Class 12 maths chapter 4 miscellaneous exercise solutions | maths class 12 chapter 4 ncert solutions | determinants maths class 12 | class 12 maths determinants miscellaneous exercise solutions
Looking for Class 12 Maths Chapter 4 Miscellaneous Exercise Solutions? You’ve come to the right place! This section offers comprehensive, step-by-step solutions to the Miscellaneous Exercise of Chapter 4 – Determinants from the NCERT textbook. Covering a mix of conceptual and application-based problems, these Maths Class 12 Chapter 4 NCERT Solutions help reinforce your understanding of properties of determinants, adjoints, inverses of matrices, and Cramer’s rule. These solutions are aligned with the latest CBSE curriculum, making them perfect for exam preparation and daily practice. Master the concepts with ease using the Class 12 Maths Determinants Miscellaneous Exercise Solutions and boost your confidence in this essential chapter today!

class 12 maths determinants miscellaneous exercise solutions || class 12 maths chapter 4 miscellaneous exercise solutions || maths class 12 chapter 4 ncert solutions || determinants maths class 12
Miscellaneous Exercise
Expanding the above determinant along R1 i.e. Row 1
\( \triangle=x\left(-x^{2}-1\right)-\sin \theta(-x \times \sin \theta-\cos \theta \times 1)+\cos \theta\)\((-\sin \theta \times 1+x \cos \theta) \)
\( \triangle=-x^{3}-x+x \sin 2 \theta+\sin \theta \times \cos \theta-\sin \theta \times \cos \theta+x \cos 2 \theta \)
\( \triangle=-x^{3}-x+x(\sin 2 \theta+\cos 2 \theta) \)
Since, \( \sin 2 \theta+\cos 2 \theta=1 \)
\( \therefore \triangle=-x^{3}-x+x \)
Hence \( \triangle \) is independent of \( \theta \).
Expanding along \( \mathrm{C}_{3} \) we get
\( \triangle=-\sin \alpha(-\sin \beta \times \sin \alpha \sin \beta-\cos \beta \times \sin \alpha \cos \beta)-0(\sin \alpha \cos \beta \) \(\times \cos \alpha \sin \beta-\cos \alpha \cos \beta \times \sin \alpha \sin \beta)+\cos \alpha(\cos \alpha \cos \beta \times \cos \beta- \) \( \cos \alpha \sin \beta \times(-\sin \beta)) \)
\( \triangle=-\sin \alpha(-\sin \alpha \sin 2 \beta-\sin \alpha \cos 2 \beta)-0+\cos \alpha(\cos \alpha \cos 2 \beta \) \(+\cos \alpha \sin 2 \beta) \)
\( \triangle=\sin \alpha \times \sin \alpha(\sin 2 \beta+\cos 2 \beta)+\cos \alpha \times \cos \alpha(\cos 2 \beta+\sin 2 \beta) \)
[Taking \( -\sin \alpha \) and \( \cos \alpha \) common]
Since, \( \sin 2 \beta+\cos 2 \beta=1 \)
\( \therefore \triangle=\sin 2 \alpha+\cos 2 \alpha \)
\( \triangle=1[\sin 2 \alpha+\cos 2 \alpha=1] \)
Show that either \( \mathrm{a}+\mathrm{b}+\mathrm{c}=0 \) or \( \mathrm{a}=\mathrm{b}=\mathrm{c} \).
Applying Elementary transformations, we get
\( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \) we have
\(\triangle=\left|\begin{array}{ccc}
2(a+b+c) & 2(a+b+c) & 2(a+b+c) \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|\)
\(\triangle=2(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{ccc}
1 & 1 & 1 \\
c+a & a+b & b+c \\
a+b & b+c & c+a
\end{array}\right|\)
Now applying \( \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1} \) and \( \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1} \)
\(\triangle=2(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{ccc}
1 & 0 & 0 \\
c+a & b-c & b-a \\
a+b & c-a & c-b
\end{array}\right|\)
Expanding along R1
\(\begin{array}{l}
\triangle=2(\mathrm{a}+\mathrm{b}+\mathrm{c})[1\{(\mathrm{~b}-\mathrm{c})(\mathrm{c}-\mathrm{b})-(\mathrm{b}-\mathrm{a})(\mathrm{c}-\mathrm{a})\}-0+0] \\
\triangle=2(\mathrm{a}+\mathrm{b}+\mathrm{c})\left[-\mathrm{b}^{2}-\mathrm{c}^{2}+2 \mathrm{bc}-\mathrm{bc}+\mathrm{ba}+\mathrm{ac}-\mathrm{a}^{2}\right] \\
\triangle=2(\mathrm{a}+\mathrm{b}+\mathrm{c})\left[\mathrm{ab}+\mathrm{bc}+\mathrm{ca}-\mathrm{a}^{2}-\mathrm{b}^{2}-\mathrm{c}^{2}\right]
\end{array}\)
Given that \( \triangle=0 \)
\(\therefore 2(a+b+c)\left[a b+b c+c a-a^{2}-b^{2}-c^{2}\right]=0\)
