Class 11 Maths Ncert Solutions Trigonometry Miscellaneous Exercise

Class 11 maths ncert solutions trigonometry miscellaneous exercise | class 11 maths ch 3 miscellaneous exercise solutions | class 11 maths chapter 3 miscellaneous exercise​ | class 11 maths Trigonometric | ncert solution for class 11 maths chapter 3 | ncert exemplar class 11 maths

Looking for Class 11 Maths NCERT solutions for Trigonometry Miscellaneous Exercise? You’re at the right place! This section provides comprehensive and step-by-step solutions to all the questions from the Miscellaneous Exercise of Chapter 3 – Trigonometric Functions. These solutions are crafted as per the latest NCERT guidelines, helping you revise all important concepts like trigonometric identities, functions, signs in different quadrants, and general solutions of trigonometric equations. Whether you’re solving problems from the Class 11 Maths Ch 3 Miscellaneous Exercise or referring to the NCERT Exemplar Class 11 Maths, these solutions will guide you toward complete conceptual clarity. Strengthen your understanding of Class 11 Maths Trigonometric topics and get exam-ready today!

class 11 maths ncert solutions trigonometry miscellaneous exercise
ncert solution for class 11 maths chapter 3 || ncert exemplar class 11 maths || class 11 maths ncert solutions trigonometry miscellaneous exercise || class 11 maths Trigonometric || class 11 maths ch 3 miscellaneous exercise solutions || class 11 maths chapter 3 miscellaneous exercise​
Download the Math Ninja App Now

Miscellaneous Exercise

1. Prove that: \( 2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}=0 \)
Answer
L.H.S.
\(=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}\)
\(=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \left(\frac{\frac{3 \pi}{13}+\frac{5 \pi}{13}}{2}\right) \cos \left(\frac{\frac{3 \pi}{13}-\frac{5 \pi}{13}}{2}\right)\)
\(=\left[\cos x+\cos y=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x+y}{2}\right)\right]\)
\(=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \left(\frac{-\pi}{13}\right)\)
\(=2 \cos \frac{\pi}{13} \cos \frac{9 \pi}{13}+2 \cos \frac{4 \pi}{13} \cos \frac{\pi}{13}\)
\(=2 \cos \frac{\pi}{13}\left[\cos \frac{9 \pi}{13}+\cos \frac{4 \pi}{13}\right]\)
\(=2 \cos \frac{\pi}{13}\left[2 \cos \left(\frac{\frac{9 \pi}{13}+\frac{4 \pi}{2}}{2}\right) \cos \left(\frac{\frac{9 \pi}{13}-\frac{4 \pi}{23}}{2}\right)\right]\)
\(=2 \cos \frac{\pi}{13}\left[2 \cos \frac{\pi}{2} \cos \frac{5 \pi}{26}\right]\)
\(=2 \cos \times \frac{\pi}{13} \times 2 \times 0 \times \cos \frac{5 \pi}{26}\)
\(=0\)
Hence, L.H.S \( = \) R.H.S\(\ldots\)Proved
ncert solution for class 11 maths chapter 3 || ncert exemplar class 11 maths || class 11 maths ncert solutions trigonometry miscellaneous exercise || class 11 maths Trigonometric || class 11 maths ch 3 miscellaneous exercise solutions || class 11 maths chapter 3 miscellaneous exercise​
Download the Math Ninja App Now
2. Prove that \( (\sin 3 x+\sin x) \sin x+(\cos 3 x-\cos x) \cos x=0 \)
Answer
L.H.S.
