Ex 10.4 class 12 maths ncert solutions | class 12 maths exercise 10.4 | class 12 maths ncert solutions chapter 10 exercise 10.4 | exercise 10.4 class 12 maths ncert solutions | class 12 maths chapter 10 ncert solutions | class 12 chapter 10 maths ncert solutions | vector algebra class 12 ncert solutions
Looking to master the concepts of Vector Algebra with clarity and speed? The Class 12 Maths NCERT Solutions Chapter 10 Exercise 10.4 offers a crystal-clear explanation of each question, helping you grasp even the trickiest vector operations with ease. Whether you’re searching for Class 12 Maths Exercise 10.4, Exercise 10.4 Class 12 Maths NCERT Solutions, or simply need guidance through Class 12 Chapter 10 Maths NCERT Solutions, this set of solutions is your ultimate companion. Tailored to the CBSE pattern, the Vector Algebra Class 12 NCERT Solutions ensure that you stay ahead in your exam preparation with confidence and precision.

exercise 10.4 class 12 maths ncert solutions || ex 10.4 class 12 maths ncert solutions || vector algebra class 12 ncert solutions || class 12 maths chapter 10 ncert solutions || class 12 maths ncert solutions chapter 10 exercise 10.4 || class 12 maths exercise 10.4 || class 12 chapter 10 maths ncert solutions
Exercise 10.4
1. Find \( |\overrightarrow{a} \times \overrightarrow{b}| \), if \( \overrightarrow{a}=\hat{\imath}-7 \hat{\jmath}+7 \hat{k} \) and \( \overrightarrow{b}=3 \hat{\imath}-2 \hat{\jmath}+2 \hat{k} \)
Answer
Given that \( \overrightarrow{a}=\hat{\imath}-7 \hat{\jmath}+7 \hat{k} \) and \( \overrightarrow{b}=3 \hat{\imath}-2 \hat{\jmath}+2 \hat{k} \)
\(\overrightarrow{a} \times \overrightarrow{b}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & -7 & 7 \\
3 & -2 & 2
\end{array}\right|\)
Expanding along first row,
\(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\imath}[(-7 \times 2)-(-2 \times 7)]-\hat{\jmath}[(1 \times 2)-(7 \times 3)] +\hat{\mathrm{k}}[(-2 \times 1)-(-7 \times 3)] \)
\(\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=(0) \hat{\imath}-(-19) \hat{\jmath}+(19) \hat{\mathrm{k}}\)
\(\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=0 \hat{\imath}+19 \hat{\jmath}+19 \hat{\mathrm{k}}\)
\(\therefore|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{0^{2}+19^{2}+19^{2}}=19 \sqrt{2}\)
2. Find a unit vector perpendicular to each of the vector \( \overrightarrow{a}+\overrightarrow{b} \) and \( \overrightarrow{a}-\overrightarrow{b}, \overrightarrow{a}=3 \hat{\imath}+2 \hat{\jmath}+2 \hat{k} \) and \( \overrightarrow{b}=\hat{\imath}+2 \hat{\jmath}-2 \hat{k} \).
Answer
Given that \( \overrightarrow{a}=3 \hat{\imath}+2 \hat{\jmath}+2 \hat{k} \) and
\(\overrightarrow{b}=\hat{\imath}+2 \hat{\jmath}-2 \hat{k}\)
Let \( \overrightarrow{\mathrm{p}}=\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}} \)
\(\Rightarrow \overrightarrow{\mathrm{p}}=(3 \hat{\imath}+2 \hat{\jmath}+2 \hat{\mathrm{k}})+(\hat{\imath}+2 \hat{\jmath}-2 \hat{\mathrm{k}})\)
\(\Rightarrow \overrightarrow{\mathrm{p}}=(4 \hat{\imath}+4 \hat{\jmath}+0 \hat{\mathrm{k}})\)
Let \( \overrightarrow{q}=\overrightarrow{a}-\overrightarrow{b} \)
\(\Rightarrow \overrightarrow{\mathrm{q}}=(3 \hat{\imath}+2 \hat{\jmath}+2 \hat{\mathrm{k}})-(\hat{\imath}+2 \hat{\jmath}-2 \hat{\mathrm{k}})\)
\(\Rightarrow \overrightarrow{\mathrm{q}}=(2 \hat{\imath}+0 \hat{\jmath}+4 \hat{\mathrm{k}})\)
Now, we want to find a vector which is perpendicular to both \( \overrightarrow{p} \) and \( \overrightarrow{q} \). It is given by \( \overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}} \).
