Ex 10.2 class 12 maths ncert solutions | class 12 maths exercise 10.2 | class 12 maths ncert solutions chapter 10 exercise 10.2 | exercise 10.2 class 12 maths ncert solutions | class 12 maths chapter 10 ncert solutions | class 12 chapter 10 maths ncert solutions | vector algebra class 12 ncert solutions
Strengthen your understanding of vectors with our detailed Ex 10.2 Class 12 Maths NCERT Solutions. This exercise is a part of the comprehensive Class 12 Maths Chapter 10 NCERT Solutions, focusing on vector addition, scalar multiplication, and their properties. Our easy-to-follow Class 12 Maths Exercise 10.2 solutions are crafted to help students grasp each concept step by step. The Exercise 10.2 Class 12 Maths NCERT Solutions include solved examples and important formulas to make learning smooth and effective. These solutions form a key part of the complete Class 12 Chapter 10 Maths NCERT Solutions and are essential for mastering the topic of Vector Algebra Class 12 NCERT Solutions.

ex 10.2 class 12 maths ncert solutions || class 12 maths chapter 10 ncert solutions || class 12 chapter 10 maths ncert solutions || class 12 maths ncert solutions chapter 10 exercise 10.2 || class 12 maths exercise 10.2 || exercise 10.2 class 12 maths ncert solutions || vector algebra class 12 ncert solutions
Exercise 10.2
1. Compute the magnitude of the following vectors:
\(
\overrightarrow{a}=\hat{\imath}+\hat{\jmath}+\hat{k} ; \overrightarrow{b}=2 \hat{\imath}-7 \hat{\jmath}-3 \hat{k} ; \overrightarrow{c}=\frac{1}{\sqrt{3}} \hat{\imath}+\frac{1}{\sqrt{3}} \hat{\jmath}+\frac{1}{\sqrt{3}} \hat{k}
\)
\(
\overrightarrow{a}=\hat{\imath}+\hat{\jmath}+\hat{k} ; \overrightarrow{b}=2 \hat{\imath}-7 \hat{\jmath}-3 \hat{k} ; \overrightarrow{c}=\frac{1}{\sqrt{3}} \hat{\imath}+\frac{1}{\sqrt{3}} \hat{\jmath}+\frac{1}{\sqrt{3}} \hat{k}
\)
Answer
\(
\overrightarrow{a}=\hat{\imath}+\hat{\jmath}+\hat{k}\)
\(\therefore|\overrightarrow{a}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}\)
\(\overrightarrow{b}=2 \hat{\imath}-7 \hat{\jmath}-3 \hat{k}\)
\(\therefore|\overrightarrow{b}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{2^{2}+(-7)^{2}+(-3)^{2}}=\sqrt{62}\)
\(\overrightarrow{c}=\frac{1}{\sqrt{3}} \hat{\imath}+\frac{1}{\sqrt{3}} \hat{\jmath}+\frac{1}{\sqrt{3}} \hat{k}\)
\(\therefore|\overrightarrow{c}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{-1}{\sqrt{3}}\right)^{2}}=\sqrt{1}=1
\)
2. Write two different vectors having same magnitude.
Answer
Let \( \overrightarrow{a}=\hat{\imath}+\hat{\jmath}+\hat{k} \)
And
\(
\overrightarrow{b}=\hat{\imath}-\hat{\jmath}-\hat{k}
\)
We can see clearly \( \overrightarrow{a} \neq \overrightarrow{b} \) because the all the coefficients of \( \overrightarrow{a} \) and \( \overrightarrow{b} \) are not same. In î and \( \hat{\jmath} \), the coefficients are different. Now, we check the magnitude of both,
\(
|\overrightarrow{a}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}
\)
And
\(
|\overrightarrow{a}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{1^{2}+(-1)^{2}+(-1)^{2}}=\sqrt{3}
\)
So, magnitude of both vectors is same but they are different.