\(=(\sin 3 x+\sin x) \sin x+(\cos 3 x-\cos x) \cos x\)
\(=\sin 3 x \sin x+\sin ^{2} x+\cos 3 x \cos x-\cos ^{2} x\)
\(=\cos 3 x \cos x+\sin 3 x \sin x-\left(\cos ^{2} x-\sin ^{2} x\right)\)
\(=\cos (3 x-x)-\cos 2 x[\cos (\mathrm{A}-\mathrm{B})=\cos \mathrm{A} \operatorname{Cos} \mathrm{B}+\sin A \sin B] \)
\(=\cos 2 x-\cos 2 x\)
\(=0\)
\(=\text { R.H.S. }\)
3. Prove that -
\((\cos x+\cos y)^{2}+(\sin x-\sin y)^{2}=4 \cos ^{2}\left(\frac{x+y}{2}\right)\)
Answer
\(\text { L.H.S. }=(\cos x+\cos y)^{2}+(\sin x-\sin y)^{2}\)
\(=\cos ^{2} x+\cos ^{2} y+2 \cos x \cos y+\sin ^{2} x+\sin ^{2} y-2 \sin x \sin y\)
\(=\left(\cos ^{2} x+\sin ^{2} x\right)+\left(\cos ^{2} y+\sin ^{2} y\right)+2(\cos x \cos y-\sin x \sin y)\)
\(=1+1+2 \cos (x+y)[\cos (\mathrm{A}+\mathrm{B})=(\cos \mathrm{A} \cos \mathrm{B}-\sin \mathrm{A} \sin \mathrm{B}]\)
\(=2+2 \cos (x+y)\)
\(=2[1+\cos (x+y)]\)
\(=2\left[1+2 \cos ^{2}\left(\frac{x+y}{2}\right)-1\right]\left[\cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1\right]\)
\(=4 \cos ^{2}\left(\frac{x+y}{2}\right)\)
\(=\text { R.H.S }\)
Hence, L.H.S \( = \) R.H.S\(\ldots\)Proved
4. Prove that -
\((\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}=4 \sin ^{2}\left(\frac{x-y}{2}\right)\)
Answer
\(\text { L.H.S. }=(\cos x-\cos y)^{2}+(\sin x-\sin y)^{2}\)
\(=\cos ^{2} x+\cos ^{2} y-2 \cos x \cos y+\sin ^{2} x+\sin ^{2} y-2 \sin x \sin y\)
\(=\left(\cos ^{2} x+\sin ^{2} x\right)+\left(\cos ^{2} y+\sin ^{2} y\right)-2(\cos x \cos y+\sin x \sin y)\)
\(=1+1-2 \cos (x-y)[\cos (\mathrm{A}-\mathrm{B})=(\cos \mathrm{A} \cos \mathrm{B}+\sin \mathrm{A} \sin \mathrm{B}]\)
\(=2[1+\cos (x+y)]\)
\(=2\left[1-\left\{1-2 \sin ^{2}\left(\frac{x-y}{2}\right)\right\}\right]\left[\cos 2 \mathrm{~A}=1-\sin ^{2} \mathrm{~A}\right]\)
\(=4 \sin ^{2}\left(\frac{x-y}{2}\right)\)
\(=\text { R.H.S }\)
Hence, L.H.S \( = \) R.H.S...Proved
ncert solution for class 11 maths chapter 3 || ncert exemplar class 11 maths || class 11 maths ncert solutions trigonometry miscellaneous exercise || class 11 maths Trigonometric || class 11 maths ch 3 miscellaneous exercise solutions || class 11 maths chapter 3 miscellaneous exercise​
Download the Math Ninja App Now
5. Prove that: \( \sin x+\sin 3 x+\sin 5 x+\sin 7 x=4 \cos x \cos 2 x \sin 4 x \)
Answer
\(\text { L.H.S }=\sin x+\sin 3 x+\sin 5 x+\sin 7 x\)
\(=(\sin x+\sin 5 x)+(\sin 3 x+\sin 7 x)\)
