Ex 4.4 Class 12 Maths Ncert Solutions

Ex 4.4 class 12 maths ncert solutions​ | exercise 4.4 class 12 maths ncert solutions | class 12 maths chapter 4 exercise 4.4 solutions​ | maths class 12 chapter 4 ncert solutions | determinants maths class 12 | class 12 maths determinants exercise 4.4

Looking for Ex 4.4 Class 12 Maths NCERT Solutions? You’re in the right place! This section provides well-explained and accurate solutions for all questions in Exercise 4.4 Class 12 Maths NCERT, from Chapter 4 – Determinants. This exercise mainly deals with the concept of minors and cofactors, which are essential for evaluating determinants and finding adjoint and inverse of matrices. The Class 12 Maths Chapter 4 Exercise 4.4 Solutions are tailored to help students master these foundational techniques with ease. These Maths Class 12 Chapter 4 NCERT Solutions follow the CBSE pattern, ensuring you’re prepared for board exams. Study the Class 12 Maths Determinants Exercise 4.4 carefully to build strong problem-solving skills in this important algebraic topic.

ex 4.4 class 12 maths ncert solutions​
determinants maths class 12 || class 12 maths determinants exercise 4.4 || maths class 12 chapter 4 ncert solutions || ex 4.4 class 12 maths ncert solutions​ || class 12 maths chapter 4 exercise 4.4 solutions​ || exercise 4.4 class 12 maths ncert solutions
Download the Math Ninja App Now

Exercise 4.4

determinants maths class 12 || class 12 maths determinants exercise 4.4 || maths class 12 chapter 4 ncert solutions || ex 4.4 class 12 maths ncert solutions​ || class 12 maths chapter 4 exercise 4.4 solutions​ || exercise 4.4 class 12 maths ncert solutions
Download the Math Ninja App Now
1 A. Write Minors and Cofactors of the elements of following determinants:
\(\left|\begin{array}{cc}
2 & -4 \\
0 & 3
\end{array}\right|\)
Answer
Minor: Minor of an element aij of a determinant is the determinant obtained by removing \( \text{ i}^{\text {th }} \) row and \( \text{j}^{\text {th }} \) column in which element \( a_{i j} \) lies. It is denoted by \( \mathrm{M}_{\mathrm{ij}} \).
Cofactor: Cofactor of an element aij, \( \mathrm{A}_{\mathrm{ij}}=(-1)^{\mathrm{i}+\mathrm{j}} \mathrm{M}_{\mathrm{ij}} \).
Minor of element \( \mathrm{a}_{\mathrm{ij}}=\mathrm{M}_{\mathrm{ij}} \)
\( \mathrm{a}_{11}=2 \), Minor of element \( \mathrm{a}_{11}=\mathrm{M}_{11}=3 \)
Here removing 1 st row and 1st column from the determinant we are left out with 3 so \( \mathrm{M}_{11}=3 \).
Similarly, finding other Minors of the determinant
\( a_{12}=-4 \), Minor of element \( a_{12}=M_{12}=0 \)
\( \mathrm{a}_{21}=0 \), Minor of element \( \mathrm{a}_{21}=\mathrm{M}_{21}=-4 \)
\( \mathrm{a}_{22}=3 \), Minor of element \( \mathrm{a}_{22}=\mathrm{M}_{22}=2 \)
Cofactor of an element aij, \( \mathrm{A}_{\mathrm{ij}}=(-1)^{\mathrm{i+j}} \times \mathrm{M}_{\mathrm{ij}} \)
\(\begin{array}{l}
A_{11}=(-1)^{1+1} \times M_{11}=1 \times 3=3 \\
A_{12}=(-1)^{1+2} \times M_{12}=(-1) \times 0=0 \\
A_{21}=(-1)^{2+1} \times M_{11}=(-1) \times(-4)=4 \\
A_{22}=(-1)^{2+2} \times M_{22}=1 \times 2=2
\end{array}\)
1 B. Write Minors and Cofactors of the elements of following determinants:
\(\left|\begin{array}{ll}
a & c \\
b & d
\end{array}\right|\)
Answer
\(\left|\begin{array}{ll}
a & c \\
b & d
\end{array}\right|\)
Minor of an element \( \mathrm{a}_{\mathrm{ij}}=\mathrm{M}_{\mathrm{ij}} \)
\( \mathrm{a}_{11}=\mathrm{a} \), Minor of element \( \mathrm{a}_{11}=\mathrm{M}_{11}=\mathrm{d} \)
Here removing 1st row and 1st column from the determinant we are left out with d so \( \mathrm{M}_{11}=\mathrm{d} \).