\( \Rightarrow \) Either \( \mathrm{a}+\mathrm{b}+\mathrm{c}=0 \), or \( \mathrm{ab}+\mathrm{bc}+\mathrm{ca}-\mathrm{a}^{2}-\mathrm{b}^{2}-\mathrm{c}^{2}=0 \)
Now
\(a b+b c+c a-a^{2}-b^{2}-c^{2}=0\)
Multiplying both sides by \(-2\)
\(\begin{array}{l}
\Rightarrow-2 a b-2 b c-2 c a+2 a^{2}+2 b^{2}+2 c^{2}=0 \\
\Rightarrow a^{2}-2 a b+b^{2}+b^{2}-2 b c+c^{2}+c^{2}-2 c a+a^{2}=0 \\
\Rightarrow(a-b)^{2}+(b-c)^{2}+(c-a)^{2}=0
\end{array}\)
Since, \( (a-b)^{2},(b-c)^{2},(c-a)^{2} \) are non-negative
\(\begin{array}{l}
\therefore(a-b)^{2}=(b-c)^{2}=(c-a)^{2} \\
\Rightarrow(a-b)=(b-c)=(c-a) \\
\Rightarrow a=b=c
\end{array}\)
Hence, if \( \triangle=0 \), then either \( \mathrm{a}+\mathrm{b}+\mathrm{c}=0 \) or \( \mathrm{a}=\mathrm{b}=\mathrm{c} \)
Applying elementary transformations, we get,
\(\begin{array}{l}
\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \\
\left|\begin{array}{ccc}
3 x+a & 3 x+a & 3 x+a \\
x & x+a & x \\
x & x & x+a
\end{array}\right|=0 \\
\Rightarrow(3 x+\mathrm{a})\left|\begin{array}{ccc}
1 & 1 & 1 \\
x & x+a & x \\
x & x & x+a
\end{array}\right|=0
\end{array}\)
\( \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1} \) and \( \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1} \), we get
\((3 x+\mathrm{a})\left|\begin{array}{lll}
1 & 0 & 0 \\
x & a & 0 \\
x & 0 & a
\end{array}\right|=0\)
Expanding along R1 we have
\(\begin{array}{l}
(3 x+\mathrm{a})[1(\mathrm{a} \times \mathrm{a}-0 \times 0)-0(x \times \mathrm{a}-0 \times \mathrm{a})+0(x \times 0-\mathrm{a} \times x)]=0 \\
\Rightarrow(3 x+\mathrm{a})\left[1 \times \mathrm{a}^{2}\right]=0 \\
\Rightarrow \mathrm{a}^{2}(3 x+\mathrm{a})=0
\end{array}\)
Since, \( a \neq 0 \)
\(\begin{array}{l}
\therefore 3 x+\mathrm{a}=0 \\
\Rightarrow x=\frac{-\mathrm{a} }{ 3}
\end{array}\)
\(\begin{array}{l}
\text { LHS }=\left|\begin{array}{ccc}
a^{2} & b c & a c+c^{2} \\
a^{2}+a b & b^{2} & a c \\
a b & b^{2}+b c & c^{2}
\end{array}\right| \\
\text { RHS }=4 a^{2} b^{2} c^{2} \\
\text { LHS }=\triangle=\left|\begin{array}{ccc}
a^{2} & b c & a c+c^{2} \\
a^{2}+a b & b^{2} & a c \\
a b & b^{2}+b c & c^{2}
\end{array}\right|
\end{array}\)
Taking out common factors \( \mathrm{a}, \mathrm{b} \) and c from \( \mathrm{C}_{1}, \mathrm{C}_{2} \) and \( \mathrm{C}_{3} \), we have
\(\triangle=\operatorname{abc}\left|\begin{array}{ccc}
a & c & a+c \\
a+b & b & a \\
b & b+c & c
\end{array}\right|\)
Applying Elementary Transformations
\( \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \) and \( \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1} \)
\(\begin{array}{l}
\triangle=\mathrm{abc}\left|\begin{array}{ccc}
a & c & a+c \\
b & b-c & -c \\
b-a & b & -a
\end{array}\right| \\
\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}+\mathrm{R}_{1} \\
\triangle=\mathrm{abc}\left|\begin{array}{ccc}
a & c & a+c \\
a+b & b & a \\
b-a & b & -a
\end{array}\right| \\
\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{2}
\end{array}\)
\(\begin{array}{l}
\triangle=\mathrm{abc}\left|\begin{array}{ccc}
a & c & a+c \\
a+b & b & a \\
2 b & 2 b & 0
\end{array}\right| \\
\triangle=2 \mathrm{ab}^{2} \mathrm{c}\left|\begin{array}{ccc}
a & c & a+c \\
a+b & b & a \\
1 & 1 & 0
\end{array}\right| \\
\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1} \\
\triangle=2 \mathrm{ab}^{2} \mathrm{c}\left|\begin{array}{ccc}
a & c-a & a+c \\
a+b & -a & a \\
1 & 0 & 0
\end{array}\right|
\end{array}\)
Expanding along R3 we get,
\(\begin{array}{l}
\triangle=2 \mathrm{ab}^{2} \mathrm{c}[\mathrm{a}(\mathrm{c}-\mathrm{a})+\mathrm{a}(\mathrm{a}+\mathrm{c})] \\
=2 \mathrm{ab}^{2} \mathrm{c}\left[\mathrm{ac}-\mathrm{a}^{2}+\mathrm{a}^{2}+\mathrm{ac}\right] \\
=2 \mathrm{ab}^{2} \mathrm{c}(2 \mathrm{ac}) \\
=4 \mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{c}^{2} \\
\triangle=\text { RHS } \\
\therefore \text { LHS = RHS }
\end{array}\)
Hence, Proved
