Ex 4.5 Class 12 Maths Ncert Solutions

Ex 4.5 class 12 maths ncert solutions​ | exercise 4.5 class 12 maths ncert solutions | class 12 maths chapter 4 exercise 4.5 solutions​ | maths class 12 chapter 4 ncert solutions | determinants maths class 12 | class 12 maths determinants exercise 4.5

Looking for Ex 4.5 Class 12 Maths NCERT Solutions? You’re at the right place! This section offers detailed, step-by-step solutions for all problems from Exercise 4.5 Class 12 Maths NCERT, a part of Chapter 4 – Determinants. In this exercise, students learn to find the adjoint and inverse of a matrix using determinants, an essential topic for solving systems of linear equations. These Class 12 Maths Chapter 4 Exercise 4.5 Solutions are crafted to align with the CBSE curriculum and help boost your conceptual understanding. Whether you’re revising before exams or practicing for clarity, the Maths Class 12 Chapter 4 NCERT Solutions will guide you through every step. Master the Class 12 Maths Determinants Exercise 4.5 and enhance your confidence in matrices and determinants today!

ex 4.5 class 12 maths ncert solutions
class 12 maths chapter 4 exercise 4.5 solutions​ || ex 4.5 class 12 maths ncert solutions​ || determinants maths class 12 || class 12 maths determinants exercise 4.5 || maths class 12 chapter 4 ncert solutions || exercise 4.5 class 12 maths ncert solutions
Download the Math Ninja App Now

Exercise 4.5

1. Find adjoint of each of the matrices.
\(\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|\)
Answer
Adjoint of the matrix \( \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) is defined as the transpose of the matrix [Aij]n \( \times \mathrm{n} \) where Aij is the co-factor of the element aij.
Let's find the cofactors for all the positions first-
Here, \( \mathrm{A}_{11}=4, \mathrm{~A}_{12}=-3, \mathrm{~A}_{21}=-2, \mathrm{~A}_{22}=1 \).
\( \therefore \operatorname{Adj} \mathrm{A}=\left|\begin{array}{ll}A_{11} & A_{21} \\ A_{12} & A_{22}\end{array}\right| \)
\(=\left|\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right|\)
2. Find adjoint of each of the matrices.
\(\left|\begin{array}{ccc}
1 & -1 & 2 \\
2 & 3 & 5 \\
-2 & 0 & 1
\end{array}\right|\)
Answer
Adjoint of the matrix \( \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) is defined as the transpose of the matrix \( \left[\mathrm{A}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) where Aij is the co-factor of the element aij.
Let's find the cofactors for all the positions first-
Here, \( \mathrm{A}_{11}=1\{(3 \times 1-0 \times 5)\}=3 \)
Similarly,
\( A_{12}=-12, A_{13}=6, A_{21}=1, A_{22}=5, A_{23}=2, A_{31}=-11, \)\(A_{32}=-1, A_{33}= 5 \).
\( \therefore \) Adj \( \mathrm{A}=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right] \)
\( =\left|\begin{array}{ccc}3 & 1 & -11 \\ -12 & 5 & -1 \\ 6 & 2 & 5\end{array}\right| \)
3. Verify \( A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| \)
\( \left|\begin{array}{cc}2 & 3 \\ -4 & -6\end{array}\right| \)
Answer
Adjoint of the matrix \( \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) is defined as the transpose of the matrix \( \left[\mathrm{A}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) where Aij is the co-factor of the element aij.
Let's find the cofactors for all the positions first-
Here, \( A_{11}=-6, A_{12}=4, A_{21}=-3, A_{22}=2 \).
