Class 11 maths exercise 8.2 solutions | exercise 8.2 class 11 maths solutions | class 11 ch 8 exercise 8.2 solutions | class 11 chapter 8 exercise 8.2 solution | class 11 maths ncert solutions chapter 8 | ncert solutions for class 11 maths chapter 8 | ncert exemplar class 11 maths | binomial theorem class 11 ncert solutions
Looking for Class 11 Maths Exercise 8.2 solutions? You’re in the right place! This section provides clear, step-by-step solutions for all questions from Exercise 8.2 of Chapter 8 – Binomial Theorem. Based on the latest NCERT syllabus, these solutions cover important concepts like middle terms in binomial expansions, identification of specific terms, and solving advanced binomial problems. Whether you’re practicing from the Class 11 Ch 8 Exercise 8.2 solutions, revising with the NCERT Exemplar Class 11 Maths, or building your understanding of the Binomial Theorem Class 11, these solutions will help you tackle each question with confidence. View or download the NCERT Solutions for Class 11 Maths Chapter 8 and boost your preparation today!

ncert exemplar class 11 maths || exercise 8.2 class 11 maths solutions || binomial theorem class 11 ncert solutions || ncert solutions for class 11 maths chapter 8 || class 11 ch 8 exercise 8.2 solutions || class 11 maths exercise 8.2 solutions || class 11 chapter 8 exercise 8.2 solution || class 11 maths ncert solutions chapter 8
EXERCISE 8.2
\({T}_{{r}+1}={ }^{{n}} {C}_{{r}} {a}^{{n}-{r}} {b}^{{r}}\)
Assuming that \(x^{5}\) occurs in the \( ({r}+1)^{{n}} \) term of the expression \( ({x}+3)^{8} \), we obtain
\({T}_{{r}+1}={ }^{8} {C}_{{r}}({x})^{8-{r}}(3)^{{r}}\)
Comparing the indices of \(x\) in \( {x}^{5} \) in \( {T}_{{r}+1} \)
We, obtain \( r=3 \)
Thus, the coefficient of \( x^5 \) is \( { }^{8} {C}_{3}(3)^{3}=\frac{8!}{3!5!} \times 3^{3}=\frac{8.7.6 . 5!}{3.2 .5!} . 3^{3}=1512 \)
\(T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}\)
Assuming that \( a^{5} b^{7} \) occurs in the \( (r+1)^{12} \) term of the expression \( (a- 2 b)^{12} \), we obtain
\({T}_{{r}+1}={ }^{12} {C}_{{r}}({a})^{12-{r}}(-2 {b})^{{r}}={ }^{12} {C}_{{r}}({a})^{12-{r}}({b})^{{r}}\)
Comparing the indices of \(a\) and \(b\) in \( {a}^{5} {b}^{7} \) in \( {T}_{{r}+1} \)
We, obtain \( r=7 \)
Thus, the coefficient of \( {a}^{5} {~b}^{7} \) is
\({ }^{12} {C}_{{r}}(-2)^{7}=\frac{12!}{7!5!} \cdot 2^{7}=\frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7!}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 7!} \cdot(-2)^{7}=-(792)(128)=-101376\)
Thus, the general term in the expansion of \( \left(x^{2}-y^{6}\right) \) is
\(T^{r+1}={ }^{6} C_{r}\left(x^{2}\right)^{6-r}(-y)^{r}=(-1)^{r} \ { }^{6} C_{r} \cdot x^{12-2 r} \cdot y^{r}\)