\(=2 \sin \left(\frac{x+5 x}{2}\right) \cdot \cos \left(\frac{x-5 x}{2}\right)+2 \sin \left(\frac{3 x+7 x}{2}\right) \cos \left(\frac{3 x-7 x}{2}\right)\)
\(=2 \sin 3 x \cos (-2 x)+2 \sin 5 x \cos (-2 x)\)
\(=2 \sin 3 x \cos 2 x+2 \sin 5 x \cos 2 x\)
\(=2 \cos 2 x[\sin 3 x+\sin 5 x]\)
\(=2 \cos 2 x\left[2 \sin \left(\frac{3 x+5 x}{2}\right) \cdot \cos \left(\frac{3 x-5 x}{2}\right)\right]\)
\(=2 \cos 2 x[2 \sin 4 x \cdot \cos (-x)]\)
\(=4 \cos 2 x \sin 4 x \cos x\)
\(=\text { R.H.S }\)
Hence, L.H.S = R.H.S...Proved
6. Prove that: \( \frac{(\sin 7 x+\sin 5 x)+(\sin \theta x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}=\tan 6 x \)
Answer
It is known that
\( \sin \mathrm{A}+\sin \mathrm{B}=2 \sin \left(\frac{A+B}{2}\right) . \operatorname{Cos}\left(\frac{A-B}{2}\right), \cos \mathrm{A}+\cos \mathrm{B}=2 \cos \left(\frac{A+B}{2}\right) \). \( \operatorname{Cos}\left(\frac{A-B}{2}\right) \)
L.H.S \( =\frac{(\sin 7 x+\sin 5 x)+(\sin \theta x+\sin n x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\sin 3 x)} \)
\( =\frac{\left[2 \sin \left(\frac{7 x+5 x}{2}\right) \cdot \cos \left(\frac{7 x-5 x}{2}\right)\right]+\left[2 \sin \left(\frac{9 x+3 x}{2}\right) \cdot \cos \left(\frac{9 x-3 x}{2}\right)\right]}{\left[2 \cos \left(\frac{7 x+5 x}{2}\right) \cdot \cos \left(\frac{7 x-5 x}{2}\right)\right]+\left[2 \cos \left(\frac{9 x+3 x}{2}\right) \cdot \cos \left(\frac{9 x-3 x}{2}\right)\right]} \)
\( =\frac{[2 \sin 6 x \cdot \cos x]+[2 \sin \operatorname{n} 6 x \cdot \cos 3 x]}{[2 \cos 6 x \cdot \cos x]+[2 \cos 6 x \cdot \cos 3 x]} \)
\( =\frac{2 \sin 6 x[\cos x+\cos 3 x]}{2 \cos 6 x[\cos x+\cos 3 x]} \)
\( =\tan 6 \mathrm{x} \)
\( = \) R.H.S
Hence, L.H.S = R.H.S...Proved
7. Find \( \sin \frac{x}{2}, \cos \frac{x}{2}2 \) and \( \tan \frac{x}{2} \), if \( \tan x=-\frac{4}{3}, x \) in quadrant II
Answer
Here, \( x \) is in quadrant II.
\(=\text { i.e., } \frac{\pi}{2} < x < \pi\)
\(=\frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2}\)
Therefore, \( \sin \frac{x}{2}, \cos \frac{x}{2} \) and \( \tan \frac{x}{2} \) are lies in first quadrant.
It is given that \( \tan x=-\frac{4}{3} \)
\( \operatorname{Sec}^{2} x=1+\tan ^{2} x=1+\left(-\frac{4}{3}\right)^{2}=1+\frac{16}{9}=\frac{25}{9} \)
\( =\cos ^{2} x=\frac{9}{25} \)
\( =\cos x= \pm \frac{3}{5} \)
As \(x\) is in quadrant II, \( \cos x \) is negative.