class 12 maths determinants miscellaneous exercise solutions || class 12 maths chapter 4 miscellaneous exercise solutions || maths class 12 chapter 4 ncert solutions || determinants maths class 12
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{array}\right]\)
\( B=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right] \)
We need to find \(B^{-1}\)
To find the inverse of a matrix we need to find the Adjoint of that matrix For finding the adjoint of the matrix we need to find its cofactors
Let \( \mathrm{B}_{\mathrm{ij}} \) denote the cofactors of Matrix B
Minor of an element \( b_{i j}=M_{i j} \)
\( b_{11}=1 \), Minor of element
\( b_{11}=M_{11}=\left|\begin{array}{cc}3 & 0 \\ -2 & 1\end{array}\right|=(3 \times 1)-((-2) \times 0)=3 \)
\( b_{12}=2 \), Minor of element
\( b_{12}=M_{12}=\left|\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right|=((-1) \times 1)-(0 \times 0)=-1 \)
\( b_{13}=-2 \), Minor of element
\( b_{13}=M_{13}=\left|\begin{array}{cc}-1 & 3 \\ 0 & -2\end{array}\right|=((-1) \times(-2))-(3 \times \) \( 0)=2 \)
\( b_{21}=-1 \), Minor of element
\( b_{21}=M_{21}=\left|\begin{array}{cc}2 & -2 \\ -1 & 1\end{array}\right|=(2 \times 1)-((-2) \times(- \) 2)) \( =-2 \)
\( \mathrm{b}_{22}=3 \), Minor of element
\( \mathrm{b}_{22}=\mathrm{M}_{22}=\left|\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right|=(1 \times 1)-((-2) \times 0)=1 \)
\( b_{23}=0 \), Minor of element
\( b_{23}=M_{23}=\left|\begin{array}{cc}1 & 2 \\ 0 & -2\end{array}\right|=(1 \times(-2))-(2 \times 0)=-2 \)
\( b_{31}=0 \), Minor of element
\( b_{31}=M_{31}=\left|\begin{array}{cc}2 & -2 \\ 3 & 0\end{array}\right|=(2 \times 0)-((-2) \times 3)=6 \)
\( b_{32}=-2 \), Minor of element
\( b_{32}=M_{32}=\left|\begin{array}{cc}1 & -2 \\ -1 & 0\end{array}\right|=(1 \times 0)-((-2) \times(- \) 1)) \( =-2 \)
\( b_{33}=1 \), Minor of element
\( b_{33}=M_{33}=\left|\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right|=(1 \times 3)-(2 \times(-1))=5 \)
Cofactor of an element bij, \( \mathrm{bij},\mathrm{Bij}=(-1)^{\mathrm{i}+\mathrm{j}} \times \mathrm{M}_{\mathrm{ij}} \)
\(
\mathrm{B}_{11}=(-1)^{1+1} \times \mathrm{M}_{11}=1 \times 3=3\)
\(
\mathrm{B}_{12}=(-1)^{1+2} \times \mathrm{M}_{12}=(-1) \times(-1)=1\)
\(
\mathrm{B}_{13}=(-1)^{1+3} \times \mathrm{M}_{13}=1 \times 2=2\)
\(
\mathrm{B}_{21}=(-1)^{2+1} \times \mathrm{M}_{21}=(-1) \times(-2)=2\)
\(
B_{22}=(-1)^{2+2} \times \mathrm{M}_{22}=1 \times 1=1\)
\(
B_{23}=(-1)^{2+3} \times \mathrm{M}_{23}=(-1) \times(-2)=2\)
\(
B_{31}=(-1)^{3+1} \times \mathrm{M}_{31}=1 \times 6=6\)
\(
\mathrm{B}_{32}=(-1)^{3+2} \times \mathrm{M}_{32}=(-1) \times(-2)=2\)
\(
B_{33}=(-1)^{3+3} \times \mathrm{M}_{33}=1 \times 5=5
\)
\( \operatorname{Adj} B=\left[\begin{array}{lll}3 & 1 & 2 \\ 2 & 1 & 2 \\ 6 & 2 & 5\end{array}\right]=\left[\begin{array}{lll}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{array}\right] \)
\(|\mathrm{B}|=1(3 \times 1-(-2) \times 0)-2 ((-1) \times 1-0 \times 0)+(-2)\)\(((-1) \times(-2)-3 \times 0)\)
\(|\mathrm{B}|=3-2(-1-0)-2(2-0)\)
\(|\mathrm{B}|=3+2-4=1\)
\( \therefore \mathrm{B}^{-1}=\frac{(\operatorname{Adj} \mathrm{B}) }{|\mathrm{B}|}=\frac{\left|\begin{array}{lll}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{array}\right| }{ 1}=\left[\begin{array}{lll}3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5\end{array}\right] \)
We know \( (\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{A}^{-1} \)
\((\mathrm{AB})^{-1}=\left[\begin{array}{lll}
3 & 2 & 6 \\
1 & 1 & 2 \\
2 & 2 & 5
\end{array}\right] \times\left[\begin{array}{ccc}
3 & -1 & 1 \\
-15 & 6 & -5 \\
5 & -2 & 2
\end{array}\right]\)
Solving the above matrix, we get
\( (\mathrm{AB})^{-1}=\left[\begin{array}{ccc}9 & -3 & 5 \\ -2 & 1 & 0 \\ 1 & 0 & 2\end{array}\right] \)
A=\left|\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 3 & 1 \\
1 & 1 & 5
\end{array}\right| \end{array}\) \(|A|=1(3 \times 5-1 \times 1)-(-2)((-2) \times 5-1 \times 1)+1\)\(((-2) \times 1-3 \times 1)\)