ncert exemplar class 11 maths || exercise 8.2 class 11 maths solutions || binomial theorem class 11 ncert solutions || ncert solutions for class 11 maths chapter 8 || class 11 ch 8 exercise 8.2 solutions || class 11 maths exercise 8.2 solutions || class 11 chapter 8 exercise 8.2 solution || class 11 maths ncert solutions chapter 8
Thus, the general term in the expansion of \( \left(x^{2}-y x\right)^{12} \) is
\({T}_{{r}+1}={ }^{12} {C}_{{r}}\left({x}^{2}\right)^{12-{r}}(-{y} {x})^{{r}}\)
\(=(-1)^{{r} } \ { }^{12} {C}_{{r}} \cdot {x}^{24-2 {r}} \cdot {y}^{{r}}\)
\(=(-1)^{{r}}{ }^{12} {C}_{{r}} \cdot {x}^{24-{r}} \cdot {y}^{{r}}\)
Thus, the \( 4^{\text {th}} \) term is the expansion of \( \left(x^{2}-2 y\right)^{12} \) is
\({T}_{4}={T}_{3+1}={ }^{12} {C}_{3}({x})^{12-3}(-2 {y})^{3}\)
\(=(-1)^{3} \cdot \frac{12!}{3!9!} \cdot {x}^{9} \cdot(2)^{3} \cdot {y}^{3}\)
\(=\frac{12 \cdot 11 \cdot 10}{3 \cdot 2} \cdot(2)^{3} {x}^{9} {y}^{3}\)
\(=-1760 {x}^{9} {y}^{3}\)
Thus, the \( 13^{\text {th}} \) term in the expansion of \( \left\{9 x-\frac{1}{3 \sqrt{x}}\right\}^{18} \) is
\({T}_{13}={T}_{12-1}={ }^{18} {C}_{12}(9 {x})^{18-12}\left\{-\frac{1}{3 \sqrt{x}}\right\}^{12}\)
\(=(-1)^{12} \frac{18!}{12!6!}(9)^{6}(x)^{6}\left(\frac{1}{3}\right)^{12} x\left(\frac{1}{\sqrt{x}}\right)^{12}\)
\(=\frac{18.17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12!}{12!6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot {x}^{6} \frac{1}{x^{6}} \cdot 3^{12} \frac{1}{3^{12}}\)
\(=18564\)
Namely \( \left(\frac{n+1}{2}\right)^{n} \) term and \( \left(\frac{n+1}{2}+1\right)^{n} \) term.
Therefore, the middle terms in the expansion \( \left(3-\frac{x^{3}}{6}\right)^{7} \) are \( \left(\frac{7+1}{2}\right)^{n}=4^{\text {th}} \) and \( \left(\frac{7+1}{2}+1\right)^{n}=5^{\text {th}} \) term.
\({T}_{4}={T}_{3+1}={ }^{7} {C}_{3}(3)^{7-3}-\frac{x^{3}}{6}=(-1)^{3} \frac{7!}{3!4!} \cdot 3^{4} \cdot \frac{x^{9}}{6^{3}}\)
\(=\frac{7 \cdot 6 \cdot 5 \cdot 4!}{3 \cdot 2 \cdot 4!} \cdot 3^{4} \cdot \frac{1}{2^{3} \cdot 3^{3}} \cdot {x}^{9}=-\frac{105}{8} {x}^{4}\)
\({~T}_{5}={T}_{4+1}={ }^{7} {C}_{4}(3)^{7-4}\left(-\frac{x^{3}}{6}\right)^{4}=(-1)^{4} \frac{7!}{4!3!} \cdot 3^{3} \cdot \frac{x^{12}}{6^{4}}\)
\(=\frac{7 \cdot 6 \cdot 5 \cdot 4!}{4!3 \cdot 2} \cdot \frac{3^{3}}{2^{4} \cdot 3^{4}} \cdot x^{12}=\frac{35}{48} x^{12}\)
Thus, the middle terms in the expansion of \( \left(3-\frac{x^{3}}{6}\right)^{7} \) are \( -\frac{105}{8} {x}^{9} \) and \( \frac{35}{48} {x}^{12} \)
Therefore, the middle term in the expansion of \( \left\{\frac{x}{3}+9 y\right\}^{10} \) is \( \left(\frac{10}{2}+1\right)^{n}= \) \( 6^{\text {th }} \)
\({T}_{4}={T}_{5+1}={ }^{10} {C}_{5}\left(\frac{x}{3}\right)^{10-5}(9 {y})^{5}=\frac{10!}{5!5!} \cdot \frac{x^{5}}{3^{6}} \cdot 9^{5} \cdot {y}^{5}\)
