Ex 4.5 class 12 maths ncert solutions | exercise 4.5 class 12 maths ncert solutions | class 12 maths chapter 4 exercise 4.5 solutions | maths class 12 chapter 4 ncert solutions | determinants maths class 12 | class 12 maths determinants exercise 4.5
Looking for Ex 4.5 Class 12 Maths NCERT Solutions? You’re at the right place! This section offers detailed, step-by-step solutions for all problems from Exercise 4.5 Class 12 Maths NCERT, a part of Chapter 4 – Determinants. In this exercise, students learn to find the adjoint and inverse of a matrix using determinants, an essential topic for solving systems of linear equations. These Class 12 Maths Chapter 4 Exercise 4.5 Solutions are crafted to align with the CBSE curriculum and help boost your conceptual understanding. Whether you’re revising before exams or practicing for clarity, the Maths Class 12 Chapter 4 NCERT Solutions will guide you through every step. Master the Class 12 Maths Determinants Exercise 4.5 and enhance your confidence in matrices and determinants today!

class 12 maths chapter 4 exercise 4.5 solutions || ex 4.5 class 12 maths ncert solutions || determinants maths class 12 || class 12 maths determinants exercise 4.5 || maths class 12 chapter 4 ncert solutions || exercise 4.5 class 12 maths ncert solutions
Exercise 4.5
\(\left|\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right|\)
Let's find the cofactors for all the positions first-
Here, \( \mathrm{A}_{11}=4, \mathrm{~A}_{12}=-3, \mathrm{~A}_{21}=-2, \mathrm{~A}_{22}=1 \).
\( \therefore \operatorname{Adj} \mathrm{A}=\left|\begin{array}{ll}A_{11} & A_{21} \\ A_{12} & A_{22}\end{array}\right| \)
\(=\left|\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right|\)
\(\left|\begin{array}{ccc}
1 & -1 & 2 \\
2 & 3 & 5 \\
-2 & 0 & 1
\end{array}\right|\)
Let's find the cofactors for all the positions first-
Here, \( \mathrm{A}_{11}=1\{(3 \times 1-0 \times 5)\}=3 \)
Similarly,
\( A_{12}=-12, A_{13}=6, A_{21}=1, A_{22}=5, A_{23}=2, A_{31}=-11, \)\(A_{32}=-1, A_{33}= 5 \).
\( \therefore \) Adj \( \mathrm{A}=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right] \)
\( =\left|\begin{array}{ccc}3 & 1 & -11 \\ -12 & 5 & -1 \\ 6 & 2 & 5\end{array}\right| \)
\( \left|\begin{array}{cc}2 & 3 \\ -4 & -6\end{array}\right| \)
Let's find the cofactors for all the positions first-
Here, \( A_{11}=-6, A_{12}=4, A_{21}=-3, A_{22}=2 \).
\( \therefore \operatorname{Adj} \mathrm{A}=\left|\begin{array}{ll}A_{11} & A_{21} \\ A_{12} & A_{22}\end{array}\right| \)
\( =\left[\begin{array}{cc}-6 & -3 \\ 4 & 2\end{array}\right] \)
So LHS \( =A(\operatorname{Adj} A)=\left[\begin{array}{cc}2 & 3 \\ -4 & 6\end{array}\right]\left[\begin{array}{cc}-6 & -3 \\ 4 & 2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \)
Also Adj \( A(A)=\left[\begin{array}{cc}-6 & -3 \\ 4 & 2\end{array}\right]\left[\begin{array}{cc}2 & 3 \\ -4 & -6\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \)
Determinant of \( A=|A|=2(-6)-(3)(-4)=0 \)
So RHS \( =|A|\mathrm{I}=0 \)
Hence \( A(\operatorname{Adj} A)=\operatorname{Adj} A(A)=|A|\mathrm{I}=0 \) {hence proved}
\(\left|\begin{array}{ccc}
1 & -1 & 2 \\
3 & 0 & -2 \\
1 & 0 & 3
\end{array}\right|\)
Let's find the cofactors for all the positions first-
Here, \( A_{11}=0, A_{12}=-11, A_{13}=0, A_{21}=3, A_{22}=1, A_{23}=-1, A_{31}=2 \), \( \mathrm{A}_{32}=8, \mathrm{~A}_{33}=3 \)
\( \therefore \) Adj \( \mathrm{A}=\left[\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}\end{array}\right] \)
\( =\left[\begin{array}{ccc}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right] \)
So, LHS \( = \) A \( (\operatorname{Adj} \mathrm{A}) \)
\( =\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]\left[\begin{array}{ccc}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right]=\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right] \)
Also Adj
\( A(A)=\left[\begin{array}{ccc}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]=\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right] \)
Determinant of \( A=|A|=11 \)
So RHS \( =|\mathrm{A}| \mathrm{I}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right] \)
Hence
\( A(\operatorname{Adj} A)=\operatorname{Adj} A(A)=|A| \mathrm{I}=\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right] \)
{hence proved}
class 12 maths chapter 4 exercise 4.5 solutions || ex 4.5 class 12 maths ncert solutions || determinants maths class 12 || class 12 maths determinants exercise 4.5 || maths class 12 chapter 4 ncert solutions || exercise 4.5 class 12 maths ncert solutions
\( \left[\begin{array}{cc}2 & -2 \\ 4 & 3\end{array}\right] \)
Adjoint of the matrix \( \mathrm{A}=[\mathrm{aij}] \mathrm{n} \times \mathrm{n} \) is defined as the transpose of the matrix [Aij]n \( \times \mathrm{n} \) where Aij is the co-factor of the element aij.
