Ex 10.3 class 12 maths ncert solutions | class 12 maths exercise 10.3 | class 12 maths ncert solutions chapter 10 exercise 10.3 | exercise 10.3 class 12 maths ncert solutions | class 12 maths chapter 10 ncert solutions | class 12 chapter 10 maths ncert solutions | vector algebra class 12 ncert solutions
If you’re looking for the most reliable and power-packed resource to master vector concepts, then the Class 12 Maths NCERT Solutions Chapter 10 Exercise 10.3 is your go-to guide. This section, part of the Vector Algebra Class 12 NCERT Solutions, offers step-by-step solutions that simplify complex problems into easy-to-understand steps. Whether you search for Class 12 Maths Exercise 10.3, Exercise 10.3 Class 12 Maths NCERT Solutions, or just want clarity on Class 12 Chapter 10 Maths NCERT Solutions, this solution set is designed to boost your confidence and accuracy. Dive into these expertly crafted solutions and transform your preparation journey today!

exercise 10.3 class 12 maths ncert solutions || vector algebra class 12 ncert solutions || class 12 maths chapter 10 ncert solutions || class 12 maths ncert solutions chapter 10 exercise 10.3 || class 12 maths exercise 10.3 || class 12 chapter 10 maths ncert solutions || ex 10.3 class 12 maths ncert solutions
Exercise 10.3
1. Find the angle between two vectors \( \overrightarrow{a} \) and \( \overrightarrow{b} \) with magnitudes \( \sqrt{3} \) and 2 respectively having \( \overrightarrow{a} . \overrightarrow{b} .=\sqrt{6} \).
Answer
Given, \( \vec{a} \cdot \vec{b}=\sqrt{6},|\overrightarrow{a}|=\sqrt{3},|\vec{b}|=2 \)
We know, \( \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta \)
Putting the value of \( \vec{a} \cdot \vec{b},=|\vec{a}| \) and \( |\vec{b}| \)
\(
\therefore \sqrt{6}=\sqrt{3} \times 2 \times \cos \theta\)
\(\Rightarrow \cos \theta=\frac{\sqrt{6}}{\sqrt{3} \times 2}\)
\(\Rightarrow \cos \theta=\frac{1}{\sqrt{2}}\)
\(\Rightarrow \theta=\cos ^{-1} \frac{1}{\sqrt{2}}\)
\(\Rightarrow \theta=\frac{\pi}{4}
\)
So, the angle between the vectors \( \vec{a} \) and \( \vec{b} \) is \( \frac{\pi}{4} \).
2. Find the angle between the vectors \( \hat{\imath}-2 \hat{\jmath}+3 \hat{k} \) and \( 3 \hat{\imath}- \) \( 2 \hat{\jmath}+\hat{k} \)
Answer
Given vectors are \( \hat{\imath}-2 \hat{\jmath}+3 \hat{k} \) and \( 3 \hat{\imath}-2 \hat{\jmath}+\hat{k} \)
Let \( \overrightarrow{\mathrm{a}}=\hat{\imath}-2 \hat{\jmath}+3 \hat{k} \) and \( \overrightarrow{\mathrm{b}}=3 \hat{\imath}-2 \hat{\jmath}+\hat{k} \)
\( |\overrightarrow{a}|=\sqrt{1^{2}+(-2)^{2}+3^{2}}=\sqrt{1+4+9}=\sqrt{35} \)
\( |\overrightarrow{b}|=\sqrt{3^{2}+(-2)^{2}+1^{2}}=\sqrt{9+4+1}=\sqrt{14} \)
Now \( \overrightarrow{a} \cdot \overrightarrow{b}=(\hat{\imath}-2 \hat{\jmath}+3 \hat{k}) \cdot(3 \hat{\imath}-2 \hat{\jmath}+\hat{k}) \)
\( \overrightarrow{a} \cdot \overrightarrow{b}=(\hat{\imath} \cdot 3 \hat{\imath}-\hat{\imath} \cdot 2 \hat{\jmath}+\hat{\imath} \cdot \hat{k}-2 \hat{\jmath} \cdot 3 \hat{\imath}-2 \hat{\jmath} \cdot 2 \hat{\jmath}+2 \hat{\jmath} \cdot \hat{k}+3 \hat{k} \cdot 3 \hat{\imath}-3 \hat{k} \cdot 2 \hat{\jmath}+3 \hat{k} \cdot \hat{k}) \)
\( \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=(3-0+0-0+4-0+0-0+3)=10[\hat{\imath} \hat{\jmath}=\hat{\jmath} \hat{k}=\hat{k} . \hat{\imath}=0] \)
\( \therefore \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=10[\hat{\imath} \cdot \hat{\imath}=\hat{\jmath} \cdot \hat{\jmath}=\hat{k} \cdot \hat{\mathrm{k}}=1] \text{ We know } \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta \)
\( \Rightarrow 10=\sqrt{14} \times \sqrt{14} \times \cos \theta \)
\( \Rightarrow 10=14 \cos \theta \)
\( \Rightarrow \cos \theta=\frac{10}{14 }\)
\( \Rightarrow \theta=\cos ^{-1}(\frac{5 }{7}) \)
3. Find the projection of the vector \( \hat{\imath}-\hat{\jmath} \) on the vector \( \hat{\imath}+\hat{\jmath} \)
Answer
Let \( \vec{a}=\hat{\imath}-\hat{\jmath} \) and \( \vec{b}=\hat{\imath}-\hat{\jmath} \)
Projection of \( \vec{a} \) and \( \vec{b} \) is given by \( \frac{1}{|\vec{b}|}(\vec{a} \cdot \vec{b}) \)
Now \( |\vec{b}|=|\hat{\imath}-\hat{\jmath}|=\sqrt{1^{2}+(-1)^{2}}=\sqrt{1+1}=\sqrt{2} \)
\( \vec{a} \cdot \vec{b}=(\hat{\imath}-\hat{\jmath}) \cdot(\hat{\imath}+\hat{\jmath}) \)
\( \Rightarrow \vec{a} \cdot \vec{b}=\hat{\imath} . \hat{\imath}+\hat{\imath} . \hat{\jmath}-\hat{\jmath} . \hat{\imath}+\hat{\jmath} . \hat{\jmath}[\hat{\imath} . \hat{\jmath}=\hat{\jmath} \cdot \hat{k}=\hat{k} . \hat{\imath}=0] \)
\( \Rightarrow \vec{a} \cdot \vec{b}=1+0-0-1 \quad [\hat{\imath} . \hat{\imath}=\hat{\jmath} \cdot \hat{\jmath}=\hat{k} . \hat{k}=1] \)
\( \Rightarrow \vec{a} \cdot \vec{b}=1-1=0 \)
\( \therefore \) Projection of \( \vec{a} \) on \( \vec{b}=\frac{1}{|\overrightarrow{b}|}(\vec{a} \cdot \vec{b}) \)
\(
=\frac{1}{\sqrt{2}} \times 0
\)
\( =0 \)
\( \therefore \) Projection of \( \overrightarrow{\mathrm{a}} \) on \( \overrightarrow{\mathrm{b}} \) is 0 .