3. Write two different vectors having same direction.
Answer
Let \( \overrightarrow{a}=\hat{\imath}+\hat{\jmath}+\hat{k} \)
And
\(
\overrightarrow{b}=2 \hat{\imath}+2 \hat{\jmath}+2 \hat{k}=2(\hat{\imath}+\hat{\jmath}+\hat{k})=2 \overrightarrow{a}
\)
So, here \( \overrightarrow{b}=m \overrightarrow{a} \) where \( m=2 > 0 \)
Therefore, both vectors have same direction.
Now, we check for the magnitude, \( \overrightarrow{b}=2 \overrightarrow{a} \)
\(
|\overrightarrow{b}|=2|\overrightarrow{a}|
\)
So, they have same direction but same magnitude.
\(
\therefore \overrightarrow{a} \neq \overrightarrow{b}
\)
4. Find the values of \( x \) and \( y \) so that the vectors \( 2 \hat{\imath}+3 \hat{\jmath} \) and \( x \hat{\imath}+ \) \( y \hat{\jmath} \) are equal.
Answer
For two vectors to be equal, the coefficients of both vectors should be equal.
Comparing the \( \hat{\imath} \)-coefficient, we get \( x=2 \)
Comparing the \( \hat{\jmath} \)-coefficient, we get \( y=3 \)
5. Find the scalar and vector components of the vector with initial point \( (2,1) \) and terminal point \( (-5,7) \).
Answer
Let A be the initial point \( (2,1) \) and B be the final point \( (-5,7) \).
So, \( \overrightarrow{A}=2 \hat{\imath}+\hat{\jmath} \) and \( \overrightarrow{B}=-5 \hat{\imath}+7 \hat{\jmath} \)
Now we want to find the \( \overrightarrow{A B} \)
\(
\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}}\)
\(\Rightarrow \overrightarrow{\mathrm{AB}}=(-5 \hat{\imath}+7 \hat{\jmath})-(2 \hat{\imath}+\hat{\jmath})\)
\(\Rightarrow \overrightarrow{\mathrm{AB}}=(-7 \hat{\imath}+6 \hat{\jmath})
\)
Therefore, the scalar components of \( \overrightarrow{\mathrm{AB}} \) are -7 and 6 . The vector components of \( \overrightarrow{\mathrm{AB}} \) are \( -7 \hat{\imath}+6 \hat{\jmath} \).
ex 10.2 class 12 maths ncert solutions || class 12 maths chapter 10 ncert solutions || class 12 chapter 10 maths ncert solutions || class 12 maths ncert solutions chapter 10 exercise 10.2 || class 12 maths exercise 10.2 || exercise 10.2 class 12 maths ncert solutions || vector algebra class 12 ncert solutions
6. Compute the magnitude of the following vectors:
\(
\overrightarrow{a}=\hat{\imath}-2 \hat{\jmath}+\hat{k} ; \overrightarrow{b}=-2 \hat{\imath}+4 \hat{\jmath}+5 \hat{k} ; \text { and } \overrightarrow{c}=\hat{\imath}-6 \hat{\jmath}-7 \hat{k}
\)
\(
\overrightarrow{a}=\hat{\imath}-2 \hat{\jmath}+\hat{k} ; \overrightarrow{b}=-2 \hat{\imath}+4 \hat{\jmath}+5 \hat{k} ; \text { and } \overrightarrow{c}=\hat{\imath}-6 \hat{\jmath}-7 \hat{k}
\)
Answer
\(
\overrightarrow{a}=\hat{\imath}-2 \hat{\jmath}+\hat{k}\)
\(\overrightarrow{b}=-2 \hat{\imath}+4 \hat{\jmath}+5 \hat{k}
\)
And
\(
\vec{c}=\hat{\imath}-6 \hat{\jmath}-7 \hat{k}
\)
We want to find \( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \)
To find the sum, we add coefficients of \( \hat{\imath}, \hat{\jmath}, \hat{k} \) to each other.