Let's find the cofactors for all the positions first-
Here, \( \mathrm{A}_{11}=3, \mathrm{~A}_{12}=-4, \mathrm{~A}_{21}=2, \mathrm{~A}_{22}=2 \).
\( \therefore \operatorname{Adj} \mathrm{A}=\left|\begin{array}{ll}A_{11} & A_{21} \\ A_{12} & A_{22}\end{array}\right| \)
\( =\left[\begin{array}{cc}3 & 2 \\ -4 & 2\end{array}\right] \)
And \( |\mathrm{A}|=2(3)-(-2)(4)=14 \)
So \( \mathrm{A}^{-1}=\frac{1}{|A|} \) Adj
\( \mathrm{A}=\frac{1}{14}\left[\begin{array}{cc}3 & 2 \\ -4 & 2\end{array}\right]=\left[\begin{array}{cc}\frac{3}{14} & \frac{2}{14} \\ -\frac{4}{14} & \frac{2}{14}\end{array}\right]=\left[\begin{array}{cc}\frac{3}{7} & \frac{1}{7} \\ -\frac{2}{7} & \frac{1}{7}\end{array}\right] \).
\( \left[\begin{array}{ll}-1 & 5 \\ -3 & 2\end{array}\right] \)
Adjoint of the matrix \( \mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) is defined as the transpose of the matrix \( \left[\mathrm{A}_{\mathrm{ij}}\right] \mathrm{n} \times \mathrm{n} \) where Aij is the co-factor of the element aij.
Let's find the cofactors for all the positions first-
Here, \( \mathrm{A}_{11}=2, \mathrm{~A}_{12}=3, \mathrm{~A}_{21}=-5, \mathrm{~A}_{22}=-1 \).
\( \therefore \operatorname{Adj} \mathrm{A}=\left|\begin{array}{ll}A_{11} & A_{21} \\ A_{12} & A_{22}\end{array}\right| \)
\( =\left[\begin{array}{ll}2 & -5 \\ 3 & -1\end{array}\right] \)
And \( |A|=-1(2)-(-3)(5)=13 \)
So \( A^{-1}=\frac{1}{|A|} \operatorname{Adj} A=\frac{1}{13}\left[\begin{array}{ll}2 & -5 \\ 3 & -1\end{array}\right]=\left[\begin{array}{ll}\frac{2}{13} & \frac{-5}{13} \\ \frac{3}{13} & \frac{-1}{13}\end{array}\right] \)
\(\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 2 & 4 \\
0 & 0 & 5
\end{array}\right]\)
Let's find the cofactors for all the positions first-
Here, \( A_{11}=10, A_{12}=0, A_{13}=0, A_{21}=-10, A_{22}=5, A_{23}=0, A_{31}=2 \), \( \mathrm{A}_{32}=-4, \mathrm{~A}_{33}=2 \).
\( \therefore \operatorname{Adj} \mathrm{A}=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right] \)
\( =\left[\begin{array}{ccc}10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2\end{array}\right] \)
And \( |\mathrm{A}|=10 \).