4. Find the projection of the vector \( \hat{\imath}+3 \hat{\jmath}+7 \hat{k} \) on the vector \( 7 \hat{\imath}-\hat{\jmath}+8 \hat{k} \)
Answer
Let \( \overrightarrow{a}=\hat{\imath}+3 \hat{\jmath}+7 \hat{k} \) and \( \overrightarrow{b}=7 \hat{\imath}-\hat{\jmath}+8 \hat{k} \)
Projection of \( \overrightarrow{a} \) on \( \overrightarrow{b} \) is given by \( \frac{1}{|\overrightarrow{b}|}(\overrightarrow{a} \cdot \overrightarrow{b}) \)
Now \( |\overrightarrow{b}|=|7 \hat{\imath}-\hat{\jmath}+8 \hat{k}|=\sqrt{7^{2}+(-1)^{2}+8^{2}}=\sqrt{49+1+64}=\sqrt{114} \)
\( \overrightarrow{a} \cdot \overrightarrow{b}=(\hat{\imath}+3 \hat{\jmath}+7 \hat{k}) \cdot(7 \hat{\imath}-\hat{\jmath}+8 \hat{k}) \)
\( \Rightarrow \overrightarrow{a} \cdot \overrightarrow{b}=(\hat{\imath} .7 \hat{\imath}-\hat{\imath} . \hat{\jmath}+\hat{\imath} .8 \hat{k}-2 \hat{\jmath} .7 \hat{\imath}-3 \hat{\jmath} . \hat{\jmath}+3 \hat{\jmath} .8 \hat{k}+7 \hat{k} .7 \hat{\imath}-7 \hat{k} . \hat{\jmath}+7 \hat{k} .8 \hat{k}) \)
\( \Rightarrow \overrightarrow{a} \cdot \overrightarrow{b}=7-0+0+0-3+0+0-0+56[\hat{i} \cdot \hat{\jmath}=\hat{\jmath} \cdot \hat{k}=\hat{k} \cdot \hat{\imath}=0] \)
\( \Rightarrow \overrightarrow{a} \cdot \overrightarrow{b}=7-3+56=60 \)
\( [\hat{\imath} \cdot \hat{\imath}=\hat{\jmath} \cdot \hat{\jmath}=\hat{k} . \hat{k}=1] \)
\( \therefore \) Projection of \( \overrightarrow{a} \) on \( \overrightarrow{b}=\frac{1}{|\overrightarrow{b}|}(\overrightarrow{a} \cdot \overrightarrow{b}) \)
\( =\frac{1}{\sqrt{114}} \times 60 \)
\( =\frac{60}{\sqrt{114}} \)
\( \therefore \) Projection of \( \overrightarrow{a} \) on \( \overrightarrow{b} \) is \( \frac{60}{\sqrt{114}} \).
5. Show that each of the given three vectors is a unit vector: \( \frac{1}{7}(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k}), \frac{1}{7}(3 \hat{\imath}-6 \hat{\jmath}+2 \hat{k}), \frac{1}{7}(6 \hat{\imath}+2 \hat{\jmath}-3 \hat{k}) \)
Also, show that they are mutually perpendicular to each other.
Also, show that they are mutually perpendicular to each other.
Answer
Let \( \overrightarrow{a}=\frac{1}{7}(2 \hat{\imath}+3 \hat{\jmath}+6 \hat{k})=\frac{2}{7} \hat{\imath}+\frac{3}{7} \hat{\jmath}+\frac{6}{7} \hat{k} \)
\(
\overrightarrow{\mathrm{b}}=\frac{1}{7}(3 \hat{\imath}-6 \hat{\jmath}+2 \hat{k})=\frac{3}{7} \hat{\imath}-\frac{6}{7} \hat{\jmath}+\frac{2}{7} \hat{k}\)
\(\overrightarrow{\mathrm{c}}=\frac{1}{7}(6 \hat{\imath}+2 \hat{\jmath}-3 \hat{k})=\frac{6}{7} \hat{\imath}+\frac{2}{7} \hat{\jmath}-\frac{3}{7} \hat{k}
\)
Now we need to find out the magnitude of \( \overrightarrow{a}, \overrightarrow{b} \& \overrightarrow{c} \)
\(
|\overrightarrow{\mathrm{a}}|=\sqrt{\left(\frac{2}{7}\right)^{2}+\left(\frac{3}{7}\right)^{2}+\left(\frac{6}{7}\right)^{2}}=\sqrt{\frac{4}{49}+\frac{9}{49}+\frac{36}{49}}=\sqrt{\frac{49}{49}}=1\)
\(|\overrightarrow{\mathrm{b}}|=\sqrt{\left(\frac{3}{7}\right)^{2}+\left(-\frac{6}{7}\right)^{2}+\left(\frac{2}{7}\right)^{2}}=\sqrt{\frac{9}{49}+\frac{36}{49}+\frac{4}{49}}=\sqrt{\frac{49}{49}}=1\)
\(|\overrightarrow{\mathrm{c}}|=\sqrt{\left(\frac{6}{7}\right)^{2}+\left(\frac{2}{7}\right)^{2}+\left(-\frac{3}{7}\right)^{2}}=\sqrt{\frac{36}{49}+\frac{4}{49}+\frac{9}{49}}=\sqrt{\frac{49}{49}}=1
\)
Since, \( |\overrightarrow{a}|=1,|\overrightarrow{b}|=1 \) and \( |\overrightarrow{c}|=1 \)
\( \therefore \) the three given vectors are unit vectors.