So, \( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=(\hat{\imath}-2 \hat{\jmath}+\hat{k})+(-2 \hat{\imath}+4 \hat{\jmath}+5 \hat{k})+(\hat{\imath}-6 \hat{\jmath}-7 \hat{k}) \)
\(
\Rightarrow \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=0 \hat{\imath}-4 \hat{\jmath}-\hat{k}
\)
7. Find the unit vector in the direction of the vector \( \overrightarrow{a}=\hat{\imath}+\hat{\jmath}+ \) \( 2 \hat{k} \)
Answer
We know that unit vector means that the magnitude of the vector is 1 (unit).
It is defined as \( \hat{a}=\frac{\overrightarrow{a}}{|\overrightarrow{a}|} \)
So, we find the magnitude of \( \overrightarrow{a} \) first.
\(
\Rightarrow|\overrightarrow{a}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{1^{2}+1^{2}+2^{2}}=\sqrt{6}\)
\(\hat{a}=\frac{\overrightarrow{a}}{|\overrightarrow{a}|}=\frac{(\hat{\imath}-2 \hat{\jmath}+\hat{k})}{\sqrt{6}}=\frac{1}{\sqrt{6}} \hat{\imath}+\frac{1}{\sqrt{6}} \hat{\jmath}+\frac{2}{\sqrt{6}} \hat{k}
\)
8. Find the unit vector in the direction of vector \( \overrightarrow{\mathrm{PQ}} \) where P and Q are the points \( (1,2,3) \) and \( (4,5,6) \), respectively.
Answer
So, \( \overrightarrow{\mathrm{P}}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k} \) and \( \overrightarrow{\mathrm{Q}}=4 \hat{\imath}+5 \hat{\jmath}+6 \hat{k} \)
Now we want to find the \( \overrightarrow{P Q} \)
\(
\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{Q}}-\overrightarrow{\mathrm{P}}\)
\(\Rightarrow \overrightarrow{\mathrm{PQ}}=(4 \hat{\imath}+5 \hat{\jmath}+6 \hat{k})-(\hat{\imath}+2 \hat{\jmath}+3 \hat{k})\)
\(\Rightarrow \overrightarrow{\mathrm{PQ}}=(3 \hat{\imath}+3 \hat{\jmath}+3 \hat{k})
\)
Now, we have to find the unit direction in the direction of \( \overrightarrow{\mathrm{PQ}} \). We know that unit vector means that the magnitude of the vector is 1 (unit).
It is defined as \( \widehat{\mathrm{PQ}}=\frac{\overrightarrow{\mathrm{PQ}}}{|\mathrm{PQ}|} \)
So, we find the magnitude of \( \vec{a} \) first.
\(
\Rightarrow|\overrightarrow{\mathrm{PQ}}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{3^{2}+3^{2}+3^{2}}=\sqrt{27}=3 \sqrt{3}\)
\(\widehat{\mathrm{PQ}}=\frac{\overrightarrow{\mathrm{PQ}}}{|\overrightarrow{\mathrm{QQ}}|}=\frac{(3 \hat{\imath}+3 \hat{\jmath}+3 \hat{k})}{3 \sqrt{3}}=\frac{1}{\sqrt{3}} \hat{\imath}+\frac{1}{\sqrt{3}} \hat{\jmath}+\frac{1}{\sqrt{3}} \hat{k}
\)
9. For given vectors, \( \overrightarrow{a}=2 \hat{\imath}-\hat{\jmath}+2 \hat{k} \) and \( \vec{b}=-\hat{\imath}+\hat{\jmath}-\hat{k} \) find the unit vector in the direction of the vector \( \overrightarrow{a}+\overrightarrow{b} \)
Answer
\(
\overrightarrow{a}=2 \hat{\imath}-\hat{\jmath}+2 \hat{k}\)
\(\overrightarrow{b}=-\hat{\imath}+\hat{\jmath}-\hat{k}
\)
We want to find \( \overrightarrow{a}+\overrightarrow{b} \)
To find the sum, we add coefficients of \( \hat{\imath}, \hat{\jmath}, \hat{k} \) to each other.