Let \( \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}} \)
\(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\left|\begin{array}{ccc}
\hat{i} & \hat{\jmath} & \hat{\mathrm{k}} \\
4 & 4 & 0 \\
3 & 0 & 2
\end{array}\right|\)
Expanding along first row,
\(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\hat{\mathrm{i}}[(4 \times 4)-(0 \times 0)]-\hat{\jmath}[(4 \times 4)-(2 \times 0)]+\hat{\mathrm{k}}[(4 \times 0)-(4 \times 2)]\)
\(\Rightarrow \overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=(16) \hat{\mathrm{i}}-(16) \hat{\mathrm{j}}+((4) \hat{\mathrm{k}}\)
\(\Rightarrow \overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=16 \hat{\mathrm{i}}-16 \hat{\jmath}-8 \hat{\mathrm{k}}\)
Therefore, \( \overrightarrow{r}=16 \hat{\imath}-16 \hat{\jmath}-8 \hat{k} \)
Now we want to find the unit vector. We know that unit vector means that the magnitude of the vector is 1 (unit).
It is defined as \( \overrightarrow{\mathrm{r}}=\frac{\overrightarrow{r}}{|\overrightarrow{r}|} \)
So, we find the magnitude of \( \overrightarrow{a} \) first.
\(\Rightarrow|\overrightarrow{\mathrm{r}}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{16^{2}+(-16)^{2}+(-8)^{2}}=\sqrt{576}=24\)
\(\overrightarrow{\mathrm{r}}=\frac{\overrightarrow{\mathrm{r}}}{|\overrightarrow{\mathrm{r}}|}= \pm \frac{(16 \hat{\imath}-16 \hat{\jmath}-8 \widehat{\mathrm{k}})}{24}= \pm\left(\frac{2}{3} \hat{\imath}-\frac{2}{3} \hat{\jmath}-\frac{1}{3} \hat{\mathrm{k}}\right)\)
3.: If a unit vector \( \overrightarrow{a} \) makes angles \( \frac{\pi}{3} \) with \( \hat{i}, \frac{\pi}{4} \) with \( \hat{\jmath} \) and an acute angle \( \theta \) with \( \hat{k} \), then find \( \theta \) and hence, the components of \( \overrightarrow{a} \).
Answer
Let \( \overrightarrow{\mathrm{a}}=x \hat{\imath}+y \hat{\jmath}+z \hat{\mathrm{k}} \)
Given that it is a unit vector,
So, \( \Rightarrow|\overrightarrow{\mathrm{a}}|=\sqrt{x^{2}+y^{2}+z^{2}} \ldots\) (1)
Let \( \alpha, \beta, \theta \) be the angle \( \overrightarrow{\mathrm{a}} \) with \( \hat{\mathrm{i}}, \hat{\jmath}, \hat{\mathrm{k}} \) respectively.