\(|A|=(15-1)+2(-10-1)+(-2-3) \)
\(|A|=14-22-5=-13\)
To find the inverse of a matrix we need to find the Adjoint of that matrix For finding the adjoint of the matrix we need to find its cofactors
Let Aij denote the cofactors of Matrix A
Minor of an element aij \( = \) Mij
\( a_{11}=1 \), Minor of element
\( a_{11}=M_{11}=\left|\begin{array}{ll}3 & 1 \\ 1 & 5\end{array}\right|=(3 \times 5)-(1 \times 1)=14 \)
\( a_{12}=-2 \), Minor of element
\( a_{12}=M_{12}=\left|\begin{array}{cc}-2 & 1 \\ 1 & 5\end{array}\right|=(-2 \times 5)-(1 \times 1)=- \) 11
\( a_{13}=1 \), Minor of element
\( a_{13}=M_{13}=\left|\begin{array}{cc}-2 & 3 \\ 1 & 1\end{array}\right|=(-2 \times 1)-(3 \times 1)=-5 \)
\( a_{21}=-2 \), Minor of element
\( a_{21}=M_{21}=\left|\begin{array}{cc}-2 & 1 \\ 1 & 5\end{array}\right|=((-2) \times 5)-(1 \times 1)=- 11\)
\( a_{22}=3 \), Minor of element
\( a_{22}=M_{22}=\left|\begin{array}{ll}1 & 1 \\ 1 & 5\end{array}\right|=(1 \times 5)-(1 \times 1)=4 \)
\( \mathrm{a}_{23}=1 \), Minor of element
\( \mathrm{a}_{23}=\mathrm{M}_{23}=\left|\begin{array}{cc}1 & -2 \\ 1 & 1\end{array}\right|=(1 \times 1)-((-2) \times 1)=3 \)
\( a_{31}=1 \), Minor of element
\( a_{31}=M_{31}=\left|\begin{array}{cc}-2 & 1 \\ 3 & 1\end{array}\right|=(-2 \times 1)-(3 \times 1)=-5 \)
\( a_{32}=1 \), Minor of element
\( a_{32}=M_{32}=\left|\begin{array}{cc}1 & 1 \\ -2 & 1\end{array}\right|=(1 \times 1)-(1 \times(-2))=3 \)
\( a_{33}=5 \), Minor of element
\( a_{33}=M_{33}=\left|\begin{array}{cc}1 & -2 \\ -2 & 3\end{array}\right|=(1 \times 3)-((-2) \times(-2)) =-1 \)
Cofactor of an element \( \mathrm{a}_{\mathrm{ij}}=\mathrm{A}_{\mathrm{ij}} \)
\(
\mathrm{~A}_{11}=(-1)^{1+1} \times 14=1 \times 14=14\)
\(
\mathrm{~A}_{12}=(-1)^{1+2} \times(-11)=(-1) \times(-11)=11\)
\(
\mathrm{~A}_{13}=(-1)^{1+3} \times(-5)=1 \times(-5)=-5\)
\(
\mathrm{~A}_{21}=(-1)^{2+1} \times(-11)=(-1) \times(-11)=11\)
\(
\mathrm{~A}_{22}=(-1)^{2+2} \times 4=1 \times 4=4\)
\(
\mathrm{~A}_{23}=(-1)^{2+3} \times 3=(-1) \times 3=-3\)
\(
\mathrm{~A}_{31}=(-1)^{3+1} \times(-5)=1 \times(-5)=-5\)
\(
\mathrm{~A}_{32}=(-1)^{3+2} \times 3=(-1) \times 3=-3\)
\(
\mathrm{~A}_{33}=(-1)^{3+3} \times(-1)=1 \times(-1)=-1\)
\(\mathrm{Adj} {\mathrm{~A}}=\left[\begin{array}{ccc}
14 & 11 & -5 \\
11 & 4 & -3 \\
-5 & -3 & -1
\end{array}\right]=\left[\begin{array}{ccc}
14 & 11 & -5 \\
11 & 4 & -3 \\
-5 & -3 & -1
\end{array}\right] \)
\(\mathrm{A}^{-1}=\frac{(\mathrm{Adj} \mathrm{~A}) }{|\mathrm{A}|}\)
\(\mathrm{A}^{-1}=-\frac{1}{13}\left[\begin{array}{ccc}
14 & 11 & -5 \\
11 & 4 & -3 \\
-5 & -3 & -1
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{14}{13} & -\frac{11}{13} & \frac{5}{13} \\
-\frac{11}{13} & -\frac{4}{13} & \frac{3}{13} \\
\frac{5}{13} & \frac{3}{13} & \frac{1}{13}
\end{array}\right]\)
(i) \( |\operatorname{Adj} \mathrm{A}|=14(-4-9)-11(-11-15)-5(-33+20) \)
\(
=14 \times(-13)-11 \times(-26)-5(-13)\)
\(
=-182+286+65=169
\)
Similarly Finding the Adj (Adj A) as found above
\( \operatorname{Adj}(\operatorname{Adj} A)=\left[\begin{array}{ccc}-13 & 26 & -13 \\ 26 & -39 & -13 \\ -13 & -13 & -65\end{array}\right] \)
\( [\operatorname{Adj} \mathrm{A}]^{-1}=\operatorname{Adj}\frac{(\operatorname{Adj} \mathrm{A}) }{|\operatorname{Adj} \mathrm{A}|} \)
\(\begin{array}{l}
=\frac{1}{169}\left[\begin{array}{ccc}
-13 & 26 & -13 \\
26 & -39 & -13 \\
-13 & -13 & -65
\end{array}\right] \\
=\frac{1}{13}\left[\begin{array}{ccc}
-1 & 2 & -1 \\
2 & -3 & -1 \\
-1 & -1 & -5
\end{array}\right]
\end{array}\)
\(\mathrm{A}^{-1}=-\frac{1}{13}\left[\begin{array}{ccc}
14 & 11 & -5 \\
11 & 4 & -3 \\
-5 & -3 & -1
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{14}{13} & -\frac{11}{13} & \frac{5}{13} \\
-\frac{11}{13} & -\frac{4}{13} & \frac{3}{13} \\
\frac{5}{13} & \frac{3}{13} & \frac{1}{13}
\end{array}\right]\)
Similarly Finding the \( \operatorname{Adj}\left(\mathrm{A}^{-1}\right) \) as found above
