Ex 4.3 class 12 maths ncert solutions | exercise 4.3 class 12 maths ncert solutions | class 12 maths chapter 4 exercise 4.3 solutions | maths class 12 chapter 4 ncert solutions | determinants maths class 12 | class 12 maths determinants exercise 4.3
Looking for Ex 4.3 Class 12 Maths NCERT Solutions? You’re in the right place! This section provides clear and complete answers to all the questions from Exercise 4.3 Class 12 Maths NCERT Solutions, taken from Chapter 4 – Determinants. This exercise focuses on finding the area of a triangle using determinants, an important application in coordinate geometry. The Class 12 Maths Chapter 4 Exercise 4.3 Solutions help students understand how to apply determinant properties to solve geometric problems efficiently. These Maths Class 12 Chapter 4 NCERT Solutions are designed as per the latest CBSE syllabus to support your exam preparation. Dive into the Class 12 Maths Determinants Exercise 4.3 and strengthen your understanding of this practical and scoring topic today!

maths class 12 chapter 4 ncert solutions || determinants maths class 12 || class 12 maths determinants exercise 4.3 || exercise 4.3 class 12 maths ncert solutions || class 12 maths chapter 4 exercise 4.3 solutions || ex 4.3 class 12 maths ncert solutions
Exercise 4.3
Let the vertices of the triangle be given by \((x_{1}, y_{1}), (x_{2}, y_{2}), (x_{3}, y_{3})\)
Area of triangle is given by \( \triangle=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right| \)
Area of triangle \( =\triangle=\frac{1}{2}\left|\begin{array}{lll}1 & 0 & 1 \\ 6 & 0 & 1 \\ 4 & 3 & 1\end{array}\right| \)
Expanding the determinant along Row 1
\( \triangle=\frac{ 1 }{ 2 } \times[1 \times(0 \times 1-3 \times 1)-0 \times(6 \times 1-4 \times 1)+1 \times(6 \times 3-4 \) \( \times 0)] \)
\( \triangle=\frac{ 1 }{ 2 } \times[1 \times(0-3)-0+1 \times(18-0)] \)
\( \triangle=\frac{ 1 }{ 2 } \times(-3+18)=\frac{ 15 }{ 2 } \) sq. units
\( \therefore \triangle=\frac{ 15 }{ 2 } \) sq. units \( =7.5 \) sq. units
\( (2,7),(1,1),(10,8) \)
Let the vertices of the triangle be given by \( \left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \)
Area of triangle is given by \( \triangle=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right| \)
Area of triangle \( =\triangle=\frac{1}{2}\left|\begin{array}{ccc}2 & 7 & 1 \\ 1 & 1 & 1 \\ 10 & 8 & 1\end{array}\right| \)
Expanding the determinant along Row 1
\(\begin{array}{l}
\triangle=\frac{ 1 }{ 2 }\times[2 \times(1 \times 1-8 \times 1)-7 \times(1 \times 1-10 \times 1)+1 \times(8 \times 1- \\
1 \times 10)] \\
\triangle=\frac{ 1 }{ 2 } \times[2 \times(1-8)-7 \times(1-10)+1 \times(8-10)] \\