Similarly, finding other Minors of the determinant
\( \mathrm{a}_{12}=\mathrm{c} \), Minor of element \( \mathrm{a}_{12}=\mathrm{M}_{12}=\mathrm{b} \)
\( \mathrm{a}_{21}=\mathrm{b} \), Minor of element \( \mathrm{a}_{21}=\mathrm{M}_{21}=\mathrm{c} \)
\( \mathrm{a}_{22}=\mathrm{d} \), Minor of element \( \mathrm{a}_{22}=\mathrm{M}_{22}=\mathrm{a} \)
Cofactor of an element \( \mathrm{a}_{\mathrm{ij}}, \mathrm{A}_{\mathrm{ij}}=(-1)^{\mathrm{i}+\mathrm{j}} \times \mathrm{M}_{\mathrm{ij}} \)
\(\begin{array}{l}
A_{11}=(-1)^{1+1} \times M_{11}=1 \times d=d \\
A_{12}=(-1)^{1+2} \times M_{12}=(-1) \times b=-b \\
A_{21}=(-1)^{2+1} \times M_{11}=(-1) \times c=-c \\
A_{22}=(-1)^{2+2} \times M_{22}=1 \times a=a
\end{array}\)
2 A. Write Minors and Cofactors of the elements of following determinants:
\(\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|\)
Answer
Minor of an element \( \mathrm{a}_{\mathrm{ij}}=\mathrm{M}_{\mathrm{ij}} \)
\( a_{11}=1 \), Minor of element
\( a_{11}=M_{11}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=(1 \times 1)-(0 \times 0)=1 \)
Here removing \( 1^{\text {st }} \) row and \( 1^{\text {st }} \) column from the determinant we are left out with the determinant \( \left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right| \). Solving this we get \( M_{11}=1 \)
Similarly, finding other Minors of the determinant
\( \mathrm{a}_{12}=0 \), Minor of element
\( \mathrm{a}_{12}=\mathrm{M}_{12}=\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|=(0 \times 1)-(0 \times 0)=0 \)
\( \mathrm{a}_{13}=0 \), Minor of element
\( \mathrm{a}_{13}=\mathrm{M}_{13}=\left|\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right|=(0 \times 0)-(1 \times 0)=0 \)
\( \mathrm{a}_{21}=0 \), Minor of element
\( \mathrm{a}_{21}=\mathrm{M}_{21}=\left|\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right|=(0 \times 1)-(0 \times 0)=0 \)
\( \mathrm{a}_{22}=1 \), Minor of element
\( \mathrm{a}_{22}=\mathrm{M}_{22}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=(1 \times 1)-(0 \times 0)=1 \)
\( \mathrm{a}_{23}=0 \), Minor of element
\( \mathrm{a}_{23}=\mathrm{M}_{23}=\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|=(1 \times 0)-(0 \times 0)=0 \)
\( \mathrm{a}_{31}=0 \), Minor of element
\( \mathrm{a}_{31}=\mathrm{M}_{31}=\left|\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right|=(0 \times 0)-(0 \times 1)=0 \)
\( a_{32}=0 \), Minor of element
\( a_{32}=M_{32}=\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|=(1 \times 0)-(0 \times 0)=0 \)
\( \mathrm{a}_{33}=1 \), Minor of element
\( \mathrm{a}_{33}=\mathrm{M}_{33}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=(1 \times 1)-(0 \times 0)=1 \)
Cofactor of an element \( \mathrm{a}_{\mathrm{ij}}, \mathrm{A}_{\mathrm{ij}}=(-1)^{\mathrm{i}+\mathrm{j}} \times \mathrm{M}_{\mathrm{ij}} \)
\(A_{11}=(-1)^{1+1} \times M_{11}=1 \times 1=1\)
\(
A_{12}=(-1)^{1+2} \times M_{12}=(-1) \times 0=0\)
\(
A_{13}=(-1)^{1+3} \times M_{13}=1 \times 0=0\)
\(
A_{21}=(-1)^{2+1} \times M_{21}=(-1) \times 0=0\)