\( A^{-1}=\frac{1}{|A|} \operatorname{Adj} A=\frac{1}{10}\left[\begin{array}{ccc}10 & -10 & 2 \\ 0 & 5 & -4 \\ 0 & 0 & 2\end{array}\right]=\left[\begin{array}{ccc}\frac{10}{10} & -\frac{10}{10} & \frac{2}{10} \\ 0 & \frac{5}{10} & -\frac{4}{10} \\ 0 & 0 & \frac{2}{10}\end{array}\right] \)
\( \mathrm{A}-1=\left|\begin{array}{ccc}1 & -1 & \frac{1}{5} \\ 0 & \frac{1}{2} & -\frac{2}{5} \\ 0 & 0 & \frac{1}{5}\end{array}\right| \)
\(\left|\begin{array}{ccc}
1 & 0 & 0 \\
3 & 3 & 0 \\
5 & 2 & -1
\end{array}\right|\)
Let's find the cofactors for all the positions first-
Here, \( A_{11}=-3, A_{12}=3, A_{13}=-9, A_{21}=0, A_{22}=-1, A_{23}=-2, A_{31}=0 \), \( \mathrm{A}_{32}=0, \mathrm{~A}_{33}=3 \)
\( \therefore \operatorname{Adj} \mathrm{A}=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right] \)
\( =\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right] \)
And \( |A|=-3 \).
\( \mathrm{A}^{-1}=\frac{1}{|A|} \operatorname{Adj} \mathrm{A}=\frac{1}{-3}\left[\begin{array}{ccc}-3 & 0 & 0 \\ 3 & -1 & 0 \\ -9 & -2 & 3\end{array}\right]=\left[\begin{array}{ccc}\frac{-3}{-3} & 0 & 0 \\ \frac{3}{-3} & \frac{-1}{-3} & 0 \\ \frac{-9}{-3} & \frac{-2}{-2} & \frac{3}{-3}\end{array}\right]\)\(=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & \frac{1}{3} & 0 \\ 3 & \frac{2}{3} & -1\end{array}\right] \)
\(\left[\begin{array}{ccc}
2 & 1 & 3 \\
4 & -1 & 0 \\
-7 & 2 & 1
\end{array}\right]\)
Let's find the cofactors for all the positions first-
Here, \( A_{11}=-1, \mathrm{~A}_{12}=-4, \mathrm{~A}_{13}=1, \mathrm{~A}_{21}=5, \mathrm{~A}_{22}=23, \mathrm{~A}_{23}=-11, \) \(\mathrm{~A}_{31}=3, \mathrm{A}_{32}=12, \mathrm{~A}_{33}=-6 \).
\( \therefore \operatorname{Adj} \mathrm{A}=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right] \)
\(=\left[\begin{array}{ccc}
-1 & 5 & 3 \\
-4 & 23 & 12 \\
1 & -11 & -6
\end{array}\right]\)
And \( |A|=-3 \).
\( \mathrm{A}^{-1}=\frac{1}{|A|} \operatorname{Adj} \mathrm{A}=\frac{1}{-3}\left[\begin{array}{ccc}-1 & 5 & 3 \\ -4 & 23 & 12 \\ 1 & 11 & -6\end{array}\right]=\left[\begin{array}{ccc}\frac{-1}{-3} & \frac{5}{-3} & \frac{3}{-3} \\ \frac{-4}{13} & \frac{23}{-3} & \frac{12}{-3} \\ \frac{1}{-3} & \frac{-11}{-3} & \frac{-6}{-3}\end{array}\right] \)
\(\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 2 & -3 \\
3 & -2 & 4
\end{array}\right]\)
Let's find the cofactors for all the positions first-
Here, \( A_{11}=2, A_{12}=-9, A_{13}=-6, A_{21}=0, A_{22}=-2, A_{23}=-1, \) \( A_{31}=-1 ,\mathrm{A}_{32}=3, \mathrm{~A}_{33}=2 \).
\( \therefore \operatorname{Adj} \mathrm{A}=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right] \)
\(=\left[\begin{array}{ccc}
2 & 0 & -1 \\
-9 & -2 & 3 \\
-6 & -1 & 2
\end{array}\right]\)
And \( |A|=-1 \).