\triangle=\frac{ 1 }{ 2 } \times[2 \times(-7)-7 \times(-9)+1 \times(-2)]=\frac{ 1 }{ 2 } \times(-14+63-2) \text { sq.} \\
\text {units }
\end{array}\)
\( \triangle=\frac{1 }{ 2} \times 47 \) sq. units \( =\frac{ 47 }{ 2 } \) sq. units
\( \therefore \triangle=\frac{ 47 }{ 2 } \) sq. units \( =23.5 \) sq. units
\((-2,-3),(3,2),(-1,-8)\)
Let the vertices of the triangle be given by \( \left(x_{1}, x_{1}\right),\left(x_{2}, x_{2}\right),\left(x_{3}, x_{3}\right) \)
Area of triangle is given by \( \triangle=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right| \)
Area of triangle \( =\triangle=\frac{1}{2}\left|\begin{array}{ccc}-2 & -3 & 1 \\ 3 & 2 & 1 \\ -1 & -8 & 1\end{array}\right| \)
Expanding the determinant along Row 1
\( \triangle=\frac{ 1 }{ 2 } \times \left|[(-2) \times(2 \times 1-(-8) \times 1)-(-3) \times(3 \times 1-(-1) \times 1)+1\right. \)
\(\left. \times(3 \times(-8)-2 \times(-1))] \right|\)
\( \triangle=\frac{ 1 }{ 2 } \times|[(-2) \times(2+8)+3 \times(3+1)+1 \times(-24+2)]| \)
\( \triangle=\frac{ 1 }{ 2 } \times|[(-2) \times 10+3 \times 4+1 \times(-22)]|=\frac{ 1 }{ 2 } \times \mid(-20+12- \)
\(22)|\) sq. units
\( \triangle=\frac{ 1 }{ 2 } \times|-30| \) sq. units \( =\frac{ 30 }{ 2 } \) sq. units
\( \therefore \triangle=\frac{ 30 }{ 2 } \) sq. units \( =15 \) sq. units
maths class 12 chapter 4 ncert solutions || determinants maths class 12 || class 12 maths determinants exercise 4.3 || exercise 4.3 class 12 maths ncert solutions || class 12 maths chapter 4 exercise 4.3 solutions || ex 4.3 class 12 maths ncert solutions
\( A(a, b+c), B(b, c+a), C(c, a+b) \) are collinear.
\( A(a, b+c), B(b, c+a), C(c, a+b) \)
Let the vertices of the triangle be given by \((x_{1}, y_{1}), (x_{2}, y_{2}), (x_{3}, y_{3})\)
Area of triangle is given by \( \triangle=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right| \)
For points to be collinear area of triangle \( =\triangle=0 \)
So, we have to show that area of triangle formed by \( A B C \) is 0
Area of triangle \( =\triangle=\frac{1}{2}\left|\begin{array}{lll}a & b+c & 1 \\ b & c+a & 1 \\ c & a+b & 1\end{array}\right| \)
Expanding the determinant along Row 1
\(
\triangle=\frac{ 1 }{ 2 }\times[\mathrm{a} \times\{(\mathrm{c}+\mathrm{a}) \times 1-(\mathrm{a}+\mathrm{b}) \times 1)-(\mathrm{b}+\mathrm{c}) \times\{\mathrm{b} \times 1-\mathrm{c} \times 1\}\)
\(
+1 \times\{\mathrm{b} \times(\mathrm{a}+\mathrm{b})-\mathrm{c} \times(\mathrm{c}+\mathrm{a})\}]\)
\(
\triangle=\frac{ 1 }{ 2 } \times[\mathrm{a} \times(\mathrm{c}+\mathrm{a}-\mathrm{a}-\mathrm{b})-(\mathrm{b}+\mathrm{c}) \times(\mathrm{b}-\mathrm{c})+1 \times(\mathrm{ab}+\mathrm{b}^{2}-\)
\(
\mathrm{ca})]\)
\(