\( \therefore \operatorname{Adj} \mathrm{A}=\left|\begin{array}{ll}A_{11} & A_{21} \\ A_{12} & A_{22}\end{array}\right| \)
\( =\left[\begin{array}{cc}-6 & -3 \\ 4 & 2\end{array}\right] \)
So LHS \( =A(\operatorname{Adj} A)=\left[\begin{array}{cc}2 & 3 \\ -4 & 6\end{array}\right]\left[\begin{array}{cc}-6 & -3 \\ 4 & 2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \)
Also Adj \( A(A)=\left[\begin{array}{cc}-6 & -3 \\ 4 & 2\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ -4 & -6\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \)
Determinant of \( A=|A|=2(-6)-(3)(-4)=0 \)
So RHS \( =|A|\mathrm{I}=0 \)
Hence \( A(\operatorname{Adj} A)=\operatorname{Adj} A(A)=|A|\mathrm{I}=0 \) {hence proved}
4. Verify \( A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| \)
\(\left|\begin{array}{ccc}
1 & -1 & 2 \\
3 & 0 & -2 \\
1 & 0 & 3
\end{array}\right|\)
Answer
Adjoint of the matrix \( \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) is defined as the transpose of the matrix \( \left[\mathrm{A}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) where Aij is the co-factor of the element aij.
Let's find the cofactors for all the positions first-
Here, \( A_{11}=0, A_{12}=-11, A_{13}=0, A_{21}=3, A_{22}=1, A_{23}=-1, A_{31}=2 \), \( \mathrm{A}_{32}=8, \mathrm{~A}_{33}=3 \)
\( \therefore \) Adj \( \mathrm{A}=\left[\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}\end{array}\right] \)
\( =\left[\begin{array}{ccc}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right] \)
So, LHS \( = \) A \( (\operatorname{Adj} \mathrm{A}) \)
\( =\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]\left[\begin{array}{ccc}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right]=\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right] \)
Also Adj
\( A(A)=\left[\begin{array}{ccc}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]=\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right] \)
Determinant of \( A=|A|=11 \)
So RHS \( =|\mathrm{A}| \mathrm{I}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right] \)
Hence
\( A(\operatorname{Adj} A)=\operatorname{Adj} A(A)=|A| \mathrm{I}=\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right] \)
{hence proved}
class 12 maths chapter 4 exercise 4.5 solutions​ || ex 4.5 class 12 maths ncert solutions​ || determinants maths class 12 || class 12 maths determinants exercise 4.5 || maths class 12 chapter 4 ncert solutions || exercise 4.5 class 12 maths ncert solutions
Download the Math Ninja App Now
5. Find the inverse of each of the matrices (if it exists)
\( \left[\begin{array}{cc}2 & -2 \\ 4 & 3\end{array}\right] \)
Answer
We know that \( \mathrm{A}^{-1}=\frac{1}{|A|} \) Adj A
Adjoint of the matrix \( \mathrm{A}=[\mathrm{aij}] \mathrm{n} \times \mathrm{n} \) is defined as the transpose of the matrix [Aij]n \( \times \mathrm{n} \) where Aij is the co-factor of the element aij.
Let's find the cofactors for all the positions first-
Here, \( \mathrm{A}_{11}=3, \mathrm{~A}_{12}=-4, \mathrm{~A}_{21}=2, \mathrm{~A}_{22}=2 \).
\( \therefore \operatorname{Adj} \mathrm{A}=\left|\begin{array}{ll}A_{11} & A_{21} \\ A_{12} & A_{22}\end{array}\right| \)
\( =\left[\begin{array}{cc}3 & 2 \\ -4 & 2\end{array}\right] \)
And \( |\mathrm{A}|=2(3)-(-2)(4)=14 \)
So \( \mathrm{A}^{-1}=\frac{1}{|A|} \) Adj
\( \mathrm{A}=\frac{1}{14}\left[\begin{array}{cc}3 & 2 \\ -4 & 2\end{array}\right]=\left[\begin{array}{cc}\frac{3}{14} & \frac{2}{14} \\ -\frac{4}{14} & \frac{2}{14}\end{array}\right]=\left[\begin{array}{cc}\frac{3}{7} & \frac{1}{7} \\ -\frac{2}{7} & \frac{1}{7}\end{array}\right] \).
6. Find the inverse of each of the matrices (if it exists)
\( \left[\begin{array}{ll}-1 & 5 \\ -3 & 2\end{array}\right] \)
Answer
We know that \( \mathrm{A}^{-1}=\frac{1}{|A|} \) Adj A
Adjoint of the matrix \( \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) is defined as the transpose of the matrix \( \left[\mathrm{A}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) where Aij is the co-factor of the element aij.