To show that each of three vectors are mutually perpendicular to each other
We have to show \( \overrightarrow{a} \cdot \overrightarrow{b}=0, \overrightarrow{b} \cdot \overrightarrow{c}=0 \) and \( \overrightarrow{c} \cdot \overrightarrow{a}=0 \)
\(
\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}= \left(\frac{2}{7} \hat{\imath}+\frac{3}{7} \hat{\jmath}+\frac{6}{7} \hat{k}\right)\left(\frac{3}{7} \hat{\imath}-\frac{6}{7} \hat{\jmath}+\frac{2}{7} \hat{k}\right)\)
\(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}= \frac{2}{7} \hat{\imath} \cdot \frac{3}{7} \hat{\jmath}-\frac{2}{7} \hat{\imath} \cdot \frac{6}{7} \hat{k}+\frac{2}{7} \hat{\imath} \cdot \frac{2}{7} \hat{k}+\frac{3}{7} \hat{\jmath} \cdot \frac{3}{7} \hat{\imath}-\frac{3}{7} \hat{\jmath} \cdot \frac{6}{7} \hat{\jmath}+\frac{3}{7} \hat{\jmath} \cdot \frac{2}{7} \hat{k}+\frac{6}{7} \hat{k} \frac{3}{7} \hat{\imath}\)
\(-\frac{6}{7} \hat{k} \cdot \frac{6}{7} \hat{\jmath}+\frac{6}{7} \hat{k} \cdot \frac{2}{7} \hat{k}\)
\(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}= \frac{6}{7}-0+0+0-\frac{18}{7}+0+0-0+\frac{12}{7}
\)
\( \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=\frac{18}{7}-\frac{18}{7}=0[\hat{i} \cdot \hat{\jmath}=\hat{\jmath} \cdot \hat{\mathrm{k}}=\hat{k} \cdot \hat{\mathrm{i}}=0] \)
\( [\hat{\imath} \cdot \hat{\imath}=\hat{\jmath} \cdot \hat{\jmath}=\hat{k} \cdot \hat{k}=1] \)
\( \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=\left(\frac{3}{7} \hat{\imath}-\frac{6}{7} \hat{\jmath}+\frac{2}{7} \hat{k}\right)\left(\frac{6}{7} \hat{\imath}+\frac{2}{7} \hat{\jmath}-\frac{3}{7} \hat{k}\right) \)
\( \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=\frac{3}{7} \hat{\imath} \cdot \frac{6}{7} \hat{\imath}+\frac{3}{7} \hat{\imath} \cdot \frac{2}{7} \hat{\jmath}-\frac{3}{7} \hat{\imath} \cdot \frac{3}{7} \hat{k}-\frac{6}{7} \hat{\jmath} \cdot \frac{6}{7} \hat{\imath}+\frac{6}{7} \hat{\jmath} \cdot \frac{2}{7} \hat{\jmath}-\frac{6}{7} \hat{\jmath} \frac{3}{7} \hat{k}+\frac{2}{7} \hat{k} \cdot \frac{6}{7} \hat{\imath} \)
\(
+\frac{2}{7} \hat{k} \cdot \frac{2}{7} \hat{\jmath}-\frac{2}{7} \hat{k} \cdot \frac{3}{7} \hat{k}
\)
\( \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=\frac{18}{7}+0-0-0-\frac{12}{7}+0+0+0+\frac{6}{7} \)
\( \overrightarrow{b} \cdot \overrightarrow{c}=\frac{18}{7}-\frac{18}{7}=0 \)
\( \overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}=\left(\frac{6}{7} \hat{\imath}+\frac{2}{7} \hat{\jmath}-\frac{3}{7} \hat{k}\right)\left(\frac{2}{7} \hat{\imath}+\frac{3}{7} \hat{\jmath}+\frac{6}{7} \hat{k}\right) \)
\( \overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}=\frac{6}{7} \hat{\imath} \cdot \frac{2}{7} \hat{\imath}+\frac{6}{7} \hat{\imath} \cdot \frac{3}{7} \hat{\jmath}+\frac{6}{7} \hat{\imath} \cdot \frac{6}{7} \hat{k}+\frac{2}{7} \hat{\jmath} \cdot \frac{2}{7} \hat{\imath}+\frac{2}{7} \hat{\jmath} \cdot \frac{3}{7} \hat{\jmath}+\frac{2}{7} \hat{\jmath} \cdot \frac{6}{7} \hat{k}-\frac{3}{7} \hat{k} \frac{2}{7} \hat{\imath} \)
\(
+\frac{2}{7} \hat{k} \cdot \frac{2}{7} \hat{\jmath}-\frac{2}{7} \hat{k} \cdot \frac{3}{7} \hat{k}
\)
\( \overrightarrow{\mathrm{c}} . \overrightarrow{\mathrm{a}}=\frac{12}{7}+0+0+0+\frac{6}{7}+0-0-0-\frac{18}{7} \)
\( \overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}=\frac{18}{7}-\frac{18}{7}=0 \)
Since, \( \overrightarrow{a} \cdot \overrightarrow{b}=0, \overrightarrow{b} \cdot \overrightarrow{c}=0 \) and \( \overrightarrow{c} \cdot \overrightarrow{a}=0 \)
\( \therefore \overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}} \) and \( \overrightarrow{\mathrm{c}} \) are mutually perpendicular to each other.