So,
\(
\overrightarrow{a}+\overrightarrow{b}=(2 \hat{\imath}-\hat{\jmath}+2 \hat{k})+(-\hat{\imath}+\hat{\jmath}-\hat{k})\)
\(\Rightarrow \overrightarrow{a}+\overrightarrow{b}=1 \hat{\imath}-0 \hat{\jmath}+\hat{k}
\)
Now, we have to find the unit direction in the direction of \( (\overrightarrow{a}+\overrightarrow{b}) \). We know that unit vector means that the magnitude of the vector is 1 (unit).
So, we find the magnitude of \( \overrightarrow{a}+\overrightarrow{b} \) first.
\(
\Rightarrow|\overrightarrow{a}+\overrightarrow{b}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{1^{2}+0^{2}+(1)^{2}}=\sqrt{2}\)
\(\frac{\overrightarrow{a}+\overrightarrow{b}}{|\overrightarrow{a}+\overrightarrow{b}|}=\frac{(\hat{\imath}+0 \hat{\jmath}+\hat{k})}{\sqrt{2}}=\frac{1}{\sqrt{2}} \hat{\imath}+\frac{0}{\sqrt{2}} \hat{\jmath}+\frac{1}{\sqrt{2}} \hat{k}
\)
10. Find a vector in the direction of vector which has magnitude 8 units.
Answer
Let \( \overrightarrow{a}=5 \hat{\imath}-\hat{\jmath}+2 \hat{k} \)
The vector in the direction of \( \overrightarrow{a} \) having unit magnitude is \( \hat{a} \).
So, The vector in the direction of \( \overrightarrow{a} \) having magnitude 8 units \( =8 \hat{a} \).
\(
\Rightarrow|\vec{a}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{5^{2}+(-1)^{2}+2^{2}}=\sqrt{30}\)
\(8 \hat{a}=8 \frac{\overrightarrow{a}}{|\overrightarrow{a}|}=8 \frac{(5 \hat{\imath}-\hat{\jmath}+2 \hat{k})}{\sqrt{30}}=\frac{40}{\sqrt{30}} \hat{\imath}+\frac{8}{\sqrt{30}} \hat{\jmath}+\frac{16}{\sqrt{30}} \hat{k}
\)
ex 10.2 class 12 maths ncert solutions || class 12 maths chapter 10 ncert solutions || class 12 chapter 10 maths ncert solutions || class 12 maths ncert solutions chapter 10 exercise 10.2 || class 12 maths exercise 10.2 || exercise 10.2 class 12 maths ncert solutions || vector algebra class 12 ncert solutions
11. Show that the vectors \( 2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k} \) and \( -4 \hat{\imath}+6 \hat{\jmath}-8 \hat{k} \) are collinear.
Answer
We know that two vectors are collinear if they have the same direction or are parallel or anti-parallel. They can be expressed in the form \( \overrightarrow{b}= \) \( m \overrightarrow{a} \) where a and b are vectors and ' \( m \) ' is a scalar quantity.
From the question,
Let \( \overrightarrow{a}=2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k} \) and \( \overrightarrow{b}=-4 \hat{\imath}+6 \hat{\jmath}-8 \hat{k} \)
Here, \( \overrightarrow{b}=-4 \hat{\imath}+6 \hat{\jmath}-8 \hat{k}=-2(2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k}) \)
\(
\Rightarrow \overrightarrow{b}=-2 \vec{a}
\)
So, \( \overrightarrow{b}=m \overrightarrow{a} \) where, \( m=-2 \).
\( \therefore \) The given two vectors are collinear.
12. Find the direction cosines of the vector \( \hat{\imath}+2 \hat{\jmath}+3 \hat{k} \)
Answer
The direction cosines of a vector are defined as the coefficients of \( \hat{1}, \hat{\jmath}, \hat{k} \) in the unit vector in the direction of the vector.
So, first we find the unit vector in the direction of the vector.