Let's find the cofactors for all the positions first-
Here, \( \mathrm{A}_{11}=2, \mathrm{~A}_{12}=3, \mathrm{~A}_{21}=-5, \mathrm{~A}_{22}=-1 \).
\( \therefore \operatorname{Adj} \mathrm{A}=\left|\begin{array}{ll}A_{11} & A_{21} \\ A_{12} & A_{22}\end{array}\right| \)
\( =\left[\begin{array}{ll}2 & -5 \\ 3 & -1\end{array}\right] \)
And \( |A|=-1(2)-(-3)(5)=13 \)
So \( A^{-1}=\frac{1}{|A|} \operatorname{Adj} A=\frac{1}{13}\left[\begin{array}{ll}2 & -5 \\ 3 & -1\end{array}\right]=\left[\begin{array}{ll}\frac{2}{13} & \frac{-5}{13} \\ \frac{3}{13} & \frac{-1}{13}\end{array}\right] \)
7. Find the inverse of each of the matrices (if it exists)
\(\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 4 \\
0 & 0 & 5
\end{array}\right]\)
Answer
Adjoint of the matrix \( \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) is defined as the transpose of the matrix \( \left[A_{i j}\right] n \times n \) where Aij is the co-factor of the element aij.
Let's find the cofactors for all the positions first-
Here, \( A_{11}=10, A_{12}=0, A_{13}=0, A_{21}=-10, A_{22}=5, A_{23}=0, A_{31}=2 \), \( \mathrm{A}_{32}=-4, \mathrm{~A}_{33}=2 \).
\( \therefore \operatorname{Adj} \mathrm{A}=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right] \)
\( =\left[\begin{array}{ccc}10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2\end{array}\right] \)
And \( |\mathrm{A}|=10 \).
\( A^{-1}=\frac{1}{|A|} \operatorname{Adj} A=\frac{1}{10}\left[\begin{array}{ccc}10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2\end{array}\right]=\left[\begin{array}{ccc}\frac{10}{10} & -\frac{10}{10} & \frac{2}{10} \\ 0 & \frac{5}{10} & -\frac{4}{10} \\ 0 & 0 & \frac{2}{10}\end{array}\right] \)
\( \mathrm{A}-1=\left|\begin{array}{ccc}1 & -1 & \frac{1}{5} \\ 0 & \frac{1}{2} & -\frac{2}{5} \\ 0 & 0 & \frac{1}{5}\end{array}\right| \)
8. Find the inverse of each of the matrices (if it exists)
\(\left|\begin{array}{ccc}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1
\end{array}\right|\)
Answer
Adjoint of the matrix \( \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) is defined as the transpose of the matrix \( \left[\mathrm{A}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) where Aij is the co-factor of the element aij.
Let's find the cofactors for all the positions first-
Here, \( A_{11}=-3, A_{12}=3, A_{13}=-9, A_{21}=0, A_{22}=-1, A_{23}=-2, A_{31}=0 \), \( \mathrm{A}_{32}=0, \mathrm{~A}_{33}=3 \)
\( \therefore \operatorname{Adj} \mathrm{A}=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right] \)
\( =\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right] \)
And \( |A|=-3 \).
\( \mathrm{A}^{-1}=\frac{1}{|A|} \operatorname{Adj} \mathrm{A}=\frac{1}{-3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]=\left[\begin{array}{ccc}\frac{-3}{-3} & 0 & 0 \\ \frac{3}{-3} & \frac{-1}{-3} & 0 \\ \frac{-9}{-3} & \frac{-2}{-2} & \frac{3}{-3}\end{array}\right]\)\(=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & \frac{1}{3} & 0 \\ 3 & \frac{2}{3} & -1\end{array}\right] \)
9. Find the inverse of each of the matrices (if it exists)
\(\left[\begin{array}{ccc}
2 & 1 & 3 \\
4 & -1 & 0 \\
-7 & 2 & 1
\end{array}\right]\)
Answer
Adjoint of the matrix \( \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) is defined as the transpose of the matrix \( [\mathrm{Aij}] \mathrm{n} \times \mathrm{n} \) where Aij is the co-factor of the element aij.