\triangle=\frac{ 1 }{ 2 } \times\left[\mathrm{a} \times(\mathrm{c}-\mathrm{b})-\left(\mathrm{b}_{2}-\mathrm{c}_{2}\right)+1 \times\left(\mathrm{ab}+\mathrm{b}_{2}-\mathrm{c}_{2}-\mathrm{ca}\right)\right]\)
\(
\triangle=\frac{ 1 }{ 2 } \times\left(\mathrm{ac}-\mathrm{ab}-\mathrm{b}_{2}+\mathrm{c}_{2}+\mathrm{ab}+\mathrm{b}_{2}-\mathrm{c}_{2}-\mathrm{ca}\right) \text { sq units }\)
\(
\triangle=\frac{ 1 }{ 2 } \times 0 \text { sq units }\)
\(
\therefore \triangle=0
\)
\( \therefore \) Given vertices of the triangle are
\( \mathrm{A}(\mathrm{a}, \mathrm{b}+\mathrm{c}), \mathrm{B}(\mathrm{b}, \mathrm{c}+\mathrm{a}), \mathrm{C}(\mathrm{c}, \mathrm{a}+ \) b) are collinear
Let the vertices of the triangle be given by \( \left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \)
Area of triangle is given by \( \triangle=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right| \)
Given, Area of triangle \( =\triangle=4 \) sq. units
\(\begin{array}{l}
=\frac{1}{2} \left|\left| \begin{array}{ccc}
k & 0 & 1 \\
4 & 0 & 1 \\
0 & 2 & 1
\end{array}\right|\right|=4 \end{array}\)
\(\Rightarrow 4=\frac{ 1 }{ 2 } |[\mathrm{k} \times(0 \times 1-2 \times 1)-0 \times(4 \times 1-0 \times 1)+1 \times(4 \times 2- \)\(0 \times 0)] |\)
\(\Rightarrow 4=\frac{ 1 }{ 2 } \times|[\mathrm{k} \times(0-2)-0+1 \times(8-0)]|\)
\(
\Rightarrow \pm 4 \times 2=-2 \mathrm{k}+8\)
\(
\Rightarrow 8=-2 \mathrm{k}+8 \text { and }-8=-2 \mathrm{k}+8\)
\(
\Rightarrow 8-8=-2 \mathrm{k} \text { and } 8+8=2 \mathrm{k}\)
\(
\Rightarrow 2 \mathrm{k}=0 \text { and } 16=2 \mathrm{k}\)
\(
\Rightarrow \mathrm{k}=0 \text { and } \mathrm{k}=8
\)
Let the vertices of the triangle be given by \((x_{1}, y_{1}), (x_{2}, y_{2}), (x_{3}, y_{3})\)
Area of triangle is given by \( \Delta=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right| \)
Given, Area of triangle \( =\Delta=4 \) sq. units
\(\begin{array}{l}
=\frac{1}{2}\left\|\begin{array}{ccc}
-2 & 0 & 1 \\
0 & 4 & 1 \\
0 & k & 1
\end{array}\right\|=4 \end{array}\)
\(\Rightarrow 4=\frac{1 }{ 2} |[(-2) \times(4 \times 1-\mathrm{k} \times 1)-0 \times(0 \times 1-0 \times 1)+1\)\( \times(0 \times \mathrm{k} -0 \times 4)] |\)
\(\Rightarrow 4=\frac{1 }{ 2} \times|[(-2) \times(4-\mathrm{k})-0+1 \times(0-0)]| \)
\(\Rightarrow 4 \times 2=|(-8+2 \mathrm{k})| \)
\(\Rightarrow \pm 8=2 \mathrm{k}-8 \)
\(\Rightarrow 8=2 \mathrm{k}-8 \text { and } \)
\(\Rightarrow-8=2 \mathrm{k}-8\)
\( \Rightarrow 8+8=2 \mathrm{k} \) and
\( \Rightarrow 8-8=2 \mathrm{k} \)
\( \Rightarrow \mathrm{k}=\frac{16 }{ 2} \) and
\( \Rightarrow \mathrm{k}=\frac{0 }{ 2} \)
\( \Rightarrow \mathrm{k}=8 \) and
\( \Rightarrow \mathrm{k}=0 \)
maths class 12 chapter 4 ncert solutions || determinants maths class 12 || class 12 maths determinants exercise 4.3 || exercise 4.3 class 12 maths ncert solutions || class 12 maths chapter 4 exercise 4.3 solutions || ex 4.3 class 12 maths ncert solutions