Then,
\(\cos \alpha=\frac{\overrightarrow{a}, \hat{i}}{|\overrightarrow{a}||\hat{1}|}=\frac{x}{1}\)
\(\Rightarrow \alpha=\frac{\pi}{3}(\text { given })\)
\(\Rightarrow x=\cos \alpha=\cos \frac{\pi}{3}=\frac{1}{2}\)
\(\cos \beta=\frac{\overrightarrow{a}, \hat{j}}{|\overrightarrow{a}||\hat{\jmath}|}=\frac{x}{1}\)
\(\Rightarrow \beta=\frac{\pi}{4}(\text { given })\)
\(\Rightarrow x=\cos \beta=\cos \frac{\pi}{4}=\frac{1}{\sqrt{2}}\)
\(\cos \theta=\frac{\overrightarrow{a}, \mathrm{k}}{|\overrightarrow{a}||\widehat{k}|}=\frac{z}{1}\)
\(\Rightarrow z=\cos \theta\)
Putting value of \( x, y, z \) in equation (1)
\(\sqrt{x^{2}+y^{2}+z^{2}}=1\)
\(\Rightarrow x^{2}+y^{2}+z^{2}=1 \quad \text { (Squaring both sides) }\)
\(\Rightarrow\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2}+(\cos \theta)^{2}=1\)
\(\Rightarrow \frac{1}{4}+\frac{1}{2}+\cos ^{2} \theta=1\)
\(\Rightarrow \cos ^{2} \theta=1-\frac{3}{4}=\frac{1}{4}\)
\(\Rightarrow \cos \theta= \pm \frac{1}{2}\)
As \( \theta \) should be acute, \( \theta=\cos ^{-1} \frac{1}{2}=\frac{\pi}{3} \)
\(\therefore z=\cos \theta=\cos \frac{\pi}{3}=\frac{1}{2}\)
Components of \( \overrightarrow{a} \) are the coefficients of \( \hat{\imath}, \hat{\jmath}, \hat{k} \), which are, \( x=\frac{1}{2} ; y=\frac{1}{\sqrt{2}} ; z=\frac{1}{2} \) with \( \theta=\frac{\pi}{3} \)
exercise 10.4 class 12 maths ncert solutions || ex 10.4 class 12 maths ncert solutions || vector algebra class 12 ncert solutions || class 12 maths chapter 10 ncert solutions || class 12 maths ncert solutions chapter 10 exercise 10.4 || class 12 maths exercise 10.4 || class 12 chapter 10 maths ncert solutions
4. Show that \( (\overrightarrow{a}-\overrightarrow{b}) \times(\overrightarrow{a}+\overrightarrow{b})=2(\overrightarrow{a} \times \overrightarrow{b}) \)
Answer
We solve for the left-hand side,
L.H.S. \( = \)
\((\overrightarrow{a}-\overrightarrow{b}) \times(\overrightarrow{a}+\overrightarrow{b})=(\overrightarrow{a} \times \overrightarrow{a})+(\overrightarrow{a} \times \overrightarrow{b})-(\overrightarrow{b} \times \overrightarrow{a})-(\overrightarrow{b} \times \overrightarrow{b})\)
We know \( \overrightarrow{a} \times \overrightarrow{a}=0 \) and \( \overrightarrow{b} \times \overrightarrow{b}=0 \)
Also, \( \overrightarrow{b} \times \overrightarrow{a}=-(\overrightarrow{a} \times \overrightarrow{b}) \)
Putting these in our equation, we get
\(\Rightarrow(\overrightarrow{a}-\overrightarrow{b}) \times(\overrightarrow{a}+\overrightarrow{b})=0+(\overrightarrow{a} \times \overrightarrow{b})+(\overrightarrow{a} \times \overrightarrow{b})=0\)
\(\Rightarrow(\overrightarrow{a}-\overrightarrow{b}) \times(\overrightarrow{a}+\overrightarrow{b})=2(\overrightarrow{a} \times \overrightarrow{b})\)
which is equal to R.H.S.
Hence proved.