exercise 10.3 class 12 maths ncert solutions || vector algebra class 12 ncert solutions || class 12 maths chapter 10 ncert solutions || class 12 maths ncert solutions chapter 10 exercise 10.3 || class 12 maths exercise 10.3 || class 12 chapter 10 maths ncert solutions || ex 10.3 class 12 maths ncert solutions
6. Find \( |\overrightarrow{a}| \) and \( |\overrightarrow{b}| \), if \( (\overrightarrow{a}+\overrightarrow{b}),(\overrightarrow{a}-\overrightarrow{b})=8 \) and \( |\overrightarrow{a}|=8|\overrightarrow{b}| \)
Answer
\( \operatorname{Let}(\overrightarrow{a}+\overrightarrow{b}),(\overrightarrow{a}-\overrightarrow{b})=8 \)
Given, \( |\overrightarrow{a}|=8|\overrightarrow{b}||\overrightarrow{a}|=8|\overrightarrow{b}| \)
\(
\text { Now, }(\overrightarrow{a}+\overrightarrow{b}),(\overrightarrow{a}-\overrightarrow{b})=8\)
\(\Rightarrow \overrightarrow{a} \cdot \overrightarrow{a}-\overrightarrow{a} \cdot \overrightarrow{b}+\overrightarrow{b} \cdot \overrightarrow{a}-\overrightarrow{b} \cdot \overrightarrow{b}=8\)
\(\Rightarrow|\overrightarrow{a}|^{2}-|\overrightarrow{b}|^{2}=8[\text { since, } \overrightarrow{a} \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{a}]\)
\(\Rightarrow(8|\overrightarrow{b}|)^{2}-|\overrightarrow{b}|^{2}=8\)
\(\Rightarrow 64|\overrightarrow{b}|^{2}-|\overrightarrow{b}|^{2}=8\)
\(\Rightarrow 63|\overrightarrow{b}|^{2}=8\)
\(\Rightarrow|\overrightarrow{b}|^{2}=\frac{8}{63}\)
\(\Rightarrow|\overrightarrow{b}|=\sqrt{\frac{8}{63}}=\frac{2 \sqrt{2}}{3 \sqrt{7}}\)
\(\therefore|\overrightarrow{b}|=\frac{2 \sqrt{2}}{3 \sqrt{7}}\)
\(|\overrightarrow{a}|=8|\overrightarrow{b}|\)
\(\Rightarrow|\overrightarrow{a}|=8 \times \frac{2 \sqrt{2}}{3 \sqrt{7}}\)
\(\therefore|\overrightarrow{a}|=\frac{16 \sqrt{2}}{3 \sqrt{7}}
\)
7. Evaluate the product \( (3 \overrightarrow{a}-5 \overrightarrow{b}) \cdot(2 \overrightarrow{a}+7 \overrightarrow{b}) \)
Answer
To find \( (3 \overrightarrow{a}-5 \overrightarrow{b}) \cdot(2 \overrightarrow{a}+7 \overrightarrow{b}) \)
\(
=3 \overrightarrow{a} \cdot 2 \overrightarrow{a}+3 \overrightarrow{a} \cdot 7 \overrightarrow{b}-5 \overrightarrow{b} \cdot 2 \overrightarrow{a}-5 \overrightarrow{b} \cdot 7 \overrightarrow{b}\)
\(=6 \overrightarrow{a} \cdot \overrightarrow{a}+21 \overrightarrow{a} \cdot \overrightarrow{b}-10 \overrightarrow{a} \cdot \overrightarrow{b}-35 \overrightarrow{b} \cdot \overrightarrow{b} \quad \text{[Since,} \overrightarrow{a} \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{a}] \)
\( =6|\overrightarrow{a}|^{2}+11 \overrightarrow{a} \cdot \overrightarrow{b}-35|\overrightarrow{b}|^{2} \)
8. Find the magnitude of two vectors, \( \overrightarrow{a} \) and \( \overrightarrow{b} \) having the same magnitude and such that the angle between them is \( 60^{\circ} \) and their scalar product is \( \frac{1}{2} \).
Answer
Let \( \theta \) be the angle between \( \overrightarrow{a} \) and \( \overrightarrow{b} \)
Given, magnitude of vector \( \overrightarrow{a}= \) magnitude of vector \( \overrightarrow{b} \)
\( |\overrightarrow{a}|=|\overrightarrow{b}| \) and \( \theta=60^{\circ} \)
Scalar product of \( \overrightarrow{a} \) and \( \overrightarrow{b}=\frac{1}{2} \)
i.e. \( \overrightarrow{a} \cdot \overrightarrow{b}=\frac{1}{2} \)
We know \( \overrightarrow{a} \cdot \overrightarrow{b}=|\overrightarrow{a}|=|\overrightarrow{b}| \cos \theta \)
\(
\Rightarrow \overrightarrow{a} \cdot \overrightarrow{b}=|\overrightarrow{a}|^{2} \cos \theta\)
\(\Rightarrow \frac{1}{2}=|\overrightarrow{a}|^{2} \cos 60^{\circ}\)
\(\Rightarrow \frac{1}{2}=|\overrightarrow{a}|^{2} \times \frac{1}{2}
\)
\( \Rightarrow|\overrightarrow{a}|^{2}=1 \) [magnitude of vector is positive]
So, \( |\overrightarrow{b}|=1 \)
Hence, \( |\overrightarrow{a}|=|\overrightarrow{b}|=1 \)
9. Find \( |\overrightarrow{x}| \) if for a unit vector \( \overrightarrow{a},(\overrightarrow{x}-\overrightarrow{a}) \cdot(\overrightarrow{x}+\overrightarrow{a})=12 \)
Answer
Given vector \( \overrightarrow{a} \) is a unit vector
\(
\therefore \ \mid \overrightarrow{a} \mid=1\)
\((\overrightarrow{x}-\overrightarrow{a}) \cdot(\overrightarrow{x}+\overrightarrow{a})=12\)
\(\Rightarrow \overrightarrow{x} \cdot \overrightarrow{x}+\overrightarrow{x} \cdot \overrightarrow{a}-\overrightarrow{a} \cdot \overrightarrow{x}+\overrightarrow{a} \cdot \overrightarrow{a}=12\)
\(\Rightarrow|\overrightarrow{x}|^{2}+\overrightarrow{x} \cdot \overrightarrow{a}-\overrightarrow{x} \cdot \overrightarrow{a}-|\overrightarrow{a}|^{2}=12\)
\( [ \) Since, \( \overrightarrow{x} \cdot \overrightarrow{a}=\overrightarrow{a} \cdot \overrightarrow{x}] \)
\(\Rightarrow|\overrightarrow{x}|^{2}-|\overrightarrow{a}|^{2}=12\)
\(\Rightarrow|\overrightarrow{x}|^{2}-1^{2}=12\)
\(\Rightarrow|\overrightarrow{x}|^{2}=12+1=13\)
\(\Rightarrow|\overrightarrow{x}|^{2}=\sqrt{13}\)
\(\therefore|\overrightarrow{x}|^{2}=\sqrt{13}
\)
10. If \( \overrightarrow{a}=2 \hat{\imath}-2 \hat{\jmath}+3 \hat{k}, \overrightarrow{b}=-\hat{\imath}+2 \hat{\jmath}+\hat{k} \) and \( \overrightarrow{c}=3 \hat{\imath}+\hat{\jmath} \) are such that \( \overrightarrow{a}+\lambda \overrightarrow{b} \) is perpendicular to then find the value of \( \lambda \).