\(
A_{22}=(-1)^{2+2} \times M_{22}=1 \times 1=1\)
\(
A_{23}=(-1)^{2+3} \times M_{23}=(-1) \times 0=0\)
\(
A_{31}=(-1)^{3+1} \times M_{31}=1 \times 0=0\)
\(
A_{32}=(-1)^{3+2} \times M_{32}=(-1) \times 0=0\)
\(
A_{33}=(-1)^{3+3} \times M_{33}=1 \times 1=1
\)
determinants maths class 12 || class 12 maths determinants exercise 4.4 || maths class 12 chapter 4 ncert solutions || ex 4.4 class 12 maths ncert solutions​ || class 12 maths chapter 4 exercise 4.4 solutions​ || exercise 4.4 class 12 maths ncert solutions
Download the Math Ninja App Now
2 B. Write Minors and Cofactors of the elements of following determinants:
\(\left|\begin{array}{ccc}
1 & 0 & 4 \\
3 & 5 & -1 \\
0 & 1 & 2
\end{array}\right|\)
Answer
\(\left|\begin{array}{ccc}
1 & 0 & 4 \\
3 & 5 & -1 \\
0 & 1 & 2
\end{array}\right|\)
Minor of an element \( \mathrm{a}_{\mathrm{ij}}=\mathrm{M}_{\mathrm{ij}} \)
\( \mathrm{a}_{11}=1 \), Minor of element
\( \mathrm{a}_{11}=\mathrm{M}_{11}=\left|\begin{array}{cc}5 & -1 \\ 1 & 2\end{array}\right|=(5 \times 2)-((-1) \times 1) \) \( =10+1=11 \)
Here removing \( 1^{\text {st }} \) row and 1 st column from the determinant we are left out with the determinant \( \left|\begin{array}{cc}5 & -1 \\ 1 & 2\end{array}\right| \). Solving this we get \( \mathrm{M}_{11}=11 \)
Similarly, finding other Minors of the determinant
\( \mathrm{a}_{12}=0 \), Minor of element
\( \mathrm{a}_{12}=\mathrm{M}_{12}=\left|\begin{array}{cc}3 & -1 \\ 0 & 2\end{array}\right|=(3 \times 2)-((-1) \times 0) \) \( =(6-0)=6 \)
\( \mathrm{a}_{13}=4 \), Minor of element
\( \mathrm{a}_{13}=\mathrm{M}_{13}=\left|\begin{array}{ll}3 & 5 \\ 0 & 1\end{array}\right|=(3 \times 1)-(5 \times 0)=3 \) \( -0=3 \)
\( \mathrm{a}_{21}=3 \), Minor of element
\( \mathrm{a}_{21}=\mathrm{M}_{21}=\left|\begin{array}{ll}0 & 4 \\ 1 & 2\end{array}\right|=(0 \times 2)-(4 \times 1)=0 \) \( -4=-4 \)
\( \mathrm{a}_{22}=5 \), Minor of element
\( \mathrm{a}_{22}=\mathrm{M}_{22}=\left|\begin{array}{ll}1 & 4 \\ 0 & 2\end{array}\right|=(1 \times 2)-(4 \times 0)=2 \) \( -0=2 \)
\( a_{23}=-1 \), Minor of element
\( a_{23}=M_{23}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=(1 \times 1)-(0 \times 0)=1 \)
\( \mathrm{a}_{31}=0 \), Minor of element
\( \mathrm{a}_{31}=\mathrm{M}_{31}=\left|\begin{array}{cc}0 & 4 \\ 5 & -1\end{array}\right|=(0 \times(-1))-(4 \times 5) \) \( =0-20=-20 \)
\( \mathrm{a}_{32}=1 \), Minor of element
\( \mathrm{a}_{32}=\mathrm{M}_{32}=\left|\begin{array}{cc}1 & 4 \\ 3 & -1\end{array}\right|=(1 \times(-1))-(4 \times 3) \) \( =-1-12=-13 \)
\( \mathrm{a}_{33}=2 \), Minor of element
\( \mathrm{a}_{33}=\mathrm{M}_{33}=\left|\begin{array}{ll}1 & 0 \\ 3 & 5\end{array}\right|=(1 \times 5)-(0 \times 3)= \) \( (5-0)=5 \)
Cofactor of an element aij, \( \mathrm{Aij}=(-1)^{\mathrm{i}+\mathrm{j}} \times \mathrm{Mij} \)
\(\begin{array}{l}
A_{11}=(-1)^{1+1} \times M_{11}=1 \times 11=11 \\
A_{12}=(-1)^{1+2} \times M_{12}=(-1) \times 6=-6 \\
A_{13}=(-1)^{1+3} \times M_{13}=1 \times 3=3 \\