5. Find \( \lambda \) and \( \mu \) if \( (2 \hat{\imath}+6 \hat{\jmath}+27 \hat{k}) \times(\hat{\imath}+\lambda \hat{\jmath}+\mu \hat{k})=\overrightarrow{0} \)
Answer
Let
\( \overrightarrow{a}=2 \hat{\imath}+6 \hat{\jmath}+27 \hat{k} \) and \( \overrightarrow{b}=\hat{\imath}+\lambda \hat{\jmath}+\mu \hat{k} \)
Given that \( \overrightarrow{a} \times \overrightarrow{b}=\overrightarrow{0}=0 \hat{\imath}+0 \hat{\jmath}+0 \hat{k} \)
\(\overrightarrow{a} \times \overrightarrow{b}=\left|\begin{array}{rrr}
\hat{i} & \hat{\jmath} & \hat{k} \\
2 & 6 & 27 \\
3 & \lambda & \mu
\end{array}\right|\)
Expanding along first row,
\(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\imath}[(6 \times \mu)-(27 \times \lambda)]-\hat{\jmath}[(2 \times \mu)-(27 \times 1)]\)\(+\hat{\mathrm{k}}[(2 \times \lambda)-(1 \times 6)]\)
\(\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=(6 \mu-27 \lambda) \hat{\imath}-(2 \mu-27) \hat{\jmath}+(2 \lambda-6) \hat{\mathrm{k}}\)
\(\Rightarrow 0 \hat{\imath}+0 \hat{\jmath}+0 \hat{\mathrm{k}}=(6 \mu-27 \lambda) \hat{\imath}-(2 \mu-27) \hat{\jmath}+(2 \lambda-6) \hat{\mathrm{k}}\)
By comparing the y-coefficients,
\(\Rightarrow(2 \mu-27)=0\)
\(\Rightarrow \mu=\frac{27}{2}\)
By comparing the z-coefficients,
\(\Rightarrow(2 \lambda-6)=0\)
\(\Rightarrow \lambda=\frac{6}{2}=3\)
These values should also satisfy the equation we will get from comparing the x -coefficients,
\(\Rightarrow 6 \mu-27 \lambda=0\)
\(\Rightarrow\left(6 \times \frac{27}{2}\right)-27 \times 3=0\)
\(\Rightarrow 0=0\)
Therefore, \( \mu=\frac{27}{2} \) and \( \lambda=3 \).
6. Given that \( \overrightarrow{a} \cdot \overrightarrow{b}=0 \) and \( \overrightarrow{a} \times \overrightarrow{b}=\overrightarrow{0} \) What can you conclude about the vectors \( \overrightarrow{a} \) and \( \overrightarrow{b} \) ?
Answer
Given that
\( \overrightarrow{a} \cdot \overrightarrow{b}=0 \)
\( \Rightarrow|\overrightarrow{a}| \cdot|\overrightarrow{b}| \cos \theta=0 \) (where \( \theta \) is the angle between the vectors)
\( \Rightarrow|\overrightarrow{a}|=0 \) or \( |\overrightarrow{b}|=0 \) or \( \cos \theta=0 \)
Also given that,
\(\overrightarrow{a} \times \overrightarrow{b}=0\)
\( \Rightarrow|\overrightarrow{a}| \cdot|\overrightarrow{b}| \sin \theta=0 \) (where \( \theta \) is the angle between the vectors)
\( \Rightarrow|\overrightarrow{a}|=0 \) or \( |\overrightarrow{b}|=0 \) or \( \sin \theta=0 \)
As there is no value of \( \theta \) for which both \( \sin \theta \) and \( \cos \theta \) are zero.
Therefore, the condition for which \( \overrightarrow{a} \cdot \overrightarrow{b}=0 \) and \( \overrightarrow{a} \times \overrightarrow{b}=0 \) is:
\(|\overrightarrow{a}|=0 \text { or }|\overrightarrow{b}|=0 \text {. }\)
exercise 10.4 class 12 maths ncert solutions || ex 10.4 class 12 maths ncert solutions || vector algebra class 12 ncert solutions || class 12 maths chapter 10 ncert solutions || class 12 maths ncert solutions chapter 10 exercise 10.4 || class 12 maths exercise 10.4 || class 12 chapter 10 maths ncert solutions
7. Let the vectors \( \overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c} \) be given as
\( a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}, c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k} \), Then show that
\(\overrightarrow{a} \times(\overrightarrow{b}+\overrightarrow{c})=\overrightarrow{a} \times \overrightarrow{b}+\overrightarrow{a} \times \overrightarrow{c}\)
\( a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}, b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{k}, c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{k} \), Then show that
\(\overrightarrow{a} \times(\overrightarrow{b}+\overrightarrow{c})=\overrightarrow{a} \times \overrightarrow{b}+\overrightarrow{a} \times \overrightarrow{c}\)
Answer
Given that
\(\overrightarrow{\mathrm{a}}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{\mathrm{k}},\)
\(\overrightarrow{\mathrm{b}}=b_{1} \hat{\imath}+b_{2} \hat{\jmath}+b_{3} \hat{\mathrm{k}} \text { and }\)
\(\overrightarrow{\mathrm{c}}=c_{1} \hat{\imath}+c_{2} \hat{\jmath}+c_{3} \hat{\mathrm{k}}\)
Solving for left hand side,
First, we calculate
\( \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}=\left(b_{1}+c_{1}\right) \hat{\imath}+\left(b_{2}+c_{2}\right) \hat{\jmath}+\left(b_{3}+c_{3}\right) \hat{\mathrm{k}} \)
\(\begin{array}{l}
\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}})=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\
a_{1} & a_{2} & a_{3} \\
b_{1}+c_{1} & b_{2}+c_{2} & b_{3}+c_{3}
\end{array}\right| \\
\Rightarrow \overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}})=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|+\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\
a_{1} & a_{2} & a_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \\
\Rightarrow \overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}})=(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})+(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}})
\end{array}\)
Which is equal to R.H.S.