Let \( \overrightarrow{a}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k} \)
\( \Rightarrow|\overrightarrow{a}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14} \)
\( \hat{a}=\frac{\overrightarrow{a}}{|\overrightarrow{a}|}=\frac{(\hat{\imath}-2 \hat{\jmath}+3 \hat{k})}{\sqrt{14}}=\frac{1}{\sqrt{14}} \hat{\imath}+\frac{2}{\sqrt{14}} \hat{\jmath}+\frac{3}{\sqrt{14}} \hat{k} \)
Therefore. The direction cosines of the given vector are \( \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}} \)
13. Find the direction cosines of the vector joining the points A \( (1,2,-3) \) and \( B(-1,-2,1) \), directed from A to B.
Answer
So, \( \overrightarrow{A}=\hat{\imath}+2 \hat{\jmath}-3 \hat{k} \) and \( \overrightarrow{B}=-1 \hat{\imath}-2 \hat{\jmath}+1 \hat{k} \)
Now we want to find the \( \overrightarrow{A B} \)
\(
\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}}\)
\(\Rightarrow \overrightarrow{\mathrm{AB}}=(-1 \hat{\imath}-2 \hat{\jmath}+1 \hat{k})-(\hat{\imath}+2 \hat{\jmath}-3 \hat{k})\)
\(\Rightarrow \overrightarrow{\mathrm{AB}}=(-2 \hat{\imath}-4 \hat{\jmath}+4 \hat{k})
\)
Now, we have to find the direction cosines which are the coefficients of the unit vector in the direction of \( \overrightarrow{\mathrm{AB}} \). We know that unit vector means that the magnitude of the vector is 1 (unit).
It is defined as \( \widehat{\mathrm{AB}}=\frac{\overrightarrow{\mathrm{AB}}}{|\overrightarrow{\mathrm{AB}}|} \)
So, we find the magnitude of \( \overrightarrow{a} \) first.
\(
\Rightarrow|\overrightarrow{\mathrm{AB}}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{(-2)^{2}+(-4)^{2}+4^{2}}=\sqrt{36}=6\)
\(\widehat{\mathrm{AB}}=\frac{\overrightarrow{\mathrm{AB}}}{|\overrightarrow{\mathrm{AB}}|}=\frac{(-2 \hat{\imath}-4 \hat{\jmath}+4 \hat{k})}{6}=\frac{-1}{3} \hat{\imath}-\frac{2}{3} \hat{\jmath}+\frac{2}{3} \widehat{k}
\)
Therefore, The direction cosines of the given vector are \( \frac{-1}{3}, \frac{2}{3}, \frac{2}{3} \).
14. Show that the vector \( \hat{\imath}+\hat{\jmath}+\hat{k} \) is equally inclined to the axes OX, OY and OZ.
Answer
To find the inclination of the vector with \( \mathrm{OX}, \mathrm{OY}, \mathrm{OZ} \). We find the direction cosines of the vector.
We know that the direction cosines of a vector are defined as the coefficients of \( \hat{1}, \hat{\jmath}, \hat{k} \) in the unit vector in the direction of the vector.
So, first we find the unit vector in the direction of the vector.
Let \( \overrightarrow{a}=\hat{\imath}+\hat{\jmath}+\hat{k} \)
\(
\Rightarrow|\overrightarrow{a}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}\)
\(\hat{a}=\frac{\overrightarrow{a}}{|\overrightarrow{a}|}=\frac{(\hat{\imath}+\hat{\jmath}+\hat{k})}{\sqrt{3}}=\frac{1}{\sqrt{3}} \hat{\imath}+\frac{1}{\sqrt{3}} \hat{\jmath}+\frac{1}{\sqrt{3}} \hat{k}
\)
Therefore. The direction cosines of the given vector are \( \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \)
Let \( \theta_{1} \) be the angle between \( \overrightarrow{a} \) and OX.
Therefore, \( \cos \theta_{1}=\frac{1}{\sqrt{3}} \)
\(
\Rightarrow \theta_{1}=\cos ^{-1} \frac{1}{\sqrt{3}}
\)
Similarly, Let \( \theta_{2} \) be the angle between \( \overrightarrow{a} \) and OY.