\(\begin{array}{l}
A^{-1}=\frac{1}{|A|} \operatorname{Adj} A=\frac{1}{-1}\left[\begin{array}{ccc}
2 & 0 & -1 \\
-9 & -2 & 3 \\
-6 & -1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 0 & 1 \\
9 & 2 & -3 \\
6 & 1 & -2
\end{array}\right] \\
A^{-1}=\left[\begin{array}{ccc}
-2 & 0 & 1 \\
9 & 2 & -3 \\
6 & 1 & -2
\end{array}\right]
\end{array}\)
\(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & \sin \alpha \\
0 & \sin \alpha & -\cos \alpha
\end{array}\right]\)
Let's find the cofactors for all the positions first-
Here, \( A_{11}=-1, A_{12}=0, A_{13}=0, A_{21}=0, A_{22}=-\cos \alpha, A_{23}=-\sin \alpha, \) \(A_{31} =0, \mathrm{~A}_{32}=-\sin \alpha, \mathrm{A}_{33}=\cos \alpha \).
\( \therefore \operatorname{Adj} \mathrm{A}=\left[\begin{array}{lll}A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}\end{array}\right] \)
\( =\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right] \)
And \( |\mathrm{A}|=1 \).
\( \mathrm{A}^{-1}=\frac{1}{|A|} \operatorname{Adj} \mathrm{A} \)
\( =\frac{1}{-1}\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\cos \alpha & -\sin \alpha \\ 0 & -\sin \alpha & \cos \alpha\end{array}\right] \)
\( \mathrm{AB}=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]\left[\begin{array}{ll}6 & 8 \\ 7 & 9\end{array}\right]=\left[\begin{array}{ll}67 & 87 \\ 47 & 61\end{array}\right]=(61)(67)-(47)(87)=-2 \)
Here determinant of matrix \( =|A B| \neq 0 \) hence \( (A B)^{-1} \) exists.
\( (A B)^{-1}=\frac{1}{|A B|} \operatorname{Adj}(A B)=-\frac{1}{2}\left[\begin{array}{cc}61 & -47 \\ -87 & 67\end{array}\right]=\left[\begin{array}{cc}\frac{61}{-2} & \frac{-47}{-2} \\ \frac{-87}{-2} & \frac{67}{-2}\end{array}\right] \)
\( \left\{\therefore \operatorname{Adj}(\mathrm{AB})=\left[\begin{array}{cc}61 & -47 \\ -87 & 67\end{array}\right]\right\} \)
So, \( (\mathrm{AB})^{-1}=\left[\begin{array}{cc}-\frac{61}{2} & \frac{47}{2} \\ \frac{87}{2} & -\frac{67}{2}\end{array}\right] \)
Also \( |A|=1 \neq 0 \) and \( |B|=-2 \neq 0 \).
\( \therefore \mathrm{A}^{-1} \) and \( \mathrm{B}^{-1} \) will also exist and are given by-
(A) \( -1=\frac{1}{|A|} \operatorname{Adj} \mathrm{A}=\frac{1}{1}\left[\begin{array}{cc}5 & -2 \\ -7 & 3\end{array}\right] \)
(B) \( -1=\frac{1}{|B|} \) Adj \( A=-\frac{1}{2}\left[\begin{array}{cc}9 & -7 \\ -8 & 6\end{array}\right] \)
And hence,
\( (\mathrm{B})^{-1}(\mathrm{A})^{-1}=-\frac{1}{2}\left[\begin{array}{cc}9 & -7 \\ -8 & 6\end{array}\right]\left[\begin{array}{cc}5 & -2 \\ -7 & 3\end{array}\right]=-\frac{1}{2}\left[\begin{array}{cc}61 & -47 \\ -87 & 67\end{array}\right]= \) \( \left[\begin{array}{ll}\frac{61}{-2} & \frac{-47}{-2} \\ \frac{-87}{-2} & \frac{67}{-2}\end{array}\right] \)
{Hence proved}
class 12 maths chapter 4 exercise 4.5 solutions || ex 4.5 class 12 maths ncert solutions || determinants maths class 12 || class 12 maths determinants exercise 4.5 || maths class 12 chapter 4 ncert solutions || exercise 4.5 class 12 maths ncert solutions