Let's find the cofactors for all the positions first-
Here, \( A_{11}=-1, \mathrm{~A}_{12}=-4, \mathrm{~A}_{13}=1, \mathrm{~A}_{21}=5, \mathrm{~A}_{22}=23, \mathrm{~A}_{23}=-11, \) \(\mathrm{~A}_{31}=3, \mathrm{A}_{32}=12, \mathrm{~A}_{33}=-6 \).
\( \therefore \operatorname{Adj} \mathrm{A}=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right] \)
\(=\left[\begin{array}{ccc}
-1 & 5 & 3 \\
-4 & 23 & 12 \\
1 & -11 & -6
\end{array}\right]\)
And \( |A|=-3 \).
\( \mathrm{A}^{-1}=\frac{1}{|A|} \operatorname{Adj} \mathrm{A}=\frac{1}{-3}\left[\begin{array}{ccc}-1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & 11 & -6\end{array}\right]=\left[\begin{array}{ccc}\frac{-1}{-3} & \frac{5}{-3} & \frac{3}{-3} \\ \frac{-4}{13} & \frac{23}{-3} & \frac{12}{-3} \\ \frac{1}{-3} & \frac{-11}{-3} & \frac{-6}{-3}\end{array}\right] \)
10. Find the inverse of each of the matrices (if it exists)
\(\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & -2 & 4
\end{array}\right]\)
Answer
Adjoint of the matrix \( \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) is defined as the transpose of the matrix \( [A \mathrm{ij}] \mathrm{n} \times \mathrm{n} \) where Aij is the co-factor of the element aij.
Let's find the cofactors for all the positions first-
Here, \( A_{11}=2, A_{12}=-9, A_{13}=-6, A_{21}=0, A_{22}=-2, A_{23}=-1, \) \( A_{31}=-1 ,\mathrm{A}_{32}=3, \mathrm{~A}_{33}=2 \).
\( \therefore \operatorname{Adj} \mathrm{A}=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right] \)
\(=\left[\begin{array}{ccc}
2 & 0 & -1 \\
-9 & -2 & 3 \\
-6 & -1 & 2
\end{array}\right]\)
And \( |A|=-1 \).
\(\begin{array}{l}
A^{-1}=\frac{1}{|A|} \operatorname{Adj} A=\frac{1}{-1}\left[\begin{array}{ccc}
2 & 0 & -1 \\
-9 & -2 & 3 \\
-6 & -1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 0 & 1 \\
9 & 2 & -3 \\
6 & 1 & -2
\end{array}\right] \\
A^{-1}=\left[\begin{array}{ccc}
-2 & 0 & 1 \\
9 & 2 & -3 \\
6 & 1 & -2
\end{array}\right]
\end{array}\)
11. Find the inverse of each of the matrices (if it exists)
\(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & \sin \alpha & -\cos \alpha
\end{array}\right]\)
Answer
Adjoint of the matrix \( \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) is defined as the transpose of the matrix \( \left[\mathrm{A}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) where Aij is the co-factor of the element aij.
Let's find the cofactors for all the positions first-
Here, \( A_{11}=-1, A_{12}=0, A_{13}=0, A_{21}=0, A_{22}=-\cos \alpha, A_{23}=-\sin \alpha, \) \(A_{31} =0, \mathrm{~A}_{32}=-\sin \alpha, \mathrm{A}_{33}=\cos \alpha \).
\( \therefore \operatorname{Adj} \mathrm{A}=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right] \)
\( =\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right] \)
And \( |\mathrm{A}|=1 \).
\( \mathrm{A}^{-1}=\frac{1}{|A|} \operatorname{Adj} \mathrm{A} \)
\( =\frac{1}{-1}\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right] \)
12. Let \( A=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right] \) and \( B=\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right] \). Verify that \( (A B)^{-1}=B^{-1} A^{-1} \).
Answer
We have
\( \mathrm{AB}=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right]=\left[\begin{array}{ll}67 & 87 \\ 47 & 61\end{array}\right]=(61)(67)-(47)(87)=-2 \)
Here determinant of matrix \( =|A B| \neq 0 \) hence \( (A B)^{-1} \) exists.