\(=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5!}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 5!} \cdot \frac{1}{3^{6}} \cdot 3^{10} \cdot x^{5} y^{5}\left[9^{5}=\left(3^{2}\right)^{5}=3^{10}\right]\)
\(=252 \times 3^{6} \cdot {x}^{5} \cdot {y}^{5}=6123 {x}^{5} {y}^{5} \)
Thus, the middle term in the expansion of \( \left(\frac{x}{3}+9 y\right)^{10} \) is \( 6123 x^{5} y^{5} \)
ncert exemplar class 11 maths || exercise 8.2 class 11 maths solutions || binomial theorem class 11 ncert solutions || ncert solutions for class 11 maths chapter 8 || class 11 ch 8 exercise 8.2 solutions || class 11 maths exercise 8.2 solutions || class 11 chapter 8 exercise 8.2 solution || class 11 maths ncert solutions chapter 8
\(T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}\)
Assuming that \( a^{n}\) occurs in the \( (r+1)^{{n}} \) term of the expansion \( (1+a)^{m+n} \), we obtain
\({T}_{{r}+1}={}^{{m}+{n}}{C}_{{r}}(1)^{{m}+{n}-{r}}({a})^{{r}}={ }^{{m}+{n}} {C}_{{r}} {a}^{{r}}\)
Comparing the indices of a in \( {a}^{{n}} \) in \( {T}_{{r}+1} \)
We, obtain \( {r}={m} \)
Therefore, the coefficient of an is
\( { }^{{M}+n} {C}_{{r}}=\frac{(m+n)!}{m!(m+n-m)!}=\frac{(m!+n!)}{m!n!} \ldots (1)\)
Assuming that an occurs in the \( ({k}+1)^{{n}} \) term of the expansion \( (1+{a}) {m} +n \), we obtain
\( {T}_{{k}+1}={m}^{+{n}} {C}_{{k}}(1)^{{m}+{n}-{k}}({a})^{{k}}={}^{{m}+{n}} {C}_{{k}}({a})^{{k}} \)
Comparing the indices of a in \( {a}^{{n}} \) and \( {T}_{{k}+1} \)
We, obtain
\( {K}={n} \)
Therefore, the coefficient of an is
\( { }^{{M}+n} {C}_{{n}}=\frac{(m+n)!}{n!(m+n-n)!}=\frac{(m+n)!}{n!m!} \ldots (2)\)
Thus, from (1) and (2), it can be observed that the coefficient of \( {a}^{{n}} \) in the expansion of \( (1+a)^{m+n} \) is equal.
Therefore, \( ({r}-1)^{{n}} \) term in the expansion of \( ({x}+1)^{1} \) is
\( {T}_{{r}-1}={ }^{{n}} {C}_{{r}-2}({x})^{{n}-({r}-2)}(1)^{({r}-2)}={ }^{{n}} {C}_{{r}-2} {x}^{{n}-{r}-2} \)
\( ({r}+1) \) term in the expansion of \( ({x}+1)^{{n}} \) is
\( {T}_{{r}-1}={ }^{{n}} {C}_{{r}}({x})^{{n}-{r}}(1)^{{r}}={ }^{{n}} {C}_{1} {x}^{{n}-{r}} \)
\( {r}^{\text {th}} \) term in the expansion of \( ({x}+1)^{{n}} \) is
Therefore, the coefficient of the \( ({r}-1)^{\text {th}} , {r}^{\text {th}} \) and \( ({r}+1)^{\text {th}} \) term in the expansion of \( ({x}+1)^{{n}} \)
\( { }^{{n}} {c}_{{r-2}},{ }^{{n}} {c}_{{r-1}} \), and \({}^{n}c_{r}\) are respectively. Since these - coefficient are in the ratio \( 1: 3: 5 \), we obtain
\(=\frac{n_{c_{r-2}}}{n_{c_{r-1}}}=\frac{1}{3} \text { and } \frac{n_{c_{r-1}}}{n_{c_{r}}}=\frac{3}{5}\)
\(\frac{n_{c_{r-2}}}{n_{c_{r-1}}}=\frac{n!}{(r-1)!(n-r+1)} \times \frac{r!(n-r)!}{n!}=\frac{(r-1)!(r-2)!9 n-r+1)}{(r-2)!(n-r+1)!(n-r+2)!}\)
\(=\frac{r}{n-r+2}\)
\(\therefore \frac{r-1}{n-r+2}=\frac{1}{3}\)
\(=3 {r}-3={n}-{r}+2\)
\(={n}-4 {r}+5=0 \ldots(1)\)