So \( \mathrm{A}^{2}-5 \mathrm{A}+7 \mathrm{I}=\left[\begin{array}{cc}8 & 5 \\ -5 & 3\end{array}\right]-5\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]+7\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=0 \)
Hence \( A^{2}-5 A+7 I=0 \)
\( \therefore A.A -5 \mathrm{~A}=-7 \mathrm{I} \)
Now post multiply with \( A^{-1} \)
So \(A.A.A^{-1}-5 A. A^{-1}=-7 \mathrm{I}. A^{-1} \)
\(\begin{array}{l}
\rightarrow A . I-5 I=-7 I.A^{-1}\left\{\text {since }A.A^{-1}=I\right\} \\
A-5 I=-7 A^{-1}\{\text {since }X.I=X\} \\
\rightarrow A^{-1}=\frac{5 I-A}{7}=\frac{1}{7}\left(5\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]\right)=-\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right] \\
\rightarrow A^{-1}=\left[\begin{array}{cc}
\frac{2}{7} & -\frac{1}{7} \\
\frac{1}{7} & \frac{3}{7}
\end{array}\right]
\end{array}\)
Since \( A^{2}+a A+b I=\left[\begin{array}{cc}10 & 5 \\ 5 & 5\end{array}\right]+a\left[\begin{array}{ll}3 & 1 \\ 1 & 2\end{array}\right]+b\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}=0\right] \)
So \( \mathrm{A}^{2}+\mathrm{aA}+\mathrm{bI}=\left[\begin{array}{cc}10+3 a+b & 5+a \\ 5+a & 5+2 a+b\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \)
Hence \( 10+3 a+b=0 \ldots \) (i)
\( 5+a=0 \)
\( 5+2 \mathrm{a}+\mathrm{b}=0 \)
From (ii) \( a=-5 \)
Putting a in (iii) we get \( b=5 \)
So \( a=-5 \) and \( b=5 \) satisfy the equation.
Show that \( A^{3}-6 A^{2}+5 A+11 I=0 \). Hence, find \( A^{-1} \).
And hence \( \mathrm{A}^{3}=\mathrm{A} . \mathrm{A}^{2}= \)
\(\begin{array}{l}
{\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]=\left[\begin{array}{ccc}
8 & 7 & 1 \\
-23 & 27 & -69 \\
32 & -13 & 58
\end{array}\right]} \\
\therefore \mathrm{A}^{3}-6 \mathrm{A}^{2}+5 \mathrm{~A}+11 \mathrm{I}= \\
{\left[\begin{array}{ccc}
8 & 7 & 1 \\
-23 & 27 & -69 \\
32 & -13 & 58
\end{array}\right]-6\left[\begin{array}{ccc}
4 & 2 & 1 \\
-3 & 8 & -14 \\
7 & -3 & 14
\end{array}\right]+5\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & -3 \\
2 & -1 & 3
\end{array}\right]+} \\
11\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
=\left[\begin{array}{ccc}
24 & 12 & 6 \\
-18 & 48 & -84 \\
42 & -18 & 84
\end{array}\right]-\left[\begin{array}{ccc}
24 & 12 & 6 \\
-18 & 48 & -84 \\
42 & -18 & 84
\end{array}\right]=0
\end{array}\)
Thus, \( A^{3}-6 A^{2}+5 A+11 I=0 \)
Now, \( \mathrm{A}^{3}-6 \mathrm{A}^{2}+5 \mathrm{A}+11 \mathrm{I}=0 \),
\(\rightarrow (A.A.A) -6(A.A )+5 \mathrm{A}=-11 \mathrm{I}\)
Post-multiply with A-1 on both sides-
\(\rightarrow\left(A.A.A.A ^{-1}\right)-6\left(A.A.A^{-1}\right)+5 A.A ^{-1}=-11 I\cdot \mathrm{A}^{-1}\)
\(
\rightarrow(A.A.I)-6(A.I)+5 \mathrm{I}=-11 \mathrm{I} \cdot \mathrm{A}-1\left\{\text {since } A \cdot \mathrm{A}^{-1}=\mathrm{I}\right\}\)
\(
\rightarrow(A.A)-6 \mathrm{A}+5 \mathrm{I}=-11 \mathrm{A}^{-1}\{\text {since } X.I=\mathrm{X}\}
\)
And hence
\( A^{3}=A \cdot A^{2}=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]\left[\begin{array}{ccc}6 & -5 & 5 \\ -5 & 6 & -5 \\ 5 & -5 & 6\end{array}\right]= \)
\(\begin{array}{l}
{\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & -22
\end{array}\right]} \\
\therefore \mathrm{A}^{3}-6 \mathrm{~A}^{2}+9 \mathrm{~A}-4 \mathrm{I} \\