\(\frac{1}{2}\left|\begin{array}{ccc}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x & y & 1
\end{array}\right|=0\)
Given points are \( (1,2) \) and \( (3,6) \)
Equation of line is given by \( \frac{1}{2}\left|\begin{array}{lll}1 & 2 & 1 \\ 3 & 6 & 1 \\ x & y & 1\end{array}\right|=0 \)
\(
\Rightarrow \frac{1 }{ 2} \times[1 \times(6 \times 1-y \times 1)-2 \times(3 \times 1-x \times 1)+1 \times(3 \times y-x \times\)
\(
6)]=0\)
\(
\Rightarrow[(6-y)-2 \times(3-x)+(3 y-6 x)]=0 \times 2\)
\(
\Rightarrow(6-y-6+2 x+3 y-6 x)=0\)
\(
\Rightarrow 2 y-4 x=0\)
\(
\Rightarrow y-2 x=0 \)
\(\Rightarrow y=2 x
\)
\( \therefore \) Required Equation of line is \( y=2 x \)
\(\frac{1}{2}\left|\begin{array}{ccc}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x & y & 1
\end{array}\right|=0\)
Given points are \( (3,1) \) and \( (9,3) \)
Equation of line is given by \( \frac{1}{2}\left|\begin{array}{lll}3 & 1 & 1 \\ 9 & 3 & 1 \\ x & y & 1\end{array}\right|=0 \)
\(\Rightarrow \frac{1 }{ 2} \times[3 \times(3 \times 1-y\times 1)-1 \times(9 \times 1-x\times 1)+1 \times(9 \times y-x\times\)
\(
3)]=0\)
\(
\Rightarrow[3 \times(3-y)-1 \times(9-x)+(9 y-3 x)]=0 \times 2\)
\(
\Rightarrow(9-3 y-9+x+9 y-3 x)=0\)
\(
\Rightarrow 6 y-2 x=0\)
\(
\Rightarrow 2 x-6 y=0 \)
\(\Rightarrow x-3 y=0
\)
\( \therefore \) Required Equation of line is \( x-3 y=0 \)
A. 12 B. \(-2\) C. \( -12,-2 \) D. \( 12,-2 \)
Let the vertices of the triangle be given by \((x_{1}, y_{1}), (x_{2}, y_{2}), (x_{3}, y_{3}) \)
Area of triangle is given by \( \triangle=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right| \)
Given, Area of triangle \( =\triangle=35 \) sq. units
\(\begin{array}{l}
=\frac{1}{2}\left\|\begin{array}{ccc}
2 & -6 & 1 \\
5 & 4 & 1 \\
k & 4 & 1
\end{array}\right\|=35 \end{array}\)
\(\Rightarrow \pm 35=\frac{ 1 }{ 2 } \times[2 \times(4 \times 1-4 \times 1)-(-6) \times(5 \times 1-\mathrm{k} \times 1)+1 \times \)\((5 \times 4-\mathrm{k} \times 4)] \)
\(\Rightarrow \pm 35=\frac{ 1 }{ 2 } \times[2 \times(4-4)+6 \times(5-\mathrm{k})+1 \times(20-4 \mathrm{k})] \)
\(
\Rightarrow \pm 35 \times 2=(2 \times 0+30-6 \mathrm{k}+20-4 \mathrm{k}) \)
\(\Rightarrow \pm 70=30-6 \mathrm{k}+20-4 \mathrm{k} \)
\(\Rightarrow \pm 70=50-10 \mathrm{k} \)
\(\Rightarrow 70-50=-10 \mathrm{k} \text { and } \)
\(\Rightarrow-70-50=-10 \mathrm{k} \)
\(\Rightarrow 20=-10 \mathrm{k} \text { and }\)
\( \Rightarrow-120=-10 \mathrm{k} \)
\(\Rightarrow \mathrm{k}=-\frac{ 20 }{ 10 } \text { and } \)
\(\Rightarrow \mathrm{k}=\frac{ 120 }{ 10 } \)
\(
\Rightarrow \mathrm{k}=-2 \text { and } \)
\(\Rightarrow \mathrm{k}=12 \)