Therefore, \( \cos \theta_{2}=\frac{1}{\sqrt{3}} \)
\(
\Rightarrow \theta_{2}=\cos ^{-1} \frac{1}{\sqrt{3}}
\)
And, \( \theta_{3} \) be the angle between \( \overrightarrow{a} \) and OZ.
Therefore, \( \cos \theta_{3}=\frac{1}{\sqrt{3}} \)
Therefore, \( \theta_{1}=\theta_{2}=\theta_{3} \)
Hence proved that the vector is equally inclined with the axes OX, OY, and OZ .
15. Find the position vector of a point \( R \) which divides the line joining two points P and Q whose position vectors are \( \hat{\imath}+2 \hat{\jmath}-\hat{k} \) and \( -\hat{\imath}+\hat{\jmath}+\hat{k} \) respectively, in the ratio \( 2: 1 \)
(i) internally (ii) externally
(i) internally (ii) externally
Answer
Given that \( \overrightarrow{\mathrm{P}}=\hat{\imath}+2 \hat{\jmath}-\hat{k} \) and \( \overrightarrow{\mathrm{Q}}=-\hat{\imath}+\hat{\jmath}+\hat{k} \)
(i) The \( \overrightarrow{R} \) lies on the segment PQ (internal division).If \( \mathrm{m}: \mathrm{n} \) is the ratio in which \( \overrightarrow{\mathrm{R}} \) divides PQ , then
\(
\overrightarrow{R}=\frac{m \overrightarrow{Q}+n \overrightarrow{P}}{m+n}
\)
Given \( \mathrm{m}: \mathrm{n}=2: 1, \mathrm{~m}=2 \) and \( \mathrm{n}=1 \)
\(
\Rightarrow \overrightarrow{\mathrm{R}}=\frac{2(-\hat{\imath}+\hat{\jmath}+\hat{k})+1(\hat{\imath}+2 \hat{\jmath}-\hat{k})}{2+1}=\frac{-1 \hat{\imath}+4 \hat{\jmath}+\hat{k}}{3}=-\frac{1}{3} \hat{\imath}+\frac{4}{3} \hat{\jmath}+\frac{1}{3} \hat{k}
\)
(ii) The \( \overrightarrow{R} \) does not lie on the segment PQ (external division).If \( \mathrm{m}: \mathrm{n} \) is the ratio in which divides PQ , then
\(
\overrightarrow{R}=\frac{\mathrm{m} \overrightarrow{\mathrm{Q}}-\mathrm{n} \overrightarrow{\mathrm{P}}}{\mathrm{m}-\mathrm{n}}
\)
Given \( \mathrm{m}: \mathrm{n}=2: 1, \mathrm{~m}=2 \) and \( \mathrm{n}=1 \)
\(
\Rightarrow \overrightarrow{\mathrm{R}}=\frac{2(-\hat{1}+\hat{\jmath}+\hat{k})-1(\hat{\mathrm{i}}+2 \hat{\jmath}-\hat{k})}{2-1}=\frac{-3 \hat{1}+0 \hat{\jmath}+3 \hat{k}}{1}=-3 \hat{\imath}+3 \hat{\mathrm{k}}
\)
16. Find the position vector of the midpoint of the vector joining the points \( P(2,3,4) \) and \( Q(4,1,-2) \).
Answer
So, \( \overrightarrow{\mathrm{P}}=2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k} \) and \( \overrightarrow{\mathrm{Q}}=4 \hat{\imath}+1 \hat{\jmath}-2 \hat{k} \)
Let \( \overrightarrow{\mathrm{R}} \) be the midpoint of \( \overrightarrow{\mathrm{PQ}} \).