A_{21}=(-1)^{2+1} \times M_{21}=(-1) \times(-4)=4 \\
A_{22}=(-1)^{2+2} \times M_{22}=1 \times 2=2
\end{array}\)
\(
A_{23}=(-1)^{2+3} \times M_{23}=(-1) \times 1=-1\)
\(
A_{31}=(-1)^{3+1} \times M_{31}=1 \times(-20)=-20\)
\(
A_{32}=(-1)^{3+2} \times M_{32}=(-1) \times(-13)=13\)
\(
A_{33}=(-1)^{3+3} \times M_{33}=1 \times 5=5
\)
3. Using Cofactors of elements of second row, evaluate \( \triangle=\left|\begin{array}{lll}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{array}\right| \)
Answer

To evaluate a determinant using cofactors, Let
\(\mathrm{B}=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|\)
Expanding along Row 1
\( \mathrm{B}=(-1)^{1+1} \times \mathrm{a}_{11}\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} \times \mathrm{a}_{12} \times\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{33}\end{array}\right| \) \( +(-1)^{1+3}\times a_{13} \times\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right| \)
\(B=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}\)
[Where Aij represents cofactors of aij of determinant B.]
\( B= \) Sum of product of elements of \( R_{1} \) with their corresponding cofactors
Similarly, the determinant can be solved by expanding along column
So, \( B= \) sum of product of elements of any row or column with their corresponding cofactors
\(\triangle=\left|\begin{array}{lll}
5 & 3 & 8 \\
2 & 0 & 1 \\
1 & 2 & 3
\end{array}\right|\)
Cofactors of second row
\( \mathrm{A}_{21}=(-1)^{2+1} \times \mathrm{M}_{21}=(-1) \times\left|\begin{array}{ll}3 & 8 \\ 2 & 3\end{array}\right|=(-1) \times(3 \times 3-8 \times 2) \) \( =(-1) \times(-7)=7 \)
\( A_{22}=(-1)^{2+2} \times M_{22}=1 \times\left|\begin{array}{ll}5 & 8 \\ 1 & 3\end{array}\right|=(5 \times 3-8 \times 1)=7 \) \( A_{23}=(-1)^{2+3} \times M_{23}=(-1) \times\left|\begin{array}{ll}5 & 3 \\ 1 & 2\end{array}\right|=(-1) \times(5 \times 2-3 \times 1) \) \( =(-1) \times 7=-7 \)
[Where Aij \( =(-1)^{i+j} \times M_{i j}, M_{i j}= \) Minor of ith row \(\&\) jth column]
Therefore,
\(\begin{array}{l}
\triangle=\mathrm{a}_{21} \mathrm{~A}_{21}+\mathrm{a}_{22} \mathrm{~A}_{22}+\mathrm{a}_{23} \mathrm{~A}_{23} \\
\triangle=2 \times 7+1 \times(-7)=14-7=7
\end{array}\)
Ans: \( \triangle=7 \)
4. Using Cofactors of elements of third column, evaluate.
\(\triangle=\left|\begin{array}{lll}
1 & x & y z \\
1 & y & z x \\
1 & z & x y
\end{array}\right|\)
Answer
To evaluate a determinant using cofactors, Let
\(\mathrm{B}=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|\)
Expanding along Row 1
\( \mathrm{B}=(-1)^{1+1} \times \mathrm{a}_{11} \times\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{1+2} \times \mathrm{a}_{12} \times\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{33}\end{array}\right| \)
\(+(-1)^{1+3} \times a_{13} \times\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right| \)
\( B=\mathrm{a}_{11} \mathrm{~A}_{11}+\mathrm{a}_{12} \mathrm{~A}_{12}+\mathrm{a}_{13} \mathrm{~A}_{13} \)
[Where Aij represents cofactors of aij of determinant B.]