=\left[\begin{array}{ccc}
22 & -21 & 21 \\
-21 & 22 & -21 \\
21 & -21 & 22
\end{array}\right]-6\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]+9\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]- \\
4\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
=\left[\begin{array}{ccc}
40 & -30 & 30 \\
-30 & 40 & -30 \\
30 & -30 & 40
\end{array}\right]-\left[\begin{array}{ccc}
40 & -30 & 30 \\
-30 & 40 & -30 \\
30 & -30 & 40
\end{array}\right]=0
\end{array}\)
Thus, \( \mathrm{A}^{3}-6 \mathrm{~A}^{2}+9 \mathrm{A}-4 \mathrm{I}=0 \)
Now, \( A^{3}-6 A^{2}+9 A-4 I=0 \),
\(\rightarrow(A.A.A )-6(\mathrm{A} . \mathrm{A})+9 \mathrm{~A}=4 \mathrm{I}\)
Post-multiply with \( \mathrm{A}^{-1} \) on both sides-
\( \rightarrow\left(A.A.A.A^{-1}\right)-6\left(\mathrm{A} \cdot \mathrm{A} \cdot \mathrm{A}^{-1}\right)+9 \mathrm{A} \cdot \mathrm{A}^{-1}=4 \mathrm{I} \cdot \mathrm{A}^{-1}\)
\(\rightarrow(\mathrm{A} \cdot \mathrm{A} \cdot \mathrm{I})-6(\mathrm{A} \cdot \mathrm{I})+9 \mathrm{I}=4 \mathrm{I} \cdot \mathrm{A}^{-1}\left\{\text {since } \mathrm{A}\cdot \mathrm{A}^{-1}=\mathrm{I}\right\}\)
\(\rightarrow(\mathrm{A} \cdot \mathrm{A})-6 \mathrm{~A}+9 \mathrm{I}=4 \mathrm{~A}^{-1}\{\text {since }X.I =X\}\)
\(\rightarrow \mathrm{A}^{-1}=\frac{1}{4}\left(\mathrm{A}^{2}-6 \mathrm{~A}+9 \mathrm{I}\right) \)
\(\begin{array}{l}=\frac{1}{4}\left(\left[\begin{array}{ccc}
6 & -5 & 5 \\
-5 & 6 & -5 \\
5 & -5 & 6
\end{array}\right]-6\left[\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]+9\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)
\end{array}\)
\( =\frac{1}{4}\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}\frac{3}{4} & \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} & \frac{3}{4}\end{array}\right] \)
Hence \( A^{-1}=\left[\begin{array}{ccc}\frac{3}{4} & \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} & \frac{3}{4}\end{array}\right] \)
A. \( |A| \) B. \( |A|^{2} \) C. \( |\mathrm{A}|^{3} \) D. \( 3|\mathrm{~A}| \)
We know that \( |\operatorname{Adj} A|=|A|^{\mathrm{n}-1} \)
So, \( \left|\operatorname{Adj} A|=| A\left|\left(3^{-1}\right)=\right| A\right|^{2} \)
A. \( \operatorname{det}(A) \) B. \( \frac{1}{\operatorname{det}(A)} \) C. 1 D. 0
SO, \( \left|(\mathrm{A})^{-1}\right|=\left|\frac{1}{|A|} \operatorname{Adj}(A)\right|=\left.\frac{1}{|A|^{n}}\left|\operatorname{Adj}(\mathrm{A})=\frac{1}{|A|^{n}}\right| \mathrm{A}\right|^{\mathrm{n}-1}=\frac{1}{|A|^{1}} \)
\( \left\{\right. \)since \( \operatorname{adj}(A) \) is of order \( n \) and \( \left.|\operatorname{Adj}(A)|=|A|^{n-1}\right\} \)
Alternative-
We know that \( \mathrm{AA}^{-1}=\mathrm{I} \)
So \( |A|\left|A^{-1}\right|=|\mathrm{I}|=1 \)
Hence \( \left|(A)^{-1}\right|=\frac{1}{|A|} \)
class 12 maths chapter 4 exercise 4.5 solutions || ex 4.5 class 12 maths ncert solutions || determinants maths class 12 || class 12 maths determinants exercise 4.5 || maths class 12 chapter 4 ncert solutions || exercise 4.5 class 12 maths ncert solutions
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.