Hence proved.
8. If either \( \overrightarrow{a}=\overrightarrow{0} \) or \( \overrightarrow{b}=\overrightarrow{0} \) then \( \overrightarrow{a} \times \overrightarrow{b}=\overrightarrow{0} \). Is the converse true? Justify your answer with an example.
Answer
\( |\overrightarrow{a} \times \overrightarrow{b}|=|\overrightarrow{a}| \cdot|\overrightarrow{b}| \cdot \sin \theta \) (where \( \theta \) is the angle between the vectors)
If \( \overrightarrow{a}=\overrightarrow{0} \)
\(\Rightarrow \overrightarrow{a} \times \overrightarrow{b}=(0) \cdot|\overrightarrow{b}| \cdot \sin \theta=0\)
Similarly, If \( \overrightarrow{b}=\overrightarrow{0} \),
\(\Rightarrow \overrightarrow{a} \times \overrightarrow{b}=|\overrightarrow{a}| \cdot(0) \cdot \sin \theta=0\)
Now, If \( \overrightarrow{a} \times \overrightarrow{b}=\overrightarrow{0} \)
\( |\overrightarrow{a}| \cdot|\overrightarrow{b}| \cdot \sin \theta=0 \) (where \( \theta \) is the angle between the vectors)
\(\Rightarrow|\overrightarrow{a}|=0 \text { or }|\overrightarrow{b}|=0 \text { or } \sin \theta=0\)
\( \sin \theta=0 \), this implies \( \theta=0^{\circ} \)
This implies that the converse is not always true. The vectors may not be zero but the angle between is \( 0^{\circ} \), i.e. the vectors are parallel.
exercise 10.4 class 12 maths ncert solutions || ex 10.4 class 12 maths ncert solutions || vector algebra class 12 ncert solutions || class 12 maths chapter 10 ncert solutions || class 12 maths ncert solutions chapter 10 exercise 10.4 || class 12 maths exercise 10.4 || class 12 chapter 10 maths ncert solutions
9. Find the area of the triangle with vertices A \( (1,1,2), B(2,3 \), 5) and \( C(1,5,5) \).
Answer
\(\text { So, } \overrightarrow{A}=\hat{\imath}+\hat{\jmath}+2 \hat{k}\)
\(\overrightarrow{B}=2 \hat{\imath}+3 \hat{\jmath}+5 \hat{k}\)
\(\overrightarrow{C}=\hat{\imath}+5 \hat{\jmath}+5 \hat{k}\)
Now we want to find the \( \overrightarrow{\mathrm{AC}} \)
\(\overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{C}}-\overrightarrow{\mathrm{A}}\)
\(\Rightarrow \overrightarrow{\mathrm{AC}}=(\hat{\imath}+5 \hat{\jmath}+5 \hat{k})-(\hat{\imath}+\hat{\jmath}+2 \hat{k})\)
\(\Rightarrow \overrightarrow{\mathrm{AC}}=(0 \hat{\imath}+4 \hat{\jmath}+3 \hat{k})\)
We know that Area \( (\Delta \mathrm{ABC})=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}| \)
So, we find \( |\overrightarrow{A B} \times \overrightarrow{A C}| \) first.