\( (A B)^{-1}=\frac{1}{|A B|} \operatorname{Adj}(A B)=-\frac{1}{2}\left[\begin{array}{cc}61 & -47 \\ -87 & 67\end{array}\right]=\left[\begin{array}{cc}\frac{61}{-2} & \frac{-47}{-2} \\ \frac{-87}{-2} & \frac{67}{-2}\end{array}\right] \)
\( \left\{\therefore \operatorname{Adj}(\mathrm{AB})=\left[\begin{array}{cc}61 & -47 \\ -87 & 67\end{array}\right]\right\} \)
So, \( (\mathrm{AB})^{-1}=\left[\begin{array}{cc}-\frac{61}{2} & \frac{47}{2} \\ \frac{87}{2} & -\frac{67}{2}\end{array}\right] \)
Also \( |A|=1 \neq 0 \) and \( |B|=-2 \neq 0 \).
\( \therefore \mathrm{A}^{-1} \) and \( \mathrm{B}^{-1} \) will also exist and are given by-
(A) \( -1=\frac{1}{|A|} \operatorname{Adj} \mathrm{A}=\frac{1}{1}\left[\begin{array}{cc}5 & -2 \\ -7 & 3\end{array}\right] \)
(B) \( -1=\frac{1}{|B|} \) Adj \( A=-\frac{1}{2}\left[\begin{array}{cc}9 & -7 \\ -8 & 6\end{array}\right] \)
And hence,
\( (\mathrm{B})^{-1}(\mathrm{A})^{-1}=-\frac{1}{2}\left[\begin{array}{cc}9 & -7 \\ -8 & 6\end{array}\right]\left[\begin{array}{cc}5 & -2 \\ -7 & 3\end{array}\right]=-\frac{1}{2}\left[\begin{array}{cc}61 & -47 \\ -87 & 67\end{array}\right]= \) \( \left[\begin{array}{ll}\frac{61}{-2} & \frac{-47}{-2} \\ \frac{-87}{-2} & \frac{67}{-2}\end{array}\right] \)
{Hence proved}
class 12 maths chapter 4 exercise 4.5 solutions​ || ex 4.5 class 12 maths ncert solutions​ || determinants maths class 12 || class 12 maths determinants exercise 4.5 || maths class 12 chapter 4 ncert solutions || exercise 4.5 class 12 maths ncert solutions
Download the Math Ninja App Now
13. If \( A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right] \), show that \( A^{2}-5 A+7\mathrm{I}=0 \). Hence find \( A^{-1} \).
Answer
We have \( A^{2}=A \cdot{ }^{A}=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]=\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right] \).
So \( \mathrm{A}^{2}-5 \mathrm{A}+7 \mathrm{I}=\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]-5\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]+7\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=0 \)
Hence \( A^{2}-5 A+7 I=0 \)
\( \therefore A.A -5 \mathrm{~A}=-7 \mathrm{I} \)
Now post multiply with \( A^{-1} \)
So \(A.A.A^{-1}-5 A. A^{-1}=-7 \mathrm{I}. A^{-1} \)
\(\begin{array}{l}
\rightarrow A . I-5 I=-7 I.A^{-1}\left\{\text {since }A.A^{-1}=I\right\} \\
A-5 I=-7 A^{-1}\{\text {since }X.I=X\} \\
\rightarrow A^{-1}=\frac{5 I-A}{7}=\frac{1}{7}\left(5\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]\right)=-\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right] \\
\rightarrow A^{-1}=\left[\begin{array}{cc}
\frac{2}{7} & -\frac{1}{7} \\
\frac{1}{7} & \frac{3}{7}
\end{array}\right]
\end{array}\)
14. For the matrix \( A=\left[\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right] \), find the numbers \( a \) and \( b \) such that \( A^{2}+ \) \( \mathrm{aA}+\mathrm{bI}=0 \).