\(\frac{n_{c_{r-1}}}{n_{c_{r}}}=\frac{n!}{(r-1)!(n-r+1)} \times \frac{r!(n-r)!}{n!}=\frac{r(r-1)(n-r)!}{(r-1)!(n-r+1)(n-r)!}\)
\(=\frac{r}{n-r+1}\)
\(\therefore \frac{r}{n-r+1}=\frac{3}{5}\)
\(=5 r=3 n-3 r+3\)
\(=3 n-8 r+3=0 \ldots(2)\)
Multiplying (1) by 3 and subtracting it from (2), we obtain
\(4 r-12=0\)
\(=r=3\)
Putting the value of \( r \) in (1), we obtain \( n \)
\( -12+5=0 \)
\(-{n}=7\)
thus, \( {n}=7 \) and \( {r}=3 \)
\(T_{r+1}={ }^{n} c_{r} a^{n-r} b^{r}\)
Assuming that \({x}^{{n}}\) occurs in the \( ({r}+1)^{\text {th}} \) term of the expansion of \( (1+{x}) { }^{2 n} \), we obtain
\({T}_{{r}+1}={ }^{2 {n}} {c}_{{r}}(1)^{2 {n}-{r}}({x})^{{r}}={}^{2n}c_{{r}}({x})^{{r}}\)
Comparing the indices of \(x\) in \( {x}^{{n}} \) and in \( {T}_{{r}+2} \), we obtain \( {r}={n} \)
Therefore, the coefficient of \( x^{n} \) in the expansion of \( (1+x)^{2 n} \) is
\({ }^{2 {n}} {c}_{{n}}=\frac{(2 n)!}{n!(2 n-n)!}=\frac{(2 n)!}{n!n!}=\frac{(2 n)!}{n!^{2}} \ldots (1)\)
Assuming that \({x}^{{n}}\) occurs in the \( ({k}+1)^{\text {th}} \) term of the expansion of \( (1+ x) { }^{2 n-2} \), we obtain
\({T}_{{k}+1}={ }^{2 {n}} {c}_{{k}}(1)^{2 {n}-{r}-{k}}({x})^{{k}=2 {n}} {c}_{{k}}({x})^{{k}}\)
Comparing the indices of \(x\) in \( {x}^{{n}} \) and in \( {T}_{{k}+1} \), we obtain \( {k}={n} \)
Therefore, the coefficient of \({x}^{{n}}\) in the expansion of \( (1+x)^{2 n-1} \) is
\({}^{2 {n}-1} c_{n}=\frac{(2 n-1)!}{n!(2 n-1-n)!}=\frac{(2 n-1)!}{n!(n-1)!}\)
\(=\frac{2 n(2 n-1)!}{2 n \cdot n!(n-1)!}=\frac{(2 n)!}{2 n!n!}=\frac{1}{2}\left[\frac{(2 n)!}{(n!)^{2}}\right] \ldots (2)\)
From (1) and (2), it is observed that
\(\frac{1}{2}\left({ }^{2 n} c_{r}\right)={ }^{2 n-1} c_{n}\)
\(={ }^{2 n} c_{n}=2\left({ }^{2 n-1} c_{n}\right)\)
Therefore, the coefficient of \( x^{n} \) expansion of \( (1+x)^{2 n} \) is twice the coefficient of \( x^{n} \) in the expansion of \( (1+x)^{2 n-1} \)
Hence, proved.
\( {T}_{{r}+1}={ }^{{n}} {c}_{{r}} {a}^{{n}-{r}} {b}^{{r}} \)
Assuming that \( {x}^{2} \) occurs in the \( ({r}+1)^{\text {th}} \) term of the expansion of \( (1+{x})^{n}\), we obtain
\({T}_{{r}+1}={ }^{{n}} {C}_{{r}}(1)^{{n}-{r}}({x})^{{r}}={ }^{{n}} {c}_{{r}}({x})^{{r}}\)
Comparing, the coefficient of \(x\) in \( {x}^{2} \) and in \( {T}_{{r}+1} \), we obtain \( {r}=2 \)
Therefore, the coefficient of \( x^{2} \) is \( { }^{n} c_{2} \)
It is given that the coefficient of \(x^{2}\) in the expansion \( (1+{x})^{n} \) is \(6 \).
\(={ }^{{n}} {C}_{2}=6\)
\(=\frac{m!}{2!(m-2)!}=6\)
\(=\frac{m(m+1)(m-2)!}{2 \times(m-2)!}=6\)
\(={m}({m}-1)=12\)
\(={m}^{2}-{m}-12=0\)
\(={m}^{2}-4 {m}+3 {m}-12=0\)
\(={m}({m}-4)+3({m}-4)=0\)
\(=({m}-4)({m}+3)=0\)
\( =({m}-4)=0 \) or \( ({m}+3)=0 \)
\( ={m}=4 \) or \( {m}=-3 \)
Thus, the positive value of \( m \), for which the coefficient of \( x^{2} \) in the expansion \( (1+{x})^{{n}} \) is \(6 ,\) is \(4 \).