\(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{\mathrm{k}} \\
1 & 2 & 3 \\
3 & 4 & 3
\end{array}\right|\)
Expanding along first row,
\(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\hat{\imath}[(3 \times 2)-(4 \times 3)]-\hat{\jmath}[(1 \times 3)-(0 \times 3)]\)
\(+\hat{\mathrm{k}}[(4 \times 1)-(2 \times 0)]\)
\(\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=(-6) \hat{\imath}-(3) \hat{\jmath}+(4) \hat{\mathrm{k}}\)
\(\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=-6 \hat{\imath}-3 \hat{\jmath}+4 \hat{\mathrm{k}}\)
\(\therefore \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{(-6)^{2}+(-3)^{2}+4^{2}}=\sqrt{61}\)
\(\therefore \text { Area }(\Delta \mathrm{ABC})=\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=\frac{\sqrt{61}}{2} \text { sq. units }\)
10. Find the area of the parallelogram whose adjacent sides are determined by the vectors \( \overrightarrow{a}=\hat{\imath}-\hat{\jmath}+\hat{k} \), and \( \overrightarrow{b}=2 \hat{\imath}-7 \hat{\jmath}+\hat{k} \),
Answer
Given \( \overrightarrow{a}=\hat{\imath}-\hat{\jmath}+\hat{k} \), and
\(\overrightarrow{b}=2 \hat{\imath}-7 \hat{\jmath}+\hat{k}\)
We know that Area (parallelogram) \( =|\overrightarrow{a} \times \overrightarrow{b}| \)
So, we find \( |\overrightarrow{a} \times \overrightarrow{b}| \)
\(\overrightarrow{a} \times \overrightarrow{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{\jmath} & \hat{k} \\
1 & -1 & 3 \\
2 & -7 & 1
\end{array}\right|\)
Expanding along first row,
\(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}[(-1 \times 1)-(-7 \times 3)]-\hat{\jmath}[(1 \times 1)-(2 \times 3)] +\hat{k}[(-7 \times 1)-(-1 \times 2)] \)
\(\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=(20) \hat{\imath}-(-5) \hat{\jmath}+(-5) \hat{\mathrm{k}}\)
\(\Rightarrow \overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=20 \hat{\mathrm{i}}-5 \hat{\jmath}+5 \hat{\mathrm{k}}\)
\(\therefore|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{20^{2}+5^{2}+(-5)^{2}}=\sqrt{450}=15 \sqrt{2}\)
\(\therefore \text { Area (parallelogram) }=\frac{1}{2}|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=15 \sqrt{2} \text { sq. units }\)
11. Let the vectors \( \overrightarrow{a} \) and \( \overrightarrow{b} \) be such that \( |\overrightarrow{a}|=3 \) and \( |\overrightarrow{b}|=\frac{\sqrt{2}}{3} \) then \( \overrightarrow{a} \times \overrightarrow{b} \) is a unit vector, if the angle between \( \overrightarrow{a} \) and \( \overrightarrow{b} \) is
A. \( \frac{\pi }{6} \)
B. \( \frac{\pi }{4} \)
C. \( \frac{\pi }{3} \)
D. \( \frac{\pi }{2} \)
A. \( \frac{\pi }{6} \)
B. \( \frac{\pi }{4} \)
C. \( \frac{\pi }{3} \)
D. \( \frac{\pi }{2} \)
Answer
\(|\overrightarrow{a} \times \overrightarrow{b}|=|\overrightarrow{a}| \cdot|\overrightarrow{b}| \sin \theta\)
Given that:
\(|\overrightarrow{a}|=3\)
\( |\overrightarrow{b}|=\frac{\sqrt{2}}{3} \) and
\( |\overrightarrow{a} \times \overrightarrow{b}|=1 \) (Magnitude of unit vector is 1 )
Putting the values in the equation (1), we get
\( |\overrightarrow{a} \times \overrightarrow{b}|=|\overrightarrow{a}| \cdot|\overrightarrow{b}| \sin \theta \) (where \( \theta \) is the angle between the vectors)
\(\Rightarrow 1=3 \times \frac{\sqrt{2}}{3} \times \sin \theta\)
\(\Rightarrow \frac{1}{\sqrt{2}}=\sin \theta\)
\(\Rightarrow \theta=\sin ^{-1} \frac{1}{\sqrt{2}}=\frac{\pi}{4}\)
Therefore, the correct option is (B).