\( \operatorname{Adj}\left(\mathrm{A}^{-1}\right)=\frac{1}{169}\left[\begin{array}{ccc}-13 & 26 & -13 \\ 26 & -39 & -13 \\ -13 & -13 & -65\end{array}\right]=\frac{1}{13}\left[\begin{array}{ccc}-1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5\end{array}\right] \)
Hence, \( [\text {Adj } \mathrm{A}]^{-1}=\operatorname{Adj}\left(\mathrm{A}^{-1}\right) \)
A=\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 3 & 1 \\
1 & 1 & 5
\end{array}\right] \end{array}\)
\(|A|=1(3 \times 5-1 \times 1)-(-2)((-2) \times 5-1 \times 1)+1\)\(((-2) \times 1-3 \times 1)\)
\(|A|=(15-1)+2(-10-1)+(-2-3) \)
\(|A|=14-22-5=-13\)
To find the inverse of a matrix we need to find the Adjoint of that matrix For finding the adjoint of the matrix we need to find its cofactors
Let Aij denote the cofactors of Matrix A
Minor of an element \( \mathrm{aij}=\mathrm{M}_{\mathrm{ij}} \)
\( a_{11}=1 \), Minor of element
\( a_{11}=M_{11}=\left|\begin{array}{ll}3 & 1 \\ 1 & 5\end{array}\right|=(3 \times 5)-(1 \times 1)=14 \)
\( a_{12}=-2 \), Minor of element
\( a_{12}=M_{12}=\left|\begin{array}{cc}-2 & 1 \\ 1 & 5\end{array}\right|=(-2 \times 5)-(1 \times 1)=-11 \)
\( a_{13}=1 \), Minor of element
\( a_{13}=M_{13}=\left|\begin{array}{cc}-2 & 3 \\ 1 & 1\end{array}\right|=(-2 \times 1)-(3 \times 1)=-5 \)
\( a_{21}=-2 \), Minor of element
\( a_{21}=M_{21}=\left|\begin{array}{cc}-2 & 1 \\ 1 & 5\end{array}\right|=(-2 \times 5)-(1 \times 1)=- 11\)
\( \mathrm{a}_{22}=3 \), Minor of element
\( \mathrm{a}_{22}=\mathrm{M}_{22}=\left|\begin{array}{ll}1 & 1 \\ 1 & 5\end{array}\right|=(1 \times 5)-(1 \times 1)=4 \)
\( \mathrm{a}_{23}=1 \), Minor of element
\( \mathrm{a}_{23}=\mathrm{M}_{23}=\left|\begin{array}{cc}1 & -2 \\ 1 & 1\end{array}\right|=(1 \times 1)-((-2) \times 1)=3 \)
\( a_{31}=1 \), Minor of element
\( a_{31}=M_{31}=\left|\begin{array}{cc}-2 & 1 \\ 3 & 1\end{array}\right|=(-2 \times 1)-(3 \times 1)=-5 \)
\( \mathrm{a}_{32}=1 \), Minor of element
\( \mathrm{a}_{32}=\mathrm{M}_{32}=\left[\begin{array}{cc}1 & 1 \\ -2 & 1\end{array}\right]=(1 \times 1)-(1 \times-2)=3 \)
\( \mathrm{a}_{33}=5 \), Minor of element
\( \mathrm{a}_{33}=\mathrm{M}_{33}=\left|\begin{array}{cc}1 & -2 \\ -2 & 3\end{array}\right|=(1 \times 3)-(-2) \times(-2)= \) \( -1 \)
Cofactor of an element \( \mathrm{a}_{\mathrm{ij}}=\mathrm{A}_{\mathrm{ij}} \)
\(
\mathrm{~A}_{11}=(-1)^{1+1} \times 14=1 \times 14=14\)
\(
\mathrm{~A}_{12}=(-1)^{1+2} \times(-11)=(-1) \times(-11)=11\)
\(
\mathrm{~A}_{13}=(-1)^{1+3} \times(-5)=1 \times(-5)=-5\)
\(
\mathrm{~A}_{21}=(-1)^{2+1} \times(-11)=(-1) \times(-11)=11\)
\(
\mathrm{~A}_{22}=(-1)^{2+2} \times 4=1 \times 4=4\)
\(
\mathrm{~A}_{23}=(-1)^{2+3} \times 3=(-1) \times 3=-3\)
\(
\mathrm{~A}_{31}=(-1)^{3+1} \times(-5)=1 \times(-5)=-5\)
\(
\mathrm{~A}_{32}=(-1)^{3+2} \times 3=(-1) \times 3=-3\)
\(
\mathrm{~A}_{33}=(-1)^{3+3} \times(-1)=1 \times(-1)=-1
\)
\(\mathrm{Adj ~A}=\left[\begin{array}{ccc}14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1\end{array}\right]=\left[\begin{array}{ccc}14 & 11 & -5 \\ 11 & 4 & -3 \\ -5 & -3 & -1\end{array}\right] \)
\(\begin{array}{l}
\mathrm{A}^{-1}=\frac{(\operatorname{Adj} \mathrm{A}) }{|\mathrm{A}|} \\
\mathrm{A}^{-1}=-\frac{1}{13}\left[\begin{array}{ccc}
14 & 11 & -5 \\
11 & 4 & -3 \\
-5 & -3 & -1
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{14}{13} & -\frac{11}{13} & \frac{5}{13} \\
-\frac{11}{13} & -\frac{4}{13} & \frac{3}{13} \\
\frac{5}{13} & \frac{3}{13} & \frac{1}{13}
\end{array}\right]
\end{array}\)
(ii) To find \( \left(\mathrm{A}^{-1}\right)^{-1} \) we have to find out \( \operatorname{Adj}\left(\mathrm{A}^{-1}\right) \)
\(\begin{array}{l}
\mathrm{A}^{-1}=-\frac{1}{13}\left[\begin{array}{ccc}
14 & 11 & -5 \\
11 & 4 & -3 \\
-5 & -3 & -1
\end{array}\right] \end{array}\)
\(\left|\mathrm{A}^{-1}\right|=(-\frac{ 1 }{ 13 })^{3}[14(4 \times(-1)-(-3) \times(-3))-11(11 \times(-1)\) \(-(-3) \times(-5))+ (-5)(11 \times(-3)-4 \times(-5))]\)
\(|\mathrm{A}|=(-\frac{ 1 }{ 13 })^{3}[14(-4-9)-11(-11-15)-5(-33+20)]\)