Answer
We have \( A^{2}=A \cdot A=\left[\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right]\left[\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}10 & 5 \\ 5 & 5\end{array}\right] \)
Since \( A^{2}+a A+b I=\left[\begin{array}{cc}10 & 5 \\ 5 & 5\end{array}\right]+a\left[\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right]+b\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}=0\right] \)
So \( \mathrm{A}^{2}+\mathrm{aA}+\mathrm{bI}=\left[\begin{array}{cc}10+3 a+b & 5+a \\ 5+a & 5+2 a+b\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \)
Hence \( 10+3 a+b=0 \ldots \) (i)
\( 5+a=0 \)
\( 5+2 \mathrm{a}+\mathrm{b}=0 \)
From (ii) \( a=-5 \)
Putting a in (iii) we get \( b=5 \)
So \( a=-5 \) and \( b=5 \) satisfy the equation.
15. For the matrix \( A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right] \)
Show that \( A^{3}-6 A^{2}+5 A+11 I=0 \). Hence, find \( A^{-1} \).
Answer
Here \( A^{2}=A \cdot A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3\end{array}\right]=\left[\begin{array}{ccc}4 & 2 & 1 \\ -3 & 8 & -14 \\ 7 & -3 & 14\end{array}\right] \)
And hence \( \mathrm{A}^{3}=\mathrm{A} . \mathrm{A}^{2}= \)
\(\begin{array}{l}
{\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]=\left[\begin{array}{ccc}
8 & 7 & 1 \\
-23 & 27 & -69 \\
32 & -13 & 58
\end{array}\right]} \\
\therefore \mathrm{A}^{3}-6 \mathrm{A}^{2}+5 \mathrm{~A}+11 \mathrm{I}= \\
{\left[\begin{array}{ccc}
8 & 7 & 1 \\
-23 & 27 & -69 \\
32 & -13 & 58
\end{array}\right]-6\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]+5\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]+} \\
11\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
=\left[\begin{array}{ccc}
24 & 12 & 6 \\
-18 & 48 & -84 \\
42 & -18 & 84
\end{array}\right]-\left[\begin{array}{ccc}
24 & 12 & 6 \\
-18 & 48 & -84 \\
42 & -18 & 84
\end{array}\right]=0
\end{array}\)
Thus, \( A^{3}-6 A^{2}+5 A+11 I=0 \)
Now, \( \mathrm{A}^{3}-6 \mathrm{A}^{2}+5 \mathrm{A}+11 \mathrm{I}=0 \),
\(\rightarrow (A.A.A) -6(A.A )+5 \mathrm{A}=-11 \mathrm{I}\)
Post-multiply with A-1 on both sides-
\(\rightarrow\left(A.A.A.A ^{-1}\right)-6\left(A.A.A^{-1}\right)+5 A.A ^{-1}=-11 I\cdot \mathrm{A}^{-1}\)
\(
\rightarrow(A.A.I)-6(A.I)+5 \mathrm{I}=-11 \mathrm{I} \cdot \mathrm{A}-1\left\{\text {since } A \cdot \mathrm{A}^{-1}=\mathrm{I}\right\}\)
\(
\rightarrow(A.A)-6 \mathrm{A}+5 \mathrm{I}=-11 \mathrm{A}^{-1}\{\text {since } X.I=\mathrm{X}\}
\)
16. If \( A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right] \) Verify that \( A^{3}-6 A^{2}+9 A-4 I=0 \) and hence find \( \mathrm{A}^{-1} \)
Answer
Here \( A^{2}= A.A =\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]=\left[\begin{array}{ccc}6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6\end{array}\right] \)
And hence
\( A^{3}=A \cdot A^{2}=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]\left[\begin{array}{ccc}6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6\end{array}\right]= \)
\(\begin{array}{l}
{\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & -22
\end{array}\right]} \\
\therefore \mathrm{A}^{3}-6 \mathrm{~A}^{2}+9 \mathrm{~A}-4 \mathrm{I} \\
=\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]-6\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]+9\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]- \\