Answer
Given \( \overrightarrow{\mathrm{a}}=2 \hat{\imath}-2 \hat{\jmath}+3 \hat{k}, \overrightarrow{\mathrm{b}}=-\hat{\imath}+2 \hat{\jmath}+\hat{k} \) and \( \overrightarrow{\mathrm{c}}=3 \hat{\imath}+\hat{\jmath} \)
\(
\overrightarrow{a}+\lambda \overrightarrow{b}=(2 \hat{\imath}-2 \hat{\jmath}+3 \hat{k})+\lambda(-\hat{\imath}+2 \hat{\jmath}+\hat{k})\)
\(\Rightarrow \overrightarrow{a}+\lambda \overrightarrow{b}=(2-\lambda) \hat{\imath}-(2+\lambda) \hat{\jmath}+(3+\lambda) \hat{k}
\)
It is given \( \overrightarrow{a}+\lambda \overrightarrow{b} \) is perpendicular to \( \overrightarrow{c} \) then
\(
(\overrightarrow{\mathrm{a}}+\lambda \overrightarrow{\mathrm{b}}) \cdot \overrightarrow{\mathrm{c}}=0\)
\(((2-\lambda) \hat{\imath}-(2+2 \lambda) \hat{\jmath}+(3+\lambda) \hat{k}) \cdot(3 \hat{\imath}+\hat{\jmath})=0\)
\(\Rightarrow(2-\lambda) \hat{\imath} \cdot 3 \hat{\imath}+(2-\lambda) \hat{\imath} \cdot \hat{\jmath}+(2+2 \lambda) \hat{\jmath} \cdot 3 \hat{\imath}+(2+2 \lambda) \hat{\jmath} \cdot \hat{\jmath}+\)
\(\quad(3+\lambda) \hat{k} \cdot 3 \hat{\imath}+(3+\lambda) \hat{k} \cdot \hat{\jmath}=0\)
\(\Rightarrow(2-\lambda) \times 3+0+0+2+2 \lambda+0+0=0[\hat{\imath} \cdot \hat{\jmath}=\hat{\jmath} \cdot \hat{k}=\hat{k} \cdot \hat{\imath}=0]
\)
\(
\Rightarrow 6-3 \lambda+2+2 \lambda=0\)
\(\Rightarrow 8-\lambda=0\)
\(\therefore \lambda=8
\)
11. Show that \( |\overrightarrow{a}| \overrightarrow{b}+|\overrightarrow{b}| \overrightarrow{a} \) is perpendicular to \( |\overrightarrow{a}| \overrightarrow{b}-|\overrightarrow{b}| \overrightarrow{a} \) for any two nonzero vectors \( \overrightarrow{a} \) and \( \overrightarrow{b} \).
Answer
To show \( |\overrightarrow{a}| \overrightarrow{b}+|\overrightarrow{b}| \overrightarrow{a} \) is perpendicular to \( |\overrightarrow{a}| \overrightarrow{b}-|\overrightarrow{b}| \overrightarrow{a} \) for any two non zero vectors \( \overrightarrow{a} \) and \( \overrightarrow{b} \), we need to show dot product of \( |\overrightarrow{a}| \overrightarrow{b}+|\overrightarrow{b}| \overrightarrow{a} \) and \( |\overrightarrow{a}| \overrightarrow{b}- \) \( |\overrightarrow{b}| \overrightarrow{a} \) is zero.
\(
(|\overrightarrow{a}| \overrightarrow{b}+|\overrightarrow{b}| \overrightarrow{a}) \cdot(|\overrightarrow{a}| \overrightarrow{b}-|\overrightarrow{b}| \overrightarrow{a})\)
\(= (|\overrightarrow{a}| \overrightarrow{b}) \cdot(|\overrightarrow{a}| \overrightarrow{b})-(|\overrightarrow{a}| \overrightarrow{b}) \cdot(|\overrightarrow{b}| \overrightarrow{a})+(|\overrightarrow{b}| \overrightarrow{a}) \cdot(|\overrightarrow{a}| \overrightarrow{b})-(|\overrightarrow{b}| \overrightarrow{a}) \cdot(|\overrightarrow{b}| \overrightarrow{a})\)
\(= |\overrightarrow{a}|^{2} \overrightarrow{b} \cdot \overrightarrow{b}-|\overrightarrow{b}|^{2} \overrightarrow{a} \cdot \overrightarrow{a}\)
\(= |\overrightarrow{a}|^{2}|\overrightarrow{b}|^{2}-|\overrightarrow{b}|^{2}|\overrightarrow{a}|^{2} \quad[\text { Since }, \overrightarrow{a} \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{a}]\)
\(= 0
\)
Since, dot product of \( |\overrightarrow{a}| \overrightarrow{b}+|\overrightarrow{b}| \overrightarrow{a} \) and \( |\overrightarrow{a}| \overrightarrow{b}-|\overrightarrow{b}| \overrightarrow{a} \) is zero.
\( \therefore|\overrightarrow{a}| \overrightarrow{b}+|\overrightarrow{b}| \overrightarrow{a} \) is perpendicular to \( |\overrightarrow{a}| \overrightarrow{b}-|\overrightarrow{b}| \overrightarrow{a} \)
12. If \( \overrightarrow{a} \cdot \overrightarrow{a}=0 \) and \( \overrightarrow{a} \cdot \overrightarrow{b}=0 \) then what can be concluded about the vector \( \overrightarrow{\mathrm{b}} \) ?