\(|\mathrm{A}|=(-\frac{ 1 }{ 13 })^{3}[14 \times(-13)-11 \times(-26)-5 \times(-13)]\)
\(|\mathrm{A}|=(-\frac{ 1 }{ 13 })^{3} \times 169=-\frac{ 1 }{ 13 }\)
Cofactor of an element \( \mathrm{a}_{\mathrm{ij}}=\mathrm{A}_{\mathrm{ij}} \)
\( A_{11}=(-1)^{1+1} \times(\frac{-1 }{ 13})=1 \times(\frac{-1 }{ 13})=\frac{-1 }{ 13}\)
\(A_{12}=(-1)^{1+2} \times(\frac{-2 }{ 13})=(-1) \times(\frac{-2 }{ 13})=\frac{2 }{ 13}\)
\(A_{13}=(-1)^{1+3} \times(\frac{-1 }{ 13})=1 \times(\frac{-1 }{ 13})=\frac{-1 }{ 13}\)
\(A_{21}=(-1)^{2+1} \times(\frac{-2 }{ 13})=(-1) \times(\frac{-2 }{ 13})=\frac{2 }{ 13}\)
\(A_{22}=(-1)^{2+2} \times(\frac{3 }{ 13})=1 \times(\frac{-3 }{ 13})=\frac{-3 }{ 13}\)
\(A_{23}=(-1)^{2+3} \times(\frac{1 }{ 13})=(-1) \times(\frac{1 }{ 13})=\frac{-1 }{ 13}\)
\(A_{31}=(-1)^{3+1} \times(\frac{-1 }{ 13})=1 \times(\frac{-1 }{ 13})=\frac{-1 }{ 13}\)
\(A_{32}=(-1)^{3+2} \times(\frac{1 }{ 13})=(-1) \times \frac{1 }{ 13}=\frac{-1 }{ 13}\)
\(A_{33}=(-1)^{3+3} \times(\frac{-5 }{ 13})=1 \times(\frac{-5 }{ 13})=\frac{-5 }{ 13} \)
\( \operatorname{Adj}\left(\mathrm{A}^{-1}\right)=\left[\begin{array}{ccc}-\frac{1}{13} & \frac{2}{13} & -\frac{1}{13} \\ \frac{2}{13} & -\frac{3}{13} & -\frac{1}{13} \\ -\frac{1}{13} & -\frac{1}{13} & -\frac{5}{13}\end{array}\right]=\frac{1}{13}\left[\begin{array}{ccc}-1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5\end{array}\right] \)
\( \left(\mathrm{A}^{-1}\right)^{-1}=\operatorname{Adj}\frac{\left(\mathrm{A}^{-1}\right) }{\left|\mathrm{A}^{-1}\right|} \)
\( \left(A^{-1}\right)^{-1}=\frac{1}{13}\left[\begin{array}{ccc}-1 & 2 & -1 \\ 2 & -3 & -1 \\ -1 & -1 & -5\end{array}\right]=\frac{-1}{13}\left[\begin{array}{ccc}1 & -2 & 1 \\ -2 & 3 & 1 \\ 1 & 1 & 5\end{array}\right]=A \)
\( \therefore\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A} \)
Applying Elementary Transformations.
Applying \( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \), we have
\(\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
2(x+y) & 2(x+y) & 2(x+y) \\
y & x+y & x \\
x+y & x & y
\end{array}\right| \\
\Delta & =2(x+y)\left|\begin{array}{ccc}
1 & 1 & 1 \\
y & x+y & x \\
x+y & x & y
\end{array}\right|
\end{aligned}\)
Applying \( \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1} \) and \( \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1} \), we have
\(\Delta=2(x+y)\left|\begin{array}{ccc}
1 & 0 & 0 \\
y & x & x-y \\
x+y & -y & -x
\end{array}\right|\)
Expanding along \( \mathrm{R}_{1} \), we have
\(\Delta=2(x+y)[1(x \times(-x)-(-y) \times(x-y))-0+0]\)
\(\Delta=2(x+y)[-x^{ 2}+y(x-y)]\)
\(\Delta=2(x+y)[-x^{2}+\mathrm{xy}-y^{2}]\)
\(\Delta=-2(x+y)\left[x^{2}-x y+y^{2}\right]\)
\(\Delta=-2\left(x^{3}+y^{3}\right)\)
class 12 maths determinants miscellaneous exercise solutions || class 12 maths chapter 4 miscellaneous exercise solutions || maths class 12 chapter 4 ncert solutions || determinants maths class 12
Applying Row transformations
\( \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} ; \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1} \)
\(\begin{aligned}
\Delta & =\left|\begin{array}{ccc}
1 & x & y \\
1-1 & x+y-x & y-y \\
1-1 & x-x & x+y-y
\end{array}\right| \\
\Delta & =\left|\begin{array}{ccc}
1 & x & y \\
0 & y & 0 \\
0 & 0 & x
\end{array}\right|
\end{aligned}\)
Now, Expanding along \( \mathrm{C}_{1} \)
\(\Delta=1(x \times x-0 \times 0)-0(x \times x-0 \times x)+0(x \times 0-x \times x)\)
\(\Delta=1(xy)-0+0\)
\(\Delta=xy\)
Applying Row Transformations
\(\begin{array}{l}
\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \\
\Delta=\left|\begin{array}{ccc}
\alpha & \alpha^{2} & \beta+\gamma \\
\beta-\alpha & \beta^{2}-\alpha^{2} & \alpha-\beta \\
\gamma & \gamma^{2} & \alpha-\gamma
\end{array}\right| \\
\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1} \\
\Delta=\left|\begin{array}{ccc}
\alpha & \alpha^{2} & \beta+\gamma \\
\beta-a & \beta^{2}-\alpha^{2} & \alpha-\beta \\