\(
\overrightarrow{\mathrm{R}}=\frac{\overrightarrow{\mathrm{P}}+\overrightarrow{\mathrm{Q}}}{2}\)
\(\Rightarrow \overrightarrow{\mathrm{R}}=\frac{(2 \hat{\imath}+3 \hat{\jmath}+4 \hat{k})+(4 \hat{\imath}+1 \hat{\jmath}-2 \hat{k})}{2}\)
\(\Rightarrow \overrightarrow{\mathrm{R}}=\frac{(6 \hat{\imath}+4 \hat{\jmath}+2 \hat{k})}{2}\)
\(\Rightarrow \overrightarrow{\mathrm{R}}=3 \hat{\imath}+2 \hat{\jmath}+\hat{k}
\)
ex 10.2 class 12 maths ncert solutions || class 12 maths chapter 10 ncert solutions || class 12 chapter 10 maths ncert solutions || class 12 maths ncert solutions chapter 10 exercise 10.2 || class 12 maths exercise 10.2 || exercise 10.2 class 12 maths ncert solutions || vector algebra class 12 ncert solutions
17. Show that the points \( \mathrm{A}, \mathrm{B} \) and C with position vectors, \( \overrightarrow{a}= \) \( 3 \hat{\imath}-4 \hat{\jmath}-4 \hat{k} ; \overrightarrow{b}=2 \hat{\imath}-\hat{\jmath}+\hat{k} ; \overrightarrow{c}=\hat{\imath}-3 \hat{\jmath}-5 \hat{k} \quad \) respectively form the vertices of a right angled triangle.
Answer
O be the origin,
Let \( \overrightarrow{a}=\overrightarrow{O A}=3 \hat{\imath}-4 \hat{\jmath}-4 \hat{k} \)
\(
\overrightarrow{b}=\overrightarrow{\mathrm{OB}}=2 \hat{\imath}-\hat{\jmath}+\hat{k}
\)
And
\(
\overrightarrow{c}=\overrightarrow{\mathrm{OC}}=\hat{\imath}-3 \hat{\jmath}-5 \hat{k}
\)
Now we find the vectors \( \overrightarrow{\mathrm{AB}}, \overrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{CA}} \)
\(
\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}}\)
\(\Rightarrow \overrightarrow{\mathrm{AB}}=(2 \hat{\imath}-\hat{\jmath}+\hat{k})-(3 \hat{\imath}-4 \hat{\jmath}-4 \hat{k})\)
\(\Rightarrow \overrightarrow{\mathrm{AB}}=(-\hat{\imath}+3 \hat{\jmath}+5 \hat{k})\ldots(1)\)
\(\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{C}}-\overrightarrow{\mathrm{B}}\)
\(\Rightarrow \overrightarrow{\mathrm{BC}}=(\hat{\imath}-3 \hat{\jmath}-5 \hat{k})-(2 \hat{\imath}-\hat{\jmath}+\hat{k})\)
\(\Rightarrow \overrightarrow{\mathrm{BC}}=(-\hat{\imath}-2 \hat{\jmath}-6 \hat{k})\ldots(2)\)
\(\overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{C}}\)
\(\Rightarrow \overrightarrow{\mathrm{CA}}=(3 \hat{\imath}-4 \hat{\jmath}-4 \hat{k})-(\hat{\imath}-3 \hat{\jmath}-5 \hat{k})\)
\(\Rightarrow \overrightarrow{\mathrm{CA}}=(2 \hat{\imath}-\hat{\jmath}+\hat{k})\ldots(3)\)
Adding equations (1), (2) and (3)
\(
\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=(-\hat{\imath}+3 \hat{\jmath}+5 \hat{k})+(-\hat{\imath}-2 \hat{\jmath}-6 \hat{k})+(2 \hat{\imath}-\hat{\jmath}+\hat{k})\)
\(\Rightarrow \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=0 \hat{\imath}+0 \hat{\jmath}+0 \hat{k}
\)
Therefore, ABC form a triangle.
Now, we want to prove that it is a right angled triangle.