Answer
Given, \( \overrightarrow{a} \cdot \overrightarrow{a}=0 \)
\(
\Rightarrow|\vec{a}|^{2}=0\)
\(\Rightarrow|\overrightarrow{a}|=0
\)
\( \therefore \overrightarrow{\mathrm{a}} \) is a zero vector.
Hence, \( \overrightarrow{b} \) in \( \overrightarrow{a} \cdot \overrightarrow{b}=0 \) can be any vector.
13. If \( \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \) are unit vectors such that \( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=0 \) find the value of \( \overrightarrow{a} \cdot \overrightarrow{b}+\overrightarrow{b} \cdot \overrightarrow{c}+\overrightarrow{c} \cdot \overrightarrow{a} \)
Answer
Given \( \overrightarrow{a}, \overrightarrow{b} \) and \( \overrightarrow{c} \) are unit vectors and \( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=0 \)
\(
|\overrightarrow{a}|=1,|\overrightarrow{b}|=1 \text { and }|\overrightarrow{c}|=1
\)
Now
\(
\overrightarrow{a} \cdot(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c})=\overrightarrow{a} \cdot \overrightarrow{0}\)
\(\Rightarrow \overrightarrow{a} \cdot \overrightarrow{a}+\overrightarrow{a} \cdot \overrightarrow{b}+\overrightarrow{a} \cdot \overrightarrow{c}=0\)
\(\Rightarrow 1+\overrightarrow{a} \cdot \overrightarrow{b}+\overrightarrow{a} \cdot \overrightarrow{c}=0\ldots(i))\)
\(\overrightarrow{b} \cdot(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c})=\overrightarrow{b} \cdot \overrightarrow{0}\)
\(\Rightarrow \overrightarrow{b} \cdot \overrightarrow{a}+\overrightarrow{b} \cdot \overrightarrow{b}+\overrightarrow{b} \cdot \overrightarrow{c}=0\)
\(\Rightarrow 1+\overrightarrow{b} \cdot \overrightarrow{a}+\overrightarrow{b} \cdot \overrightarrow{c}=0\ldots(ii)\)
\( \overrightarrow{\mathrm{c}} \cdot(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}})=\overrightarrow{\mathrm{c}} \cdot \overrightarrow{0} \)
\(
\Rightarrow \overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{c}}=0\)
\(\Rightarrow 1+\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}} \cdot \overrightarrow{\mathrm{b}}=0\ldots(iii)\)
Adding (i), (ii) and (iii) we get
\(
1+\overrightarrow{a} \cdot \overrightarrow{b}+\overrightarrow{a} \cdot \overrightarrow{c}+1+\overrightarrow{b} \cdot \overrightarrow{a}+\overrightarrow{b} \cdot \overrightarrow{c}+1+\overrightarrow{c} \cdot \overrightarrow{a}+\overrightarrow{c} \cdot \overrightarrow{b}=0\)
\(\Rightarrow 3+\overrightarrow{a} \cdot \overrightarrow{b}+\overrightarrow{c} \cdot \overrightarrow{a}+\overrightarrow{a} \cdot \overrightarrow{b}+\overrightarrow{b} \cdot \overrightarrow{c}+\overrightarrow{c} \cdot \overrightarrow{a}+\overrightarrow{b} \cdot \overrightarrow{c}=0 {[\text { Since, } \overrightarrow{a} \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{a}]}\)
\(\Rightarrow 3+2(\overrightarrow{a} \cdot \overrightarrow{b}+\overrightarrow{b} \cdot \overrightarrow{c}+\overrightarrow{c} \cdot \overrightarrow{a})=0 {[\text { Since, } \overrightarrow{b} \cdot \overrightarrow{c}=\overrightarrow{c} \cdot \overrightarrow{b}]}\)
\(\Rightarrow 2(\overrightarrow{a} \cdot \overrightarrow{b}+\overrightarrow{b} \cdot \overrightarrow{c}+\overrightarrow{c} \cdot \overrightarrow{a})=-3 {[\text { Since, } \overrightarrow{a} \cdot \overrightarrow{c}=\overrightarrow{c} \cdot \overrightarrow{a}]}\)
\(\therefore \overrightarrow{a} \cdot \overrightarrow{b}+\overrightarrow{b} \cdot \overrightarrow{c}+\overrightarrow{c} \cdot \overrightarrow{a}=-\frac{3}{2}
\)
14. If either vector \( \overrightarrow{a}=\overrightarrow{0} \) Or \( \overrightarrow{b}=\overrightarrow{0} \) then \( \overrightarrow{a} \cdot \overrightarrow{b}=0 \) But the converse need not be true. Justify your answer with an example.
Answer
If either \( \overrightarrow{a}=0 \) Or \( \overrightarrow{b}=0 \) then \( \overrightarrow{a} \cdot \overrightarrow{b}=0 \)
Now let \( \overrightarrow{a}=2 \hat{\imath}+3 \hat{\jmath}+6 \hat{\mathrm{k}} \) and \( \overrightarrow{b}=3 \hat{\imath}-6 \hat{\jmath}+2 \hat{\mathrm{k}} \)
\(
\overrightarrow{a} \cdot \overrightarrow{b}=(2 \hat{\mathrm{\imath}}+3 \hat{\mathrm{\jmath}}+6 \hat{\mathrm{k}}) \cdot(3 \hat{\mathrm{\imath}}-6 \hat{\mathrm{\jmath}}+2 \hat{\mathrm{k}})\)
\(\Rightarrow \overrightarrow{a} \cdot \overrightarrow{b}=2 \hat{\mathrm{\imath}} \cdot 3 \hat{\imath}-2 \hat{\mathrm{\imath}} \cdot 6 \hat{\jmath}+2 \hat{\mathrm{\imath}} \cdot 2 \hat{\mathrm{k}}+3 \hat{\jmath} \cdot 3 \hat{\imath}-3 \hat{\jmath} \cdot 6 \hat{\jmath}+3 \hat{\jmath} \cdot 2 \hat{\mathrm{k}}+6 \hat{\mathrm{k}} \cdot 3 \hat{\mathrm{\imath}}\)
\( -6 \hat{\mathrm{k}} \cdot 6 \hat{\jmath}+6 \hat{\mathrm{k}} \cdot 2 \hat{\mathrm{k}}
\)
\(\Rightarrow \overrightarrow{a} \cdot \overrightarrow{b}=6-0+0+0-18+0+0-0+12 \quad[\hat{\imath} . \hat{\jmath}=\hat{\mathrm{\jmath}} \cdot \hat{\mathrm{k}}=\hat{\mathrm{k}} \cdot \hat{\mathrm{i}}=0]\)
\(\Rightarrow \overrightarrow{a} \cdot \overrightarrow{b}=18-18=0[\hat{\mathrm{\imath}} \cdot \hat{\mathrm{\imath}}=\hat{\mathrm{\jmath}} \cdot \hat{\jmath}=\hat{\mathrm{k}} \cdot \hat{\mathrm{k}}=1]
\)
So, \( \overrightarrow{a} \cdot \overrightarrow{b}=0 \)
\(
|\overrightarrow{a}|=\sqrt{2^{2}+3^{2}+6^{2}}=\sqrt{4+9+36}=\sqrt{49}=7\)
\(\therefore|\overrightarrow{a}| \neq 0\)
\(|\overrightarrow{b}|=\sqrt{3^{2}+(-6)^{2}+2^{2}}=\sqrt{9+36+4}=\sqrt{49}=7\)
\(\therefore|\overrightarrow{b}| \neq 0\)
Since \( \overrightarrow{a} . \overrightarrow{b}=0 \overrightarrow{a} \neq 0, \overrightarrow{b} \neq 0 \)
Hence, the converse of given statement need not be true.