\gamma-a & \gamma^{2}-\alpha^{2} & \alpha+\beta
\end{array}\right|
\end{array}\)
Taking \( (\beta-\alpha)(\gamma-\alpha) \) from \( \mathrm{R}_{2} \) and \( \mathrm{R}_{3} \) respectively
\(\Delta=(\beta-\alpha)(\gamma-\alpha)\left|\begin{array}{ccc}
\alpha & \alpha^{2} & \beta+\gamma \\
1 & \beta+\gamma & -1 \\
1 & \gamma+\alpha & -1
\end{array}\right|\)
Applying \( \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2} \), we have
\(\Delta=(\beta-\alpha)(\gamma-\alpha)\left|\begin{array}{ccc}
\alpha & \alpha^{2} & \beta+\gamma \\
1 & \beta+\gamma & -1 \\
0 & \gamma-\beta & 0
\end{array}\right|\)
Expanding along \( \mathrm{R}_{3} \), we have
\(\Delta=(\beta-\alpha)(\gamma-\alpha)\left[0 \left(\alpha^{2} \times(-1)-(\beta+\gamma) \times(\beta+\gamma)-(\gamma-\beta)(-1) \right.\right.\)
\(\times \alpha-1 \times(\beta+\gamma)+0\left(\alpha \times(\beta+\gamma)-1 \times \alpha^{2}\right)\)
\(\Delta=(\beta-\alpha)(\gamma-\alpha)[0-(\gamma-\beta)(-\alpha-\beta-\gamma)+0]\)
\(\Delta=(\beta-\alpha)(\gamma-\alpha)(\gamma-\beta)(\alpha+\beta+\gamma)\)
\(\Delta=(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)(\alpha+\beta+\gamma)\)
Applying Elementary Row Transformations
\( \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \) and \( \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1} \)
\(\Delta=\left|\begin{array}{ccc}
x & x^{2} & 1+p x^{3} \\
y-x & y^{2}-x^{2} & p\left(y^{3}-x^{3}\right) \\
z-x & z^{2}-x^{2} & p\left(z^{3}-x^{3}\right)
\end{array}\right|\)
Taking \( (y-x) \) and \( (z-x) \) common from \( \mathrm{R}_{2} \) and \( \mathrm{R}_{3} \) respectively
\(\Delta=(y-x)(z-x)\left|\begin{array}{ccc}
x & x^{2} & 1+p x^{3} \\
1 & y+x & p\left(y^{2}+x^{2}+x y\right) \\
1 & z+x & p\left(z^{2}+x^{2}+x z\right)
\end{array}\right|\)
Applying \( \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2} \)
\(\Delta=(y-x)(z-x)\left|\begin{array}{ccc}
x & x^{2} & 1+p x^{3} \\
1 & y+x & p\left(y^{2}+x^{2}+x y\right) \\
0 & z-y & p(z-y)(x+y+z)
\end{array}\right|\)
Taking \( (z-y) \) common from \( \mathrm{R}_{3} \)
\(\Delta=(y-x)(z-x)(z-y)\left|\begin{array}{ccc}
x & x^{2} & 1+p x^{3} \\
1 & y+x & p\left(y^{2}+x^{2}+x y\right) \\
0 & 1 & p(x+y+z)
\end{array}\right|\)
Expanding along \( \mathrm{R}_{3} \), we have
\(\Delta=(x-y)(y-z)(z-x)\left[0-1\left\{x \times \mathrm{p}\left(y^{2}+x^{2}+xy\right)-1 \times\left(1+px^{3}\right)\right\}\right.\)
\(+p(x+y+z)\left\{x \times(y+x)-1 \times x^{2}\right\}\)
\(\Delta=(x-y)(y-z)(z-x)\left(-px^{3}-pxy^{2}- px^{2} y+1+ px^{3}+px^{2} y\right.\)
\(pxy^{2}+pxyz)\)
\(\Delta=(x-y)(y-z)(z-x)(1+pxyz)\)
Hence, the given result is proved.
Applying Elementary Transformations
\( \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3} \), we have
\( \Delta=\left|\begin{array}{ccc}a+b+c & -a+b & -a+c \\ a+b+c & 3 b & -b+c \\ a+b+c & -c+b & 3 c\end{array}\right| \)
Taking \( (a+b+c) \) common from \( \mathrm{C}_{1} \), we get
\(\Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{ccc}
1 & -a+b & -a+c \\
1 & 3 b & -b+c \\
1 & -c+b & 3 c
\end{array}\right|\)
Applying \( \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1} \) and \( \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1} \)
\(\Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{ccc}
1 & -a+b & -a+c \\
0 & 2 b+a & a-b \\
0 & a-c & 2 c+a
\end{array}\right|\)
Expanding along \( \mathrm{C}_{1} \)
\(\Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})[1 \times\{(2 \mathrm{b}+\mathrm{a})(2 \mathrm{c}+\mathrm{a})-(\mathrm{a}-\mathrm{b})(\mathrm{a}-\mathrm{c})\}-0+0]\)
\(\Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})[4 \mathrm{bc}+2 \mathrm{ab}+2 \mathrm{ac}+\mathrm{a} ^{2}-\mathrm{a}^{2}+\mathrm{ac}+\mathrm{ba}-\mathrm{bc}]\)
\(\Delta=(\mathrm{a}+\mathrm{b}+\mathrm{c})(3 \mathrm{ab}+3 \mathrm{bc}+3 \mathrm{ac})\)
\(\Delta=3(\mathrm{a}+\mathrm{b}+\mathrm{c})(\mathrm{ab}+\mathrm{bc}+\mathrm{ca})\)
Hence, the given result proved.
