \frac{r}{n-r+1}=\frac{3}{5}\)
\(=5 r=3 n-3 r+3\)
\(=3 n-8 r+3=0 \ldots(2)\)
Multiplying (1) by 3 and subtracting it from (2), we obtain
\(4 r-12=0\)
\(=r=3\)
Putting the value of \( r \) in (1), we obtain \( n \)
\( -12+5=0 \)
\(-{n}=7\)
thus, \( {n}=7 \) and \( {r}=3 \)
11. Prove that the coefficient of \( x^{n} \) in the expansion of \( (1+x)^{2 n} \) is twice the coefficient of \( x^{n} \) in the expansion of \( (1+x)^{2 n-1 }\).
Answer
It is known that \( ({r}+1)^{\text {th}} \) term, \( \left({T}_{{r}+1}\right) \), in the binomial expansion of \( ({a}+ b) ^{n} \) is given by
\(T_{r+1}={ }^{n} c_{r} a^{n-r} b^{r}\)
Assuming that \({x}^{{n}}\) occurs in the \( ({r}+1)^{\text {th}} \) term of the expansion of \( (1+{x}) { }^{2 n} \), we obtain
\({T}_{{r}+1}={ }^{2 {n}} {c}_{{r}}(1)^{2 {n}-{r}}({x})^{{r}}={}^{2n}c_{{r}}({x})^{{r}}\)
Comparing the indices of \(x\) in \( {x}^{{n}} \) and in \( {T}_{{r}+2} \), we obtain \( {r}={n} \)
Therefore, the coefficient of \( x^{n} \) in the expansion of \( (1+x)^{2 n} \) is
\({ }^{2 {n}} {c}_{{n}}=\frac{(2 n)!}{n!(2 n-n)!}=\frac{(2 n)!}{n!n!}=\frac{(2 n)!}{n!^{2}} \ldots (1)\)
Assuming that \({x}^{{n}}\) occurs in the \( ({k}+1)^{\text {th}} \) term of the expansion of \( (1+ x) { }^{2 n-2} \), we obtain
\({T}_{{k}+1}={ }^{2 {n}} {c}_{{k}}(1)^{2 {n}-{r}-{k}}({x})^{{k}=2 {n}} {c}_{{k}}({x})^{{k}}\)
Comparing the indices of \(x\) in \( {x}^{{n}} \) and in \( {T}_{{k}+1} \), we obtain \( {k}={n} \)
Therefore, the coefficient of \({x}^{{n}}\) in the expansion of \( (1+x)^{2 n-1} \) is
\({}^{2 {n}-1} c_{n}=\frac{(2 n-1)!}{n!(2 n-1-n)!}=\frac{(2 n-1)!}{n!(n-1)!}\)
\(=\frac{2 n(2 n-1)!}{2 n \cdot n!(n-1)!}=\frac{(2 n)!}{2 n!n!}=\frac{1}{2}\left[\frac{(2 n)!}{(n!)^{2}}\right] \ldots (2)\)
From (1) and (2), it is observed that
\(\frac{1}{2}\left({ }^{2 n} c_{r}\right)={ }^{2 n-1} c_{n}\)
\(={ }^{2 n} c_{n}=2\left({ }^{2 n-1} c_{n}\right)\)
Therefore, the coefficient of \( x^{n} \) expansion of \( (1+x)^{2 n} \) is twice the coefficient of \( x^{n} \) in the expansion of \( (1+x)^{2 n-1} \)
Hence, proved.
12. Find a positive value of \( m \) for which the coefficient of \( x^{2} \) in the expansion \( (1+{x})^{{m}} \) is \(6 \).
Answer
It is known that \( ({r}+1)^{\text {th}} \) term, \( \left({T}_{{r}+1}\right) \) in the binomial expansion of \( ({a}+ b) { }^{n} \) is given by
\( {T}_{{r}+1}={ }^{{n}} {c}_{{r}} {a}^{{n}-{r}} {b}^{{r}} \)
Assuming that \( {x}^{2} \) occurs in the \( ({r}+1)^{\text {th}} \) term of the expansion of \( (1+{x})^{n}\), we obtain
\({T}_{{r}+1}={ }^{{n}} {C}_{{r}}(1)^{{n}-{r}}({x})^{{r}}={ }^{{n}} {c}_{{r}}({x})^{{r}}\)
Comparing, the coefficient of \(x\) in \( {x}^{2} \) and in \( {T}_{{r}+1} \), we obtain \( {r}=2 \)
Therefore, the coefficient of \( x^{2} \) is \( { }^{n} c_{2} \)
It is given that the coefficient of \(x^{2}\) in the expansion \( (1+{x})^{n} \) is \(6 \).
\(={ }^{{n}} {C}_{2}=6\)
\(=\frac{m!}{2!(m-2)!}=6\)
\(=\frac{m(m+1)(m-2)!}{2 \times(m-2)!}=6\)
\(={m}({m}-1)=12\)
\(={m}^{2}-{m}-12=0\)
\(={m}^{2}-4 {m}+3 {m}-12=0\)
\(={m}({m}-4)+3({m}-4)=0\)
\(=({m}-4)({m}+3)=0\)
\( =({m}-4)=0 \) or \( ({m}+3)=0 \)
\( ={m}=4 \) or \( {m}=-3 \)
Thus, the positive value of \( m \), for which the coefficient of \( x^{2} \) in the expansion \( (1+{x})^{{n}} \) is \(6 ,\) is \(4 \).
ncert exemplar class 11 maths || exercise 8.2 class 11 maths solutions || binomial theorem class 11 ncert solutions || ncert solutions for class 11 maths chapter 8 || class 11 ch 8 exercise 8.2 solutions || class 11 maths exercise 8.2 solutions || class 11 chapter 8 exercise 8.2 solution || class 11 maths ncert solutions chapter 8
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top