exercise 10.3 class 12 maths ncert solutions || vector algebra class 12 ncert solutions || class 12 maths chapter 10 ncert solutions || class 12 maths ncert solutions chapter 10 exercise 10.3 || class 12 maths exercise 10.3 || class 12 chapter 10 maths ncert solutions || ex 10.3 class 12 maths ncert solutions
15. If the vertices \( \mathrm{A}, \mathrm{B}, \mathrm{C} \) of a triangle ABC are \( (1,2,3),(-1 \), \( 0,0),(0,1,2) \), respectively, then find \( \angle A B C,[\angle A B C \) is the angle between the vectors \( \overrightarrow{B A} \) and \( \overrightarrow{B C}] \).
Answer
Given points are \( \mathrm{A}(1,2,3), \mathrm{B}(-1,0,0) \) and \( \mathrm{C}(0,1,2) \)
\( \angle \mathrm{ABC} \) is the angle between vectors \( \overrightarrow{\mathrm{BA}} \) and \( \overrightarrow{\mathrm{BC}} \)
\(\overrightarrow{\mathrm{BA}}=\{1-(-1)\} \hat{\imath}+(2-0) \hat{\jmath}+(3-0) \hat{\mathrm{k}}=2 \hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}}\)
\(\overrightarrow{\mathrm{BC}}=\{0-(-1)\} \hat{\imath}+(1-0) \hat{\jmath}+(2-0) \hat{\mathrm{k}}=\hat{\imath}+\hat{\jmath}+2 \hat{\mathrm{k}}\)
\(\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}=(2 \hat{\imath}+2 \hat{\jmath}+3 \hat{\mathrm{k}}) \cdot(\hat{\imath}+\hat{\jmath}+2 \hat{k})\)
\(\Rightarrow \overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}=2 \hat{\imath} \cdot \hat{\imath}+2 \hat{\imath} \cdot \hat{\jmath}+2 \hat{\imath} \cdot 2 \hat{\mathrm{k}}+2 \hat{\jmath} \cdot \hat{\imath}+2 \hat{\jmath} \cdot \hat{\jmath}+2 \hat{\jmath} \cdot 2 \hat{\mathrm{k}}+3 \hat{\mathrm{k}} \cdot \hat{\imath}+3 \hat{k} \cdot \hat{\jmath}+3 \hat{k} \cdot 2 \hat{k}\)
\(\Rightarrow \overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}=2+0+0+0+2+0+0+0+6[\hat{\imath} \cdot \hat{\jmath}=\hat{\jmath} \cdot \hat{k}=\hat{k} \cdot \hat{\imath}=0]\)
\(\Rightarrow \overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}=10 \quad[\hat{\mathrm{i}} \cdot \hat{\imath}=\hat{\jmath} \cdot \hat{\jmath}=\hat{\mathrm{k}} \cdot \hat{\mathrm{k}}=1]\)
\(|\overrightarrow{\mathrm{BA}}|=|2 \hat{\imath}+2 \hat{\jmath}+3 \hat{k}|=\sqrt{2^{2}+2^{2}+3^{2}}=\sqrt{4+4+9}=\sqrt{17}\)
\(|\overrightarrow{\mathrm{BC}}|=|\hat{\imath}+\hat{\jmath}+2 \hat{\mathrm{k}}|=\sqrt{1^{2}+1^{2}+2^{2}}=\sqrt{1+1+4}=\sqrt{6}\)
We know
\(\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}=|\overrightarrow{\mathrm{BA}}||\overrightarrow{\mathrm{BC}}| \cos \angle \mathrm{ABC}\)
\(\Rightarrow 10=\sqrt{17} \times \sqrt{6} \times \cos \angle \mathrm{ABC}\)
\(\Rightarrow \cos \angle \mathrm{ABC}=\frac{10}{\sqrt{17} \times \sqrt{6}}\)
\(\Rightarrow \cos \angle \mathrm{ABC}=\frac{10}{\sqrt{102}}\)
\(\Rightarrow \angle \mathrm{ABC}=\cos ^{-1}(\frac{10}{ \sqrt{102}} )\)