4\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
=\left[\begin{array}{ccc}
40 & -30 & 30 \\
-30 & 40 & -30 \\
30 & -30 & 40
\end{array}\right]-\left[\begin{array}{ccc}
40 & -30 & 30 \\
-30 & 40 & -30 \\
30 & -30 & 40
\end{array}\right]=0
\end{array}\)
Thus, \( \mathrm{A}^{3}-6 \mathrm{~A}^{2}+9 \mathrm{A}-4 \mathrm{I}=0 \)
Now, \( A^{3}-6 A^{2}+9 A-4 I=0 \),
\(\rightarrow(A.A.A )-6(\mathrm{A} . \mathrm{A})+9 \mathrm{~A}=4 \mathrm{I}\)
Post-multiply with \( \mathrm{A}^{-1} \) on both sides-
\( \rightarrow\left(A.A.A.A^{-1}\right)-6\left(\mathrm{A} \cdot \mathrm{A} \cdot \mathrm{A}^{-1}\right)+9 \mathrm{A} \cdot \mathrm{A}^{-1}=4 \mathrm{I} \cdot \mathrm{A}^{-1}\)
\(\rightarrow(\mathrm{A} \cdot \mathrm{A} \cdot \mathrm{I})-6(\mathrm{A} \cdot \mathrm{I})+9 \mathrm{I}=4 \mathrm{I} \cdot \mathrm{A}^{-1}\left\{\text {since } \mathrm{A}\cdot \mathrm{A}^{-1}=\mathrm{I}\right\}\)
\(\rightarrow(\mathrm{A} \cdot \mathrm{A})-6 \mathrm{~A}+9 \mathrm{I}=4 \mathrm{~A}^{-1}\{\text {since }X.I =X\}\)
\(\rightarrow \mathrm{A}^{-1}=\frac{1}{4}\left(\mathrm{A}^{2}-6 \mathrm{~A}+9 \mathrm{I}\right) \)
\(\begin{array}{l}=\frac{1}{4}\left(\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]-6\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]+9\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)
\end{array}\)
\( =\frac{1}{4}\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}\frac{3}{4} & \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} & \frac{3}{4}\end{array}\right] \)
Hence \( A^{-1}=\left[\begin{array}{ccc}\frac{3}{4} & \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} & \frac{3}{4}\end{array}\right] \)
17. Let \( A \) be a non-singular square matrix of order \( 3 \times 3 \). Then \( |\operatorname{adj} A| \) is equal to
A. \( |A| \) B. \( |A|^{2} \) C. \( |\mathrm{A}|^{3} \) D. \( 3|\mathrm{~A}| \)
Answer
For a square matrix of order \( n \times n \),
We know that \( |\operatorname{Adj} A|=|A|^{\mathrm{n}-1} \)
So, \( \left|\operatorname{Adj} A|=| A\left|\left(3^{-1}\right)=\right| A\right|^{2} \)
18. If \( A \) is an invertible matrix of order 2 , then \( \operatorname{det}\left(A^{-1}\right) \) is equal to
A. \( \operatorname{det}(A) \) B. \( \frac{1}{\operatorname{det}(A)} \) C. 1 D. 0
Answer
\( (\mathrm{A})^{-1}=\frac{1}{|A|} \operatorname{Adj} \mathrm{A} \)
SO, \( \left|(\mathrm{A})^{-1}\right|=\left|\frac{1}{|A|} \operatorname{Adj}(A)\right|=\left.\frac{1}{|A|^{n}}\left|\operatorname{Adj}(\mathrm{A})=\frac{1}{|A|^{n}}\right| \mathrm{A}\right|^{\mathrm{n}-1}=\frac{1}{|A|^{1}} \)
\( \left\{\right. \)since \( \operatorname{adj}(A) \) is of order \( n \) and \( \left.|\operatorname{Adj}(A)|=|A|^{n-1}\right\} \)
Alternative-
We know that \( \mathrm{AA}^{-1}=\mathrm{I} \)
So \( |A|\left|A^{-1}\right|=|\mathrm{I}|=1 \)
Hence \( \left|(A)^{-1}\right|=\frac{1}{|A|} \)
class 12 maths chapter 4 exercise 4.5 solutions​ || ex 4.5 class 12 maths ncert solutions​ || determinants maths class 12 || class 12 maths determinants exercise 4.5 || maths class 12 chapter 4 ncert solutions || exercise 4.5 class 12 maths ncert solutions
Download the Math Ninja App Now

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top