12. Area of a rectangle having vertices \( A, B, C \) and \( D \) with position vectors \( -\hat{\imath}+\frac{1}{2} \hat{\jmath}+4 \hat{k}, \hat{\imath}+\frac{1}{2} \hat{\jmath}+4 \hat{k}, \hat{\imath}-\frac{1}{2} \hat{\jmath}+4 \hat{k} \) and \( -\hat{\imath}-\frac{1}{2} \hat{\jmath}+ \) \( 4 \widehat{\mathrm{k}} \) respectively is
A. \(\frac{1}{2} \)
B. 1
C. 2
D. 4
A. \(\frac{1}{2} \)
B. 1
C. 2
D. 4
Answer
Let
\(\overrightarrow{a}=-\hat{\imath}+\frac{1}{2} \hat{\jmath}+4 \hat{k},\)
\(\overrightarrow{b}=\hat{\imath}+\frac{1}{2} \hat{\jmath}+4 \hat{k}\)
\(\overrightarrow{c}=\hat{\imath}-\frac{1}{2} \hat{\jmath}+4 \hat{k}\)
\(\overrightarrow{d}=-\hat{\imath}-\frac{1}{2} \hat{\jmath}+4 \hat{k}\)
Now we want to find the \( \overrightarrow{\mathrm{AB}} \)
\(\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{B}}-\overrightarrow{\mathrm{A}}\)
\(\Rightarrow \overrightarrow{\mathrm{AB}}=\left(\hat{\imath}+\frac{1}{2} \hat{\jmath}+4 \hat{\mathrm{k}}\right)-\left(-\hat{\imath}+\frac{1}{2} \hat{\jmath}+4 \hat{\mathrm{k}}\right)\)
\(\Rightarrow \overrightarrow{\mathrm{AB}}=(2 \hat{\imath}+0 \hat{\jmath}+0 \hat{\mathrm{k}})\)
Now we want to find the \( \overrightarrow{\mathrm{AC}} \)
\(\overrightarrow{\mathrm{AD}}=\overrightarrow{\mathrm{D}}-\overrightarrow{\mathrm{A}}\)
\(\Rightarrow \overrightarrow{\mathrm{AD}}=\left(-\hat{\imath}-\frac{1}{2} \hat{\jmath}+4 \hat{\mathrm{k}}\right)-\left(-\hat{\imath}+\frac{1}{2} \hat{\jmath}+4 \hat{\mathrm{k}}\right)\)
\(\Rightarrow \overrightarrow{\mathrm{AD}}=(0 \hat{\imath}-1 \hat{\jmath}+0 \hat{\mathrm{k}})\)
We know that Area (rectangle) \( =|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AD}}| \)
So, we find \( |\overrightarrow{A B} \times \overrightarrow{A D}| \),
\(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AD}}=\left|\begin{array}{rrr}
\hat{i} & \hat{\jmath} & \hat{\mathrm{k}} \\
2 & 0 & 0 \\
0 & -1 & 0
\end{array}\right|\)
Expanding along first row,
\(\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AD}}=\hat{\imath}[(0 \times 0)-(-1 \times 0)]-\hat{\jmath}[(2 \times 0)-(0 \times 0)]+\hat{\mathrm{k}}[(-1 \times 2)-(0 \times 0)]\)
\(\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AD}}=(0) \hat{\imath}-(0) \hat{\jmath}+(-2) \hat{\mathrm{k}}\)
\(\Rightarrow \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AD}}=0 \hat{\mathrm{\imath}}+0 \hat{\jmath}-2 \hat{\mathrm{k}}\)
\(\therefore \overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AD}}=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{0^{2}+0^{2}+(-2)^{2}}=2\)
\(\therefore \text { Area (rectangle) }=|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AD}}|=2 \text { sq. units }\)