16 Show that the points \(A (1,2,7), B(2,6,3) \) and \( C(3,10, -1)\), are collinear.
Answer
Given points are A \( (1,2,7), B(2,6,3) \) and \( C(3,10,-1) \)
So,
\(\overrightarrow{\mathrm{AB}}=(2-1) \hat{\imath}+(6-2) \hat{\jmath}+(3-7) \hat{\mathrm{k}}=\hat{\imath}+4 \hat{\jmath}-4 \hat{\mathrm{k}}\)
\(\overrightarrow{\mathrm{BC}}=(3-2) \hat{\imath}+(10-6) \hat{\jmath}+(-1-3) \hat{\mathrm{k}}=\hat{\imath}+4 \hat{\jmath}-4 \hat{\mathrm{k}}\)
\(\overrightarrow{\mathrm{AC}}=(3-1) \hat{\imath}+(10-2) \hat{\jmath}+(-1-7) \hat{\mathrm{k}}=2 \hat{\imath}+8 \hat{\jmath}-8 \hat{\mathrm{k}}\)
\(|\overrightarrow{\mathrm{AB}}|=\sqrt{1^{2}+4^{2}+(-4)^{2}}=\sqrt{1+16+16}=\sqrt{33}\)
\(|\overrightarrow{\mathrm{BC}}|=\sqrt{1^{2}+4^{2}+(-4)^{2}}=\sqrt{1+16+16}=\sqrt{33}\)
\(|\overrightarrow{\mathrm{AC}}|=\sqrt{2^{2}+8^{2}+(-8)^{2}}=\sqrt{4+64+64}=\sqrt{132}=2 \sqrt{33}\)
Since, \( |\overrightarrow{A C}|=|\overrightarrow{A B}|+|\overrightarrow{B C}| \)
\( \therefore \) The given points \( \mathrm{A}, \mathrm{B} \) and C are collinear.
17. Show that the vectors \( 2 \hat{\imath}-\hat{\jmath}+\hat{k}, \hat{\imath}-3 \hat{\jmath}-5 \hat{k} \) and \( 3 \hat{\imath}-4 \hat{\jmath}- \) \( 4 \hat{\mathrm{k}} \) form the vertices of a right angled triangle.
Answer
Let vectors \( 2 \hat{\imath}-\hat{\jmath}+\hat{k}, \hat{\imath}-3 \hat{\jmath}-5 \hat{k} \) and \( 3 \hat{\imath}-4 \hat{\jmath}-4 \hat{k} \) be position vectors of points \( \mathrm{A}, \mathrm{B} \) and C respectively.
Then, \( \overrightarrow{O A}=2 \hat{\imath}-\hat{\jmath}+\hat{k}, \overrightarrow{O B}=\hat{\imath}-3 \hat{\jmath}-5 \hat{k} \) and \( \overrightarrow{O C}=3 \hat{\imath}-4 \hat{\jmath}-4 \hat{k} \)
Now vectors \( \overrightarrow{A B}, \overrightarrow{B C} \) and \( \overrightarrow{A C} \) represent sides of \( \triangle A B C \)
\(\overrightarrow{\mathrm{AB}}=(1-2) \hat{\imath}+(-3-(-1)) \hat{\jmath}+(-5-1) \hat{\mathrm{k}}=-\hat{\imath}-2 \hat{\jmath}-6 \hat{\mathrm{k}}\)
\(\overrightarrow{\mathrm{BC}}=(3-1) \hat{\imath}+(-4-(-5)) \hat{\jmath}+(-4-(-5)) \hat{\mathrm{k}}=2 \hat{\imath}-\hat{\jmath}+\hat{k}\)
\(\overrightarrow{\mathrm{AC}}=(3-2) \hat{\imath}+(-4-(-1)) \hat{\jmath}+(-4-1) \hat{\mathrm{k}}=\hat{\imath}-3 \hat{\jmath}-5 \hat{k}\)
\(|\overrightarrow{\mathrm{AB}}|=\sqrt{(-1)^{2}+(-2)^{2}+(-6)^{2}}=\sqrt{1+4+36}=\sqrt{41}\)
\(|\overrightarrow{\mathrm{AB}}|^{2}=41\)
\(|\overrightarrow{\mathrm{BC}}|=\sqrt{2^{2}+(-1)^{2}+1^{2}}=\sqrt{4+1+1}=\sqrt{6}\)
\(|\overrightarrow{\mathrm{BC}}|^{2}=6\)
\(|\overrightarrow{\mathrm{AC}}|=\sqrt{1^{2}+(-3)^{2}+(-5)^{2}}=\sqrt{1+9+25}=\sqrt{35}\)
\(|\overrightarrow{\mathrm{AC}}|^{2}=35\)
Now \( |\overrightarrow{\mathrm{BC}}|^{2}+|\overrightarrow{\mathrm{AC}}|^{2}=35+6 \)
\(\Rightarrow|\overrightarrow{\mathrm{BC}}|^{2}+|\overrightarrow{\mathrm{AC}}|^{2}=41\)
And \( |\overrightarrow{\mathrm{AC}}|^{2}=41 \)
\(\therefore|\overrightarrow{\mathrm{BC}}|^{2}+|\overrightarrow{\mathrm{AC}}|^{2}=|\overrightarrow{\mathrm{AB}}|^{2}\)
From Pythagoras theorem we know
If \( \overrightarrow{\mathrm{BC}}|^{2}+|\overrightarrow{\mathrm{AC}}|^{2}=|\overrightarrow{\mathrm{AB}}|^{2} \) then \( \Delta \mathrm{ABC} \) is a right-angled triangle
\( \therefore \Delta \mathrm{ABC} \) is a right-angled triangle.
18. If \( \overrightarrow{a} \) is a nonzero vector of magnitude ' \( a \) ' and \( \lambda \) a nonzero scalar, then \( \lambda \overrightarrow{a} \) is unit vector if
A. \( \lambda=1 \)
B. \( \lambda=-1 \)
C. \( a=|\lambda| \)
D. \( a=\frac{1}{|\lambda|} \)
A. \( \lambda=1 \)
B. \( \lambda=-1 \)
C. \( a=|\lambda| \)
D. \( a=\frac{1}{|\lambda|} \)
Answer
Given \( \lambda \overrightarrow{a} \) is a unit vector.
And \( |\overrightarrow{a}|=\mathrm{a} \)
\( |\lambda \overrightarrow{a}|=1 \)
\(\Rightarrow|\lambda||\overrightarrow{a}|=1\)
Since \( |\overrightarrow{a}|=a \)
\(\therefore \mathrm{a}=\frac{1}{|\lambda|}\)
\( \lambda \overrightarrow{a} \) is a unit vector if \( \mathrm{a}=\frac{1}{|\lambda|} \)