\( B= \) Sum of product of elements of \( R_{1} \) with their corresponding cofactors
Similarly, the determinant can be solved by expanding along column
So, \( B= \) sum of product of elements of any row or column with their corresponding cofactors
\( \triangle=\left|\begin{array}{lll}1 & x & y z \\ 1 & y & z x \\ 1 & z & x y\end{array}\right| \)
Cofactors of third column
\( \mathrm{A}_{13}=(-1)^{1+3} \times \mathrm{M}_{13}=1 \times\left|\begin{array}{ll}1 & y \\ 1 & z\end{array}\right|=1 \times(1 \times z-1 \times y)=(z-y) \)
\( A_{23}=(-1)^{2+3} \times M_{23}=(-1) \times\left|\begin{array}{ll}1 & x \\ 1 & z\end{array}\right|=(-1) \times(1 \times z-1 \times x) \)
\( =-(z-x)=(x-z) \)
\( \mathrm{A}_{33}=(-1)^{3+3} \times \mathrm{M}_{33}=1 \times\left|\begin{array}{ll}1 & x \\ 1 & y\end{array}\right|=1 \times(1 \times y-1 \times x)=(y-x) \)
[Where Aij \( =(-1)^{\mathrm{i}+\mathrm{j}} \times \mathrm{M}_{\mathrm{ij}}, \mathrm{M}_{\mathrm{ij}}= \) Minor of ith row \(\&\) jth column]
Therefore,
\(\triangle=\mathrm{a}_{13} \mathrm{~A}_{13}+\mathrm{a}_{23} \mathrm{~A}_{23}+\mathrm{a}_{33} \mathrm{~A}_{33}\)
\( \triangle=y z(z-y)+z x(x-z)+x y(y-x)=z[y(z-y)+x(x-z)]\) \(+x y(y - x)\)
\( \triangle=z\left(yz-y^{2}+x^{2}-xz\right)+xy(y-x)=z\left[(yz-xz)+\left(x^{2}-y^{2}\right)\right] \) \(+xy(y-x)\)
\( \triangle=z[z \times(y-x)+(x+y) \times(x-y)]+xy(y-x) \)
\( \triangle=z \times(y-x) \times(z-x-y)+xy(y-x) \)
\( \triangle=(y-x) \times\left(z^{2}-x z-y z+x y\right) \)
\( \triangle=(y-x) \times[z(z-x)-y(z-x)]=(y-x) \times(z-y) \times(z-x) \)
\( \triangle=(x-y)(y-z)(z-x) \)
Ans: \( \triangle=(x-y)(y-z)(z-x) \)
5. If \( \triangle=\left|\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right| \) and \( A_{i j} \) is Cofactors of aij, then value of \( \triangle \) is given by
A. \( \mathrm{a}_{11} \mathrm{~A}_{31}+\mathrm{a}_{12} \mathrm{~A}_{32}+\mathrm{a}_{13} \mathrm{~A}_{33} \)
B. \( \mathrm{a}_{11} \mathrm{~A}_{11}+\mathrm{a}_{12} \mathrm{~A}_{21}+\mathrm{a}_{13} \mathrm{~A}_{31} \)
C. \( \mathrm{a}_{21} \mathrm{~A}_{11}+\mathrm{a}_{22} \mathrm{~A}_{12}+\mathrm{a}_{23} \mathrm{~A}_{13} \)
D. \( \mathrm{a}_{11} A_{11}+a_{21} A_{21}+a_{31} A_{31} \)
Answer
\(\triangle=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|\)
Expanding along Column 1
\( \triangle=\mathrm{B}=(-1)^{1+1} \times \mathrm{a}_{11} \times\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{2+1} \times \mathrm{a}_{21} \times \) \( \left|\begin{array}{ll}a_{12} & a_{13} \\ a_{32} & a_{33}\end{array}\right|+(-1)^{3+1} \times a_{31} \times\left|\begin{array}{ll}a_{12} & a_{13} \\ a_{22} & a_{23}\end{array}\right| \)
\(\triangle=\mathrm{a}_{11} \mathrm{~A}_{11}+\mathrm{a}_{21} \mathrm{~A}_{21}+\mathrm{a}_{31} \mathrm{~A}_{31} \)
determinants maths class 12 || class 12 maths determinants exercise 4.4 || maths class 12 chapter 4 ncert solutions || ex 4.4 class 12 maths ncert solutions​ || class 12 maths chapter 4 exercise 4.4 solutions​ || exercise 4.4 class 12 maths ncert solutions
Download the Math Ninja App Now

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top