\( \cos x=\frac{-3}{5} \)
Now, \( \cos x=2 \cos ^{2} \frac{x}{2}-1 \)
\( =\frac{-3}{5}=2 \cos ^{2} \frac{x}{2}-1 \)
\( =2 \cos ^{2} \frac{x}{2}=1-\frac{3}{5} \)
\( =2 \cos ^{2} \frac{x}{2}=\frac{2}{5} \)
\( =\cos ^{2} \frac{x}{2}=\frac{1}{5} \)
\( =\cos \frac{x}{2}=\frac{1}{\sqrt{5}}\quad [\cos \frac{x}{2} \) is positive \( ] \)
\( =\cos \frac{x}{2}=\frac{\sqrt{5}}{5} \)
\( \operatorname{Sin}^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}=1 \)
\( =\sin ^{2} \frac{x}{2}=1-\frac{1}{5}=\frac{4}{5} \)
\( =\sin ^{2} \frac{x}{2}+\left(\frac{1}{\sqrt{5}}\right)^{2}=1 \)
\( =\sin \frac{x}{2}=\frac{2}{\sqrt{5}}\quad [\sin \frac{x}{2} \) is positive \( ] \)
\( =\sin \frac{x}{2}=\frac{2 \sqrt{5}}{5} \)
\( \tan \frac{x}{2}=\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}=\frac{\left(\frac{2}{\sqrt{5}}\right)}{\left(\frac{1}{\sqrt{5}}\right)}=2 \)
Thus, the respective values of \( \sin \frac{x}{2}, \cos \frac{x}{2} \) and \( \tan \frac{x}{2} \) are \( \frac{2 \sqrt{5}}{5}, \frac{\sqrt{5}}{5} \), and 2 .
8. Find, \( \sin \frac{x}{2}, \cos \frac{x}{2} \),and \( \tan \frac{x}{2} \) for \( \cos x=-\frac{1}{3}, x \) in quadrant III
Answer
Here, \( x \) is in quadrant III.
\( = \) i.e., \( \pi < x < \frac{3 \pi}{2} \)
\( \Rightarrow \frac{\pi}{2} < \frac{x}{2} < \frac{3 \pi}{4} \)
Therefore, \( \cos \frac{x}{2} \) and \( \tan \frac{x}{2} \) are negative, where \( \sin \frac{x}{2} \) as is positive.
It is given that \( \cos x=-\frac{1}{3} \)
\( \operatorname{Cos} x=1-2 \sin ^{2} \frac{x}{2} \)
\( \Rightarrow \sin ^{2} \frac{x}{2}=\frac{1-\cos x}{2} \)
\( \Rightarrow \sin ^{2} \frac{x}{2}=\frac{1-\left(-\frac{1}{3}\right)}{2}=\frac{\left(1+\frac{1}{3}\right)}{2}=\frac{\frac{4}{3}}{2}=\frac{2}{3} \)
\( \Rightarrow \sin \frac{x}{2}=\frac{\sqrt{2}}{\sqrt{3}}\quad [\sin \frac{x}{2} \) is positive \( ] \)
\( \Rightarrow \sin \frac{x}{2}=\frac{\sqrt{2}}{\sqrt{2}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{6}}{3} \)
Now,
\( \operatorname{Cos} x=2 \cos ^{2} \frac{x}{2}-1 \)
\(\Rightarrow \cos ^{2} \frac{x}{2}=\frac{1+\cos x}{2}=\frac{1+\left(-\frac{1}{3}\right)}{2}=\frac{\left(\frac{3-1}{3}\right)}{2}=\frac{\left(\frac{2}{3}\right)}{2}=\frac{1}{2}\)
\(\Rightarrow \cos ^{2} \frac{x}{2}=-\frac{1}{\sqrt{3}}\quad [\cos \frac{x}{2} \text { is negative }]\)
\(\Rightarrow \cos \frac{x}{2}=-\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{-\sqrt{3}}{3} \tan \frac{x}{2}=\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}=\frac{\left(\frac{\sqrt{2}}{\sqrt{3}}\right)}{\left(\frac{-1}{\sqrt{3}}\right)}=-\sqrt{2}\)
Thus, the respective values of \( \sin \frac{x}{2}, \cos \frac{x}{2} \) and \( \tan \frac{x}{2} \) are \( \frac{\sqrt{6}}{3}, \frac{-\sqrt{3}}{3} \) and \( -\sqrt{2} \).
ncert solution for class 11 maths chapter 3 || ncert exemplar class 11 maths || class 11 maths ncert solutions trigonometry miscellaneous exercise || class 11 maths Trigonometric || class 11 maths ch 3 miscellaneous exercise solutions || class 11 maths chapter 3 miscellaneous exercise​
Download the Math Ninja App Now

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top