\(
|\overrightarrow{\mathrm{AB}}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{(-1)^{2}+(3)^{2}+5^{2}}=\sqrt{35}\)
\(|\overrightarrow{\mathrm{BC}}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{(-1)^{2}+(2)^{2}+(-6)^{2}}=\sqrt{41}\)
\(|\overrightarrow{\mathrm{CA}}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{(2)^{2}+(-1)^{2}+1^{2}}=\sqrt{6}\)
\(\Rightarrow|\overrightarrow{\mathrm{AB}}|^{2}+|\overrightarrow{\mathrm{CA}}|^{2}=(\sqrt{35})^{2}+(\sqrt{6})^{2}=35+6=41\)
\(\Rightarrow|\overrightarrow{\mathrm{AB}}|^{2}+|\overrightarrow{\mathrm{CA}}|^{2}=41=(\sqrt{41})^{2}=|\overrightarrow{\mathrm{BC}}|^{2}
\)
Therefore, the triangle satisfies the Pythagoras theorem. Hence, proved the given vectors form a right angled triangle.
18. In triangle ABC (Fig 10.18), which of the following is not true:
(a) \( \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0} \)
(b) \( \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}-\overrightarrow{\mathrm{AC}}=\overrightarrow{0} \)
(c) \( \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}-\overrightarrow{\mathrm{CA}}=\overrightarrow{0} \)
(d) \( \overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0} \)

(a) \( \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0} \)
(b) \( \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}-\overrightarrow{\mathrm{AC}}=\overrightarrow{0} \)
(c) \( \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}-\overrightarrow{\mathrm{CA}}=\overrightarrow{0} \)
(d) \( \overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{CA}}=\overrightarrow{0} \)
Answer
We know by triangle law of vectors,
\( \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}} \ldots (1)\)
Therefore, \( \Rightarrow \overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{A C}=0 \)
Hence \( (B) \) is true.
We know that \( \overrightarrow{\mathrm{AC}}=-\overrightarrow{\mathrm{CA}} \)
Putting in eq (1), we get
\(
\Rightarrow \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}=-\overrightarrow{\mathrm{CA}}\)
\(\Rightarrow \overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{BC}}+\overrightarrow{\mathrm{CA}}=0
\ldots (2)\)
Hence (A) is also true.
Now, \( \overrightarrow{\mathrm{BC}}=-\overrightarrow{\mathrm{CB}} \)
Putting in eq (2)
\(
\Rightarrow \overrightarrow{\mathrm{AB}}-\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{CA}}=0
\)
Hence (D) is correct.
We are asked the option which is not true.
Therefore, the correct option is (C).
19. \( \overrightarrow{a} \) and \( \overrightarrow{b} \) are two collinear vectors, then which of the following are incorrect:
(a) \( \overrightarrow{b}=\lambda \overrightarrow{a} \) for some scalar \( \lambda \)
(b) \( \overrightarrow{a}= \pm \overrightarrow{b} \)
(c) the respective components of \( \overrightarrow{a} \) and \( \overrightarrow{b} \) are not proportional
(d) both the vectors \( \overrightarrow{a} \) and \( \overrightarrow{b} \) have same direction, but different magnitudes.
(a) \( \overrightarrow{b}=\lambda \overrightarrow{a} \) for some scalar \( \lambda \)
(b) \( \overrightarrow{a}= \pm \overrightarrow{b} \)
(c) the respective components of \( \overrightarrow{a} \) and \( \overrightarrow{b} \) are not proportional
(d) both the vectors \( \overrightarrow{a} \) and \( \overrightarrow{b} \) have same direction, but different magnitudes.
Answer
We know that two vectors are collinear if they have the same direction or are parallel or anti-parallel. They can be expressed in the form and \( \overrightarrow{b}= \) \( \mathrm{m} \overrightarrow{a} \) where a and b are vectors and ' m ' is a scalar quantity.
Therefore, (a) is true.
In (b), \( \mathrm{m}= \pm 1 \)
So, (b) is also true.
The vectors \( \overrightarrow{a} \) and \( \overrightarrow{b} \) are proportional,
Therefore, (c) is not true.
The vectors \( \overrightarrow{a} \) and \( \overrightarrow{b} \) can have different magnitude as well as different direction.
Therefore, (d) is not true.
We are asked the options which are not true.
\( \therefore \) The correct answer is (c) and (d).