Applying Elementary Row Transformations
\(\begin{array}{l}
\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1} \\
\Delta=\left|\begin{array}{ccc}
1 & 1+p & 1+p+q \\
0 & 1 & 2+p \\
3 & 6+3 p & 10+6 p+3 q
\end{array}\right| \\
\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{1} \\
\Delta=\left|\begin{array}{ccc}
1 & 1+p & 1+p+q \\
0 & 1 & 2+p \\
0 & 3 & 7+3 p
\end{array}\right|
\end{array}\)
\( \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{2} \)
\( \Delta=\left|\begin{array}{ccc}1 & 1+p & 1+p+q \\ 0 & 1 & 2+p \\ 0 & 0 & 1\end{array}\right| \)
Expanding Along \(C_{1}\), we have
\( \Delta=1(1 \times 1-0 \times(2+\mathrm{p}))-0+0 \)
\( \Delta=1-0 \)
\( \Delta=1 \)
Hence, the given result is proved
\( \Delta=\left|\begin{array}{lll}\sin \alpha & \cos \alpha & \cos \alpha \cos \delta-\sin \alpha \sin \delta \\ \sin \beta & \cos \beta & \cos \beta \cos \delta-\sin \beta \sin \delta \\ \sin \gamma & \cos \gamma & \cos \gamma \cos \delta-\sin \beta \sin \delta\end{array}\right| \)
\( \Delta=\frac{1}{\sin \delta \cos \delta}\left|\begin{array}{lll}\sin \alpha \sin \delta & \cos \alpha \cos \delta & \cos \alpha \cos \delta-\sin \alpha \sin \delta \\ \sin \beta \sin \delta & \cos \beta \cos \delta & \cos \beta \cos \delta-\sin \beta \sin \delta \\ \sin \gamma \sin \delta & \cos \gamma \cos \delta & \cos \gamma \cos \delta-\sin \gamma \sin \delta\end{array}\right| \)
Applying Elementary Column Transformations
\( \mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{3} \)
\( \Delta= \)
\(\frac{1}{\sin \delta \cos \delta}\left[\begin{array}{ccc}
\cos \alpha \cos \delta & \cos \alpha \cos \delta & \cos \alpha \cos \delta-\sin \alpha \sin \delta \\
\cos \beta \cos \delta & \cos \beta \cos \delta & \cos \beta \cos \delta-\sin \beta \sin \delta \\
\cos \gamma \cos \delta & \cos \gamma \cos \delta & \cos \gamma \cos \delta-\sin \gamma-\sin \gamma \sin \delta
\end{array}\right]\)
Since, the two columns are identical
[In a determinant if two columns are identical the value of determinant is 0 ]
So, the value of given determinant is 0
\(\therefore \Delta=0\)
Hence, the given result is proved.
A. 0 B. 1 C. \(x\) D. \( 2 x \)
Since, \( a, b, c \) is in A.P.
\(\begin{array}{l}
\therefore 2 \mathrm{b}=\mathrm{a}+\mathrm{c} \\
\Delta=\left|\begin{array}{ccc}
x+2 & x+3 & x+2 a \\
x+3 & x+4 & x+(a+c) \\
x+4 & x+5 & x+2 c
\end{array}\right|
\end{array}\)
Applying Elementary Row Transformations
\( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2} \) and \( \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2} \)
\( \Delta=\left|\begin{array}{ccc}-1 & -1 & a-c \\ x+3 & x+4 & x+(a+c) \\ 1 & 1 & c-a\end{array}\right| \)
\( \mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{3} \), we have
\( \Delta=\left|\begin{array}{ccc}0 & 0 & 0 \\ x+3 & x+4 & x+a+c \\ 1 & 1 & c-a\end{array}\right| \)
[In a determinant if all elements of a row are 0 then the value of determinant is 0.]
So, here all the elements of first row \( \left(\mathrm{R}_{1}\right) \) are zero.
\( \therefore \Delta=0 \)
A. \( \operatorname{Det}(A)=0 \)
B. \( \operatorname{Det}(\mathrm{A}) \in(2, \infty) \)
C. Det \( (\mathrm{A}) \in(2,4) \)
D. \( \operatorname{Det}(\mathrm{A}) \in[2,4] \)
\( |A|=1(1 \times 1-\sin \theta \times(-\sin \theta))-\sin \theta((-\sin \theta) \times 1-(-1) \)
\( \times \sin \theta)+1((- \sin \theta) \times(-\sin \theta)-(-1) \times 1) \)
\( |A|=1+\sin 2 \theta+\sin 2 \theta-\sin 2 \theta+\sin 2 \theta+1\)
\(|A|=2+2 \sin 2 \theta\)
\(|A|=2(1+\sin 2 \theta) \)
Now, \( 0 \leq \theta \leq 2 \pi \)
\(\Rightarrow \sin 0 \leq \sin \theta \leq \sin 2 \pi\)
\(\Rightarrow 0 \leq \sin 2 \theta \leq 1\)
\(\Rightarrow 1+0 \leq 1+\sin 2 \theta \leq 1+1\)
\(\Rightarrow 2 \leq 2(1+\sin 2 \theta) \leq 4\)
\(\therefore \operatorname{Det} (A